JPH08883B2 - Phenolic resin composition for shell mold - Google Patents
Phenolic resin composition for shell moldInfo
- Publication number
- JPH08883B2 JPH08883B2 JP29128690A JP29128690A JPH08883B2 JP H08883 B2 JPH08883 B2 JP H08883B2 JP 29128690 A JP29128690 A JP 29128690A JP 29128690 A JP29128690 A JP 29128690A JP H08883 B2 JPH08883 B2 JP H08883B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- phenol resin
- weight
- molecular weight
- average molecular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Mold Materials And Core Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明はシェルモールド用フェノール樹脂組成物に関
する。TECHNICAL FIELD The present invention relates to a phenol resin composition for shell molds.
[従来の技術] シェルモールド鋳型を生産する際にレジンコーティド
サンドが用いられる。レジンコーティドサンドでは結合
剤として一般にノボラック型フェノール樹脂が用られて
いる。このシェルモールド用フェノール樹脂として重量
平均分子量が360〜850のものを用いたものが知られてい
る(特開平2−70717号公報)。[Prior Art] Resin coated sand is used in the production of shell molds. In resin coated sand, a novolac type phenol resin is generally used as a binder. As the phenol resin for the shell mold, one having a weight average molecular weight of 360 to 850 is known (JP-A-2-70717).
[発明が解決しようとする課題] ところでシェルモールド鋳型では常温強度、温度強度
の双方に優れ、更に熱膨張率が低いことが好ましい。そ
のためシェルモールド用フェノール樹脂組成物では種々
の改良が試みられている。[Problems to be Solved by the Invention] By the way, it is preferable that the shell mold is excellent in both room temperature strength and temperature strength and has a low coefficient of thermal expansion. Therefore, various improvements have been attempted in the phenol resin composition for shell mold.
本発明はこの実情に鑑み開発されたものであり、その
課題は、常温強度、温間強度の双方に優れ、更に熱膨張
率を低めにできるシェルモールド用フェノール樹脂組成
物を提供することにある。The present invention has been developed in view of this situation, and an object thereof is to provide a phenol resin composition for a shell mold, which is excellent in both room temperature strength and warm strength, and can have a low coefficient of thermal expansion. .
[課題を解決するための手段] 本発明者はシェルモールド用フェノール樹脂ではその
重量平均分子量にレジンコーティドサンドの特性が大き
く左右されることに着目した。即ち、フェノール樹脂の
重量平均分子量が高い場合、温間強度、熱膨張率が良好
になる反面、常温強度が低くなる傾向にある。またフェ
ノール樹脂の重量平均分子量が低い場合、常温強度が高
くなる反面、温間強度、熱膨張率が悪くなる傾向にあ
る。[Means for Solving the Problems] The present inventor has noticed that the weight average molecular weight of the phenol resin for shell mold greatly affects the characteristics of the resin coated sand. That is, when the weight average molecular weight of the phenol resin is high, the warm strength and the coefficient of thermal expansion are good, but the room temperature strength tends to be low. When the weight average molecular weight of the phenol resin is low, the room temperature strength is high, but the warm strength and the coefficient of thermal expansion tend to be poor.
本発明者は上記した知見に鑑み、重量平均分子量の高
い樹脂と低い樹脂とを混合すれば、良好な特性をもつシ
ェルモールド用フェノール樹脂が得られることを見出
し、本発明を完成させたものである。In view of the above findings, the present inventors have found that a phenol resin for shell mold having good properties can be obtained by mixing a resin having a high weight average molecular weight and a resin having a low weight average molecular weight, and have completed the present invention. is there.
即ち、本発明のシェルコールド用フェノール樹脂組成物
は、重量平均分子量(▲▼)800以上で1400以下の
第1のフェノール樹脂成分と、重量平均分子量1500以上
で2500以下の第2のフェノール樹脂成分とからなり、重
量比で(第2のフェノール樹脂成分/第1のフェノール
樹脂成分)=(1/9)〜(4/1)の値に設定されているこ
とを特徴とするものである。That is, the phenol resin composition for shell cold of the present invention comprises a first phenol resin component having a weight average molecular weight (▲ ▼) of 800 or more and 1400 or less and a second phenol resin component of a weight average molecular weight of 1500 or more and 2500 or less. And a weight ratio of (second phenol resin component / first phenol resin component) = (1/9) to (4/1) is set.
第1のフェノール樹脂成分、第2のフェノール樹脂成
分は、フェノール類とアルデヒド類を酸性触媒の存在下
で合成して得られるノボラック型の樹脂である。フェノ
ール類としてはフェノール、クレゾール等、アルデヒド
類としてはホルマリン、パラホルムアルデヒド等を採用
できる。酸性触媒としては塩酸、硫酸、リン酸等を採用
できる。The first phenol resin component and the second phenol resin component are novolac type resins obtained by synthesizing phenols and aldehydes in the presence of an acidic catalyst. As the phenols, phenol, cresol and the like can be adopted, and as the aldehydes, formalin, paraformaldehyde and the like can be adopted. As the acidic catalyst, hydrochloric acid, sulfuric acid, phosphoric acid or the like can be adopted.
第1のフェノール樹脂成分は重量平均分子量800以上
で1400以下のものであり、その平均分子量は例えば1000
〜1200とすることができる。第2のフェノール樹脂成分
は重量平均分子量1500以上で2500以下のものであり、そ
の平均分子量は例えば2200〜2400とすることができる。The first phenol resin component has a weight average molecular weight of 800 or more and 1400 or less, and its average molecular weight is, for example, 1000.
It can be ~ 1200. The second phenol resin component has a weight average molecular weight of 1500 or more and 2500 or less, and the average molecular weight thereof can be, for example, 2200 to 2400.
本発明では、(第2のフェノール樹脂成分/第1のフ
ェノール樹脂成分)=(1/9)〜(4/1)の値に設定され
ている。上記範囲内において、第1のフェノール樹脂成
分と第2のフェノール樹脂成分との混合割合は、要求さ
れるシェルモールド鋳型の種類に応じて適宜選択できる
が、なかでも(1/9)〜(1/1)の値が好ましく、特に
(1/7)〜(1/2)の値とすることができる。In the present invention, the value of (second phenol resin component / first phenol resin component) = (1/9) to (4/1) is set. Within the above range, the mixing ratio of the first phenol resin component and the second phenol resin component can be appropriately selected depending on the type of shell mold template required, but among them, (1/9) to (1 The value of / 1) is preferable, and the value of (1/7) to (1/2) can be used in particular.
[作用] 第2の樹脂成分に多く含まれている高分子量成分つま
り多量体が温間強度を向上させるとともに熱膨張率を低
めに維持し、また、第1の樹脂成分に多く含まれている
2量体、3量体等の低分子成分が常温強度を向上させる
と推察される。[Function] The high molecular weight component, that is, the multimer, contained in the second resin component in a large amount improves the warm strength and maintains a low coefficient of thermal expansion, and is contained in the first resin component in a large amount. It is speculated that low-molecular components such as dimers and trimers improve the room temperature strength.
[実施例] (実施例1) 撹拌装置、加熱装置および冷却管を備えた反応缶にフ
ェノール100重量部、37%ホルマリン47重量部およびシ
ュウ酸5重量部を配合し、還流下で3時間反応を行っ
た。次に反応液を真空下で加熱脱水し、反応液が160℃
に達した時にエチレンビスステアリン酸アマイド2重量
部およびアミノトリエトキシシラン1重量部を添加混合
し、冷却して常温で固型のノボラック型の樹脂A(第1
のフェノール樹脂)を得た。この樹脂Aの重量平均分子
量は1100であった。なお重量平均分子量はGPC方法で測
定した。[Example] (Example 1) 100 parts by weight of phenol, 47 parts by weight of 37% formalin and 5 parts by weight of oxalic acid were added to a reaction vessel equipped with a stirrer, a heating device and a cooling tube, and the mixture was reacted under reflux for 3 hours. I went. Next, the reaction mixture is heated and dehydrated under vacuum, and the reaction mixture is heated
2 parts by weight of ethylene bis-stearic acid amide and 1 part by weight of aminotriethoxysilane are added and mixed, and cooled to solid novolak type resin A at room temperature (first
Of phenol resin) was obtained. The weight average molecular weight of this resin A was 1,100. The weight average molecular weight was measured by the GPC method.
また、37%ホルマリンを60重量部、反応時間を4時間
とした以外は樹脂Aを得た場合と同様な条件で、常温で
固型のノボラック型の樹脂B(第2のフェノール樹脂)
を得た。この樹脂Bの重量平均分子量は1500であった。Further, under the same conditions as in the case of obtaining the resin A, except that 60% by weight of 37% formalin and the reaction time were 4 hours, a solid novolac type resin B (second phenol resin) was obtained at room temperature.
I got The weight average molecular weight of this resin B was 1500.
また、37%ホルマリンを70重量部、反応時間を5時間
とした以外は樹脂Aを得た場合と同様な条件で、常温で
固型のノボラック型の樹脂C(第2のフェノール樹脂)
を得た。この樹脂Cの重量平均分子量は2400であった。Further, under the same conditions as in the case of obtaining the resin A, except that 70% by weight of 37% formalin and the reaction time were 5 hours, a solid novolac type resin C (second phenol resin) was obtained at room temperature.
I got The weight average molecular weight of this resin C was 2,400.
そして、樹脂A70重量部、樹脂C30重量部とを溶融混合
し、実施例1にかかる樹脂組成物を得た。従って実施例
1では混合割合は、(樹脂B/樹脂A)=(30/70)=(1
/2.3)である。実施例1にかかる樹脂組成物は重量平均
分子量1490であった。Then, 70 parts by weight of Resin A and 30 parts by weight of Resin C were melt mixed to obtain a resin composition according to Example 1. Therefore, in Example 1, the mixing ratio is (resin B / resin A) = (30/70) = (1
/2.3). The resin composition according to Example 1 had a weight average molecular weight of 1490.
更に、160℃に加熱したフーカ砂8kgに実施例1にかか
る樹脂160g、水120g、ヘキサミン24g、ステアリン酸カ
ルシウム8gをスピードミキサー内で添加混合し、これに
より実施例1にかかるレジンコーテッドサンド(以下RC
Sという)を得た。このRCSを用いて造型し、JIS K−6
910に従い、シェルモールド鋳型の常温強度、温間強
度、熱膨張率を測定した。測定結果を第1表に示す。第
1表に示すように常温強度は60.3kg/cm2、温間強度は1
4.5kg/cm2と双方ともに高く、熱膨張率は1.23%は低め
と良好であった。Furthermore, 160 g of the resin according to Example 1, 120 g of water, 24 g of hexamine, and 8 g of calcium stearate were added to and mixed with 8 kg of fuuka sand heated to 160 ° C. in a speed mixer.
Got S). Molded using this RCS, JIS K-6
According to 910, the room temperature strength, warm strength, and coefficient of thermal expansion of the shell mold were measured. The measurement results are shown in Table 1. As shown in Table 1, room temperature strength is 60.3kg / cm 2 , warm strength is 1
Both of them were high at 4.5 kg / cm 2, and the coefficient of thermal expansion was 1.23%, which was rather low.
(実施例2) 樹脂A50重量部と樹脂C50重量部とを溶融混合し、実施
例2にかかる樹脂組成物を得た。実施例2では混合割合
は、(樹脂C/樹脂A)=(50/50)=(1/1)である。実
施例2にかかる樹脂組成物は重量平均分子量1750であっ
た。そして、実施例1と同様に、実施例2にかかるRCS
を得、このRCSを用いて造型し、RCS特性を調べた。第1
表に示すように常温強度は58.2kg/cm2、温間強度は14.6
kg/cm2と双方とも高く、熱膨張率は1.18%と低かった。(Example 2) 50 parts by weight of Resin A and 50 parts by weight of Resin C were melt mixed to obtain a resin composition according to Example 2. In Example 2, the mixing ratio is (resin C / resin A) = (50/50) = (1/1). The resin composition according to Example 2 had a weight average molecular weight of 1750. Then, like the first embodiment, the RCS according to the second embodiment
Then, molding was performed using this RCS, and the RCS characteristics were investigated. First
As shown in the table, room temperature strength is 58.2kg / cm 2 , warm strength is 14.6kg.
Both were high at kg / cm 2, and the coefficient of thermal expansion was low at 1.18%.
(実施例3) 樹脂A30重量部と樹脂C70重量部とを溶融混合し、実施
例3にかかる樹脂組成物を得た。実施例3では(樹脂C/
樹脂A)=(70/30) =(2.3/1)である。実施例3にかかる樹脂組成物は重
量平均分子量2010であった。そして、実施例1と同様に
RCS特性を調べた。第1表に示すように常温強度は45.5k
g/cm2であったが、温間強度は13.5kg/cm2と高目であ
り、燃膨張率は1.15%と低く良好であった。(Example 3) 30 parts by weight of Resin A and 70 parts by weight of Resin C were melt mixed to obtain a resin composition according to Example 3. In Example 3, (resin C /
Resin A) = (70/30) = (2.3 / 1). The resin composition according to Example 3 had a weight average molecular weight of 2010. Then, as in the first embodiment
The RCS characteristics were investigated. Room temperature strength is 45.5k as shown in Table 1.
Although it was g / cm 2 , the warm strength was as high as 13.5 kg / cm 2 , and the fuel expansion coefficient was low at 1.15%, which was good.
(比較例1) 実施例1で得られた樹脂Aを用い実施例1と同様にRC
S特性を調べた。第1表に示すように常温強度は61.2kg/
cm2と高いものの、温間強度は11.9kg/cm2と最も低く、
また熱膨張率は1.45%と最も悪かった。(Comparative Example 1) Using the resin A obtained in Example 1, RC was used in the same manner as in Example 1.
The S characteristic was investigated. As shown in Table 1, room temperature strength is 61.2kg /
Although it is as high as cm 2 , the warm strength is the lowest at 11.9 kg / cm 2 ,
The coefficient of thermal expansion was 1.45%, the worst.
(比較例2) 実施例2で得られた樹脂Bを用い実施例1と同様にRC
S特性を調べた。第1表に示すように常温強度は55.4kg/
cm2、温間強度は13.3kg/cm2と低くく、熱膨張率は1.27
%であった。(Comparative Example 2) The same procedure as in Example 1 was repeated except that the resin B obtained in Example 2 was used.
The S characteristic was investigated. As shown in Table 1, room temperature strength is 55.4kg /
cm 2 , warm strength is as low as 13.3 kg / cm 2, and coefficient of thermal expansion is 1.27.
%Met.
(比較例3) 実施例3で得られた樹脂Cを用い実施例1と同様にRC
S特性を調べた。第1表に示すように熱膨張率は1.12%
と低いものの、常温強度は39.1kg/cm2と最も低く、温間
強度も12.1kg/cm2と低かった。(Comparative Example 3) RC was performed in the same manner as in Example 1 except that the resin C obtained in Example 3 was used.
The S characteristic was investigated. As shown in Table 1, the coefficient of thermal expansion is 1.12%
However, the room temperature strength was the lowest at 39.1 kg / cm 2, and the warm strength was 12.1 kg / cm 2 .
(評価) 実施例1〜3のフェノール樹脂組成物によれば、シェ
ルモールド鋳型の相反する常温強度、温間強度の双方を
ともに向上させることができ、また熱膨張率も良好な値
にできることがわかる。(Evaluation) According to the phenol resin compositions of Examples 1 to 3, both the contradictory room temperature strength and the warm strength of the shell mold can be improved, and the coefficient of thermal expansion can be made a good value. Recognize.
[発明の効果] 本発明のシェルモールド用フェノール樹脂組成物によ
れば、相反する特性である常温強度、温間強度の双方を
ともに向上させることができる。そのためシェルモール
ド用鋳型に適用すれば、強度を向上させ得るぶん、シェ
ルモールド用鋳型の複雑化、薄肉化に対応することがで
きる。[Effect of the Invention] According to the phenol resin composition for shell molds of the present invention, it is possible to improve both contradictory properties, that is, room temperature strength and warm strength. Therefore, when applied to a shell mold, the strength of the mold can be improved, and the shell mold can be made complicated and thin.
また本発明のシェルモールド用フェノール樹脂組成物
によれば、前記したように温間強度を向上できるので、
温間強度を向上させるために一般に使用される有機酸を
省き得る効果も期待できる。Further, according to the phenol resin composition for shell mold of the present invention, since the warm strength can be improved as described above,
The effect of omitting the organic acid generally used for improving the warm strength can be expected.
また低分子量成分も含まれているので、高分子量樹脂
を混練する場合に発生し易いレジンダマを減少させるの
にも有利である。Further, since it also contains a low molecular weight component, it is also advantageous in reducing the resinma that tends to occur when kneading a high molecular weight resin.
Claims (1)
のフェノール樹脂成分と、重量平均分子量1500以上で25
00以下の第2のフェノール樹脂成分とからなり、重量比
で(第2のフェノール樹脂成分/第1のフェノール樹脂
成分)=(1/9)〜(4/1)の値に設定されていることを
特徴とするシェルモールド用フェノール樹脂組成物。1. A first having a weight average molecular weight of 800 or more and 1400 or less.
With a phenolic resin component of, and a weight average molecular weight of 1500 or more, 25
It is composed of a second phenol resin component of 00 or less, and is set to a value of (second phenol resin component / first phenol resin component) = (1/9) to (4/1) by weight ratio. A phenol resin composition for a shell mold, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29128690A JPH08883B2 (en) | 1990-10-29 | 1990-10-29 | Phenolic resin composition for shell mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29128690A JPH08883B2 (en) | 1990-10-29 | 1990-10-29 | Phenolic resin composition for shell mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04164952A JPH04164952A (en) | 1992-06-10 |
JPH08883B2 true JPH08883B2 (en) | 1996-01-10 |
Family
ID=17766914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29128690A Expired - Fee Related JPH08883B2 (en) | 1990-10-29 | 1990-10-29 | Phenolic resin composition for shell mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08883B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4413851B2 (en) * | 2005-02-16 | 2010-02-10 | 旭有機材工業株式会社 | Resin coated sand for laminated molds |
-
1990
- 1990-10-29 JP JP29128690A patent/JPH08883B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04164952A (en) | 1992-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08883B2 (en) | Phenolic resin composition for shell mold | |
JP3277810B2 (en) | Phenolic resin excellent in fast curing property and heat resistance and method for producing the same | |
US4870154A (en) | Method of producing a quick-curing novolac phenolic resin using ammonium halides | |
JP4439774B2 (en) | Novolac type phenolic resin and resin coated sand for shell mold | |
JPS588698B2 (en) | Method for producing reactive flame retardant plasticizer | |
JP3152883B2 (en) | Phenolic resin composition | |
JPH02113021A (en) | Epoxy resin composition | |
JP2001146545A (en) | Thermosetting resin composition | |
JPH06228256A (en) | Phenolic resin composition and molding material | |
JP3062211B2 (en) | Method for producing self-curing phenolic resin | |
JPS6253528B2 (en) | ||
JPH0841289A (en) | Molding material of phenolic resin | |
JPH1171497A (en) | Phenol resin composition | |
JPH11323314A (en) | Resin composition for abrasive | |
JPH11209451A (en) | Resin composition for friction material | |
JPS5964616A (en) | Solid resol resin and its production | |
JP2004115571A (en) | Novolak type phenol resin for refractory binder | |
JPH10139845A (en) | Modified phenolic resin composition | |
JPS58189217A (en) | Novolak phenolic resin for use in resin-coated sand | |
JPS6026491B2 (en) | Production method of solid phenol-melamine cocondensation resin | |
JPH09255746A (en) | Heat-resistant phenol resin | |
JPH0144213B2 (en) | ||
JPH11269242A (en) | Phenol resin composition | |
JPH07173238A (en) | Allylnaphthol cocondensate and epoxy resin composition | |
JPH03197551A (en) | Phenol aralkyl resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |