JPH0888380A - Substrate for photovoltaic element and its manufacture - Google Patents

Substrate for photovoltaic element and its manufacture

Info

Publication number
JPH0888380A
JPH0888380A JP6222134A JP22213494A JPH0888380A JP H0888380 A JPH0888380 A JP H0888380A JP 6222134 A JP6222134 A JP 6222134A JP 22213494 A JP22213494 A JP 22213494A JP H0888380 A JPH0888380 A JP H0888380A
Authority
JP
Japan
Prior art keywords
substrate
transparent conductive
conductive oxide
photovoltaic element
inner shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6222134A
Other languages
Japanese (ja)
Inventor
Tsutomu Murakami
勉 村上
Satoshi Niikura
諭 新倉
Hirobumi Ichinose
博文 一ノ瀬
Akio Hasebe
明男 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6222134A priority Critical patent/JPH0888380A/en
Publication of JPH0888380A publication Critical patent/JPH0888380A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE: To obtain a texture structure which is optimum for constituting a photovoltaic element of good characteristic and reliability by forming it by depositing transparent conductive oxygen coated particle consisting of an inner shell of high polymer resin and an outer shell of an oxide semiconductor layer. CONSTITUTION: A substrate is provided with a supporting substrate 101 and an injection side electrode 102. It is formed by depositing particles coated with transparent conductive oxide. Each particle consists of an inner shell of polymer resin and an outer shell of an oxide semiconductor layer applied to the inner shell. The polymer resin consists of at least one kind of polymer selected from acrylic, sthyrene and nylon. The oxide semiconductor consists of at least one kind selected from In2 O3 , TiO2 , SnO2 , ITO, ZnO and one wherein dopant is added to them. Thereby, a photovoltaic element of good initial characteristic and reliability is applicable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光起電力素子用基板及
びその作製方法に係わり、特に、変換効率や、製造安定
性の良好な太陽電池用基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device substrate and a method for producing the same, and more particularly to a solar cell substrate having good conversion efficiency and manufacturing stability.

【0002】[0002]

【従来枝術の説明】光起電力素子は、火力発電、水力発
電などの既存発電方法の問題を解決する代替エネルギー
源として注目される太陽電池に用いられている。とりわ
け、アモルファスシリコン太陽電池は結晶系の太陽電池
に比較して低コストで、大面積の太陽電池が製造出来る
ため、精力的に研究・開発がなされている。
2. Description of the Related Art Photovoltaic devices are used in solar cells, which are drawing attention as alternative energy sources that solve the problems of existing power generation methods such as thermal power generation and hydroelectric power generation. In particular, amorphous silicon solar cells are under active research and development because they can manufacture large-area solar cells at lower cost than crystalline solar cells.

【0003】このアモルファスシリコン太陽電池を実用
化するに当たり重要な技術課題は、光電変換効率を向上
させることであり、変換効率の向上のために各種の検討
がされているが、とりわけ、太陽光の有効利用が重要な
技術課題である。
An important technical issue in putting this amorphous silicon solar cell into practical use is to improve the photoelectric conversion efficiency, and various studies have been made to improve the conversion efficiency. Effective utilization is an important technical issue.

【0004】アモルファスシリコン太陽電池の作製方法
としては、主に、ガラス等の透光性の基板上に受光面電
極、半導体層、裏面電極の順番で形成する方法、あるい
はステンレスのような非透光性の基板上に半導体層、受
光面電極の順で積層する方法がある。前記受光面電極は
透明導電性酸化物によって形成され、形成方法として
は、スパッタ法、電子ビーム蒸着法、真空蒸着法、スプ
レー法などが用いられる。しかし、該透明導電性酸化物
と前記半導体層との屈折率が違うため入射光の一部は前
記の層の界面で反射されてしまい有効利用されない。こ
の問題の解決方法として、前記透明導電性酸化物に適度
な凹凸を設ける検討が行われている。この凹凸を設ける
ことにより、入射光が散乱され反射が低減されて半導体
層での吸収が増加する。このような凹凸を設ける発明
は、特開昭58−57756号公報、特開昭62−90
983号公報、特開昭59−20147号公報、特公平
3−28073号公報等に開示されている。
Amorphous silicon solar cells are manufactured mainly by forming a light-receiving surface electrode, a semiconductor layer, and a back surface electrode on a light-transmitting substrate such as glass in this order, or a non-light-transmitting material such as stainless steel. There is a method of laminating a semiconductor layer and a light-receiving surface electrode in this order on a flexible substrate. The light-receiving surface electrode is formed of a transparent conductive oxide, and as a forming method, a sputtering method, an electron beam evaporation method, a vacuum evaporation method, a spray method, or the like is used. However, since the transparent conductive oxide and the semiconductor layer have different refractive indexes, a part of the incident light is reflected at the interface of the layer and cannot be effectively used. As a solution to this problem, studies are being made to provide the transparent conductive oxide with appropriate irregularities. By providing the unevenness, the incident light is scattered, the reflection is reduced, and the absorption in the semiconductor layer is increased. The invention of providing such unevenness is disclosed in JP-A-58-57756 and JP-A-62-90.
It is disclosed in Japanese Patent Publication No. 983, Japanese Patent Laid-Open No. 59-20147, Japanese Patent Publication No. 3-28073, and the like.

【0005】図6は特公平3−28073号公報に開示
された従来のアモルファスシリコン太陽電池の一例を示
す模式的断面図である。図において、601は透光性支
持基板、602は受光面側の電極である透明導電性酸化
物、603、604、605はそれぞれ半導体層、60
6は背面電極を表す。透明導電性酸化物602は、適度
な凹凸を有し、入射光を散乱させることにより半導体層
に有効に吸収させる機能を有する。この様な構造をテク
スチャー構造と呼ぶ。該テクスチャー構造の従来の例は
模式的に図3のように表すことが出来る。図3におい
て、301は支持基板、302は透明導電性酸化物、2
rは凹凸の粒径、hは凹凸の高低差、dは、凸部の間隔
を示す。前記開示された発明では、凹凸を形成する平均
粒径2rは0.1μmから2.5μmが好適であるとさ
れている。また、凹凸の高低差hについては、0.1μ
mから0.6μmが好適であるとされている。また凸部
と凸部の間隔dを0.2μmから1.0μmとすること
で良好な特性が得られるという提案もなされている。
FIG. 6 is a schematic sectional view showing an example of a conventional amorphous silicon solar cell disclosed in Japanese Patent Publication No. 3-28073. In the figure, 601 is a transparent support substrate, 602 is a transparent conductive oxide which is an electrode on the light receiving surface side, 603, 604 and 605 are semiconductor layers, respectively.
Reference numeral 6 represents a back electrode. The transparent conductive oxide 602 has appropriate unevenness and has a function of scattering incident light so that the semiconductor layer is effectively absorbed. Such a structure is called a texture structure. A conventional example of the texture structure can be schematically represented as shown in FIG. In FIG. 3, 301 is a supporting substrate, 302 is a transparent conductive oxide, 2
r is the grain size of the irregularities, h is the height difference of the irregularities, and d is the interval between the convex portions. In the disclosed invention, it is said that the average particle size 2r forming the irregularities is preferably 0.1 μm to 2.5 μm. The height difference h of the unevenness is 0.1 μm.
It is said that m to 0.6 μm is suitable. It has also been proposed that good characteristics can be obtained by setting the interval d between the convex portions to 0.2 μm to 1.0 μm.

【0006】以上のような好適なテクスチャー構造を得
るためには、基板をあらかじめエッチングで荒した上に
前記透明導電性酸化物を堆積する方法や、基板上に堆積
した透明導電性酸化物をエッチング法を用いて凹凸を形
成する方法が提案されている。また、前記透明導電性酸
化物を結晶粒として形成して凹凸を制御する提案もなさ
れている。また、特公昭60−41878号公報に開示
される様に図7の構成の太陽電池においても上記と同様
に透明導電性酸化物をテクスチャー構造とすることが行
われている。
In order to obtain a suitable texture structure as described above, a method of depositing the transparent conductive oxide on the substrate which has been roughened by etching in advance or an etching of the transparent conductive oxide deposited on the substrate is performed. A method of forming irregularities using a method has been proposed. Further, it has been proposed that the transparent conductive oxide is formed as crystal grains to control unevenness. Further, as disclosed in Japanese Examined Patent Publication No. 60-41878, the transparent conductive oxide has a texture structure in the same manner as described above in the solar cell having the structure shown in FIG.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来の透明導電酸化物の形成方法では、基坂温度、ガ
ス流量、内圧等のパラメーターにより膜質、モルフォロ
ジー(凹凸等の形態)を制御する方法が用いられている
が、これらの制御因子によってはテクスチャー構造の凹
凸の大きさや間隔は、所望の形状及び寸法に厳密に制御
して形成することが困難であり、凹凸の大きさのばらつ
きが大きい。このため目的とする光学的な効果も十分で
なく太陽電池の電流値としても更に改善が必要である。
さらにテクスチャー構造の上に半導体層を形成した場
合、鋭角的な凹凸のため、薄い半導体層が正常に形成さ
れずシャントが生じて変換効率が低くなったり、歩留が
悪化するという問題がある。
However, in the above-mentioned conventional method for forming a transparent conductive oxide, there is a method of controlling the film quality and morphology (morphology such as unevenness) by parameters such as substrate temperature, gas flow rate and internal pressure. However, depending on these control factors, it is difficult to form the unevenness of the texture structure in terms of the size and interval of the unevenness with a desired shape and size, and the unevenness of the unevenness is large. Therefore, the desired optical effect is not sufficient, and the current value of the solar cell needs to be further improved.
Further, when the semiconductor layer is formed on the texture structure, there is a problem that the thin semiconductor layer is not normally formed due to the sharp irregularities, a shunt is generated, the conversion efficiency is lowered, and the yield is deteriorated.

【0008】本発明は、以上の課題を克服して、特性や
信頼性の良好な光起電力素子を構成するのに最適なテク
スチャー構造を有する光起電力素子用基板を提供すると
ともに、テクスチャー構造の制御性が良好で且つ簡便な
光起電力素子用基板の作製方法を提供することを目的と
する。
The present invention overcomes the above problems and provides a photovoltaic device substrate having a texture structure most suitable for constructing a photovoltaic device having good characteristics and reliability, and at the same time, providing a texture structure. It is an object of the present invention to provide a method for producing a substrate for a photovoltaic device, which has good controllability and is simple.

【0009】[0009]

【課題を解決するための手段】本発明の光起電力素子用
基板は、高分子樹脂の内殻と該内殻を被覆する酸化物半
導体層の外殻とからなる透明導電性酸化物被覆粒子を堆
積してなることを特徴とするものである。
A substrate for a photovoltaic element of the present invention is a transparent conductive oxide coated particle comprising an inner shell of a polymer resin and an outer shell of an oxide semiconductor layer covering the inner shell. It is characterized by being deposited.

【0010】また、本発明の光起電力素子用基板の作製
方法は、高分子樹脂形成用モノマーと、酸化物半導体と
を混合して懸濁重合を行うことで高分子樹脂の内殻と該
内殻を被覆する酸化物半導体層の外殻とからなる透明導
電性酸化物被覆粒子を形成し、該透明導電性酸化物被覆
粒子を基板上に堆積することにより作製することを特徴
とする。
Further, in the method for producing a substrate for a photovoltaic element according to the present invention, a monomer for forming a polymer resin and an oxide semiconductor are mixed and suspension polymerization is carried out to form an inner shell of the polymer resin. It is characterized by forming transparent conductive oxide coated particles composed of the outer shell of the oxide semiconductor layer covering the inner shell and depositing the transparent conductive oxide coated particles on the substrate.

【0011】前記高分子樹脂は、アクリル、スチレン及
びナイロンから選ばれる少なくとも一種類の高分子から
なることが望ましい。
The polymer resin is preferably composed of at least one polymer selected from acrylic, styrene and nylon.

【0012】また、前記酸化物半導体はIn23,Ti
2,SnO2,ITO,ZnO及びこれらにドーパント
を添加したものから選ばれる少なくとも一種類からなる
ことが望ましい。
The oxide semiconductor is In 2 O 3 , Ti
It is desirable to be composed of at least one selected from O 2 , SnO 2 , ITO, ZnO and those obtained by adding a dopant to these.

【0013】前記透明導電性酸化物被覆粒子の直径は
0.3〜10μmであることが望ましい。
The diameter of the transparent conductive oxide coated particles is preferably 0.3 to 10 μm.

【0014】[0014]

【作用】上述したシャントの原因は、透明導電酸化物半
導体を薄膜として形成した場合、多結晶として形成され
るため必ず鋭利なファセットが生じてテクスチャーの凸
部が鋭角的に形成され、この結果凸部の上には半導体層
が正常に形成されないためと考えられる。
When the transparent conductive oxide semiconductor is formed as a thin film, the cause of the shunt described above is that it is formed as a polycrystal, so that sharp facets are always generated and the convex portion of the texture is formed at an acute angle. It is considered that the semiconductor layer is not normally formed on the portion.

【0015】本発明により、従来の鋭角的なテクスチャ
ーをに代わり、曲線状の表面形状のテクスチャー構造と
することが可能となり、その結果、光起電力素子の製造
初期歩留及び長期使用時の信頼性を向上させることが可
能となる。即ち、これは、高分子樹脂の内殻と該内殻を
被覆する酸化物半導体層の外殻とからなる透明導電性酸
化物被覆粒子を用い、これを基板上に配することにより
初めて可能となったものである。
According to the present invention, it is possible to replace the conventional acute-angled texture with a textured structure having a curved surface shape, and as a result, the initial production yield of a photovoltaic element and the reliability during long-term use. It is possible to improve the property. That is, this is possible only by using transparent conductive oxide-coated particles composed of an inner shell of a polymer resin and an outer shell of an oxide semiconductor layer that covers the inner shell, and disposing the particles on a substrate. It has become.

【0016】透明導電性酸化物被覆粒子は、基板と半導
体層との間に設けられるが、基板がガラス基板の様に透
光性の場合には光入射側に位置するため受光面側電極と
して作用し、基板がステンレス基板の様に不透明な場合
は、裏面電極として作用する。
The transparent conductive oxide-coated particles are provided between the substrate and the semiconductor layer. However, when the substrate is translucent like a glass substrate, it is located on the light incident side and therefore serves as an electrode on the light receiving surface side. If the substrate is opaque like a stainless steel substrate, it acts as a back electrode.

【0017】透明導電性酸化物被覆粒子の構造として
は、球形の内殻を設け、該内殻を被覆する様に透明導電
性酸化物半導体の外殻を形成する。内殻の機能は、透明
導電性酸化物被覆粒子の形状を維持し、外殻を堆積する
ための核となるものである。
As the structure of the transparent conductive oxide-coated particles, a spherical inner shell is provided, and an outer shell of the transparent conductive oxide semiconductor is formed so as to cover the inner shell. The function of the inner shell is to maintain the shape of the transparent conductive oxide-coated particles and serve as a nucleus for depositing the outer shell.

【0018】内殻の形状としては球形が良く、真球であ
ることが望ましいが、楕円状等の変形したものであって
も同様の効果が得られる。内殻の形成材料としては、透
明な高分子樹脂等が好ましい。高分子樹脂としては、具
体的には、アクリル、スチレン、シリコーン、ポリカー
ボネート、塩化ビニール、エポキシ、ポリエステル等の
汎用性の樹脂が好適に用いられ、とりわけ本発明の作製
方法に適した樹脂としては、アクリル、スチレン及びナ
イロンが挙げられる。
The shape of the inner shell is preferably spherical and is preferably a true sphere, but the same effect can be obtained even if it is deformed such as an ellipse. As a material for forming the inner shell, a transparent polymer resin or the like is preferable. As the polymer resin, specifically, versatile resins such as acrylic, styrene, silicone, polycarbonate, vinyl chloride, epoxy, polyester are preferably used, and as the resin particularly suitable for the production method of the present invention, Acrylic, styrene and nylon are mentioned.

【0019】内殻の粒径としては、外殻の厚みにもよる
が光の吸収ができるだけ少なく、テクスチャー構造が維
持でき、基板との密着性が良好となる様に設計される、
具体的には0.1μm〜5μm程度が好ましい。
The particle diameter of the inner shell depends on the thickness of the outer shell, but the light absorption is as small as possible, the texture structure can be maintained, and the adhesion with the substrate is designed to be good.
Specifically, it is preferably about 0.1 μm to 5 μm.

【0020】また、前記外殻の透明導電性酸化物半導体
としては、In23、TiO2、SnO2、ITO、Zn
O、及びこれら材料に適当なドーパントを添加した材料
等が好適に用いられる。
As the transparent conductive oxide semiconductor of the outer shell, In 2 O 3 , TiO 2 , SnO 2 , ITO and Zn are used.
O and materials obtained by adding a suitable dopant to these materials are preferably used.

【0021】前記透明導電性酸化物半導体層の厚みとし
ては、所定の導電性を有し、光の散乱を生じさせる機能
が要求されるため光の波長との関係で決定されるが、具
体的には0.1から2.5μmが好ましい。
The thickness of the transparent conductive oxide semiconductor layer is determined in relation to the wavelength of light because it has a predetermined conductivity and a function of causing light scattering is required. Is preferably 0.1 to 2.5 μm.

【0022】本発明の光起電力素子用基板の透明電極の
表面形状は、例えば図1の様な形状が好適である。図1
において、2rは凹凸の粒径、hは凹凸の高低差、d
は、凸部の間隔を示す。図1では凹凸を形成する透明導
電性酸化物被覆粒子の粒径が均一であって、従って前記
粒径2rは均一である。図2は本発明の第2の好適な例
であるが、この場合、透明導電性酸化物被覆粒子の粒径
は分布しているため粒径2r、高低差hも分布する。粒
径2rは0.3μmから10μmの範囲であることが好
ましく、hおよびdは粒径2rの値から必然的に決定さ
れる。
The surface shape of the transparent electrode of the photovoltaic device substrate of the present invention is preferably, for example, as shown in FIG. FIG.
2r is the grain size of the unevenness, h is the height difference of the unevenness, and d
Indicates the interval between the convex portions. In FIG. 1, the particle diameters of the transparent conductive oxide coated particles forming the irregularities are uniform, and thus the particle diameter 2r is uniform. FIG. 2 shows a second preferred example of the present invention. In this case, since the particle diameters of the transparent conductive oxide coated particles are distributed, the particle diameter 2r and the height difference h are also distributed. The particle size 2r is preferably in the range of 0.3 μm to 10 μm, and h and d are necessarily determined from the value of the particle size 2r.

【0023】透明導電性酸化物被覆粒子を形成する方法
としては、例えば湿式法を用いることが出来る。すなわ
ち、内殻を形成する高分子樹脂を乳化重合によって作製
し、この重合時に透明導電性酸化物の微粒子を同時に懸
濁させることにより内殻が高分子樹脂で、外殻が透明導
電性酸化物で形成された粒子が得られる。高分子樹脂と
して例えばアクリル樹脂を用いる場合であれば、アクリ
ル酸メチル、アクリル酸エチル、アクリル酸ブチル、ア
クリル酸2−エチルヘキシル等のアクリル酸エステルや
メタクリルモノマー等のモノマー類を水溶液中に分散し
てエマルジョンを形成する。同様に他の樹脂を作製する
場合にも、それぞれの樹脂のモノマーを出発原料に用い
る。更に外殻の透明導電性酸化物として例えばIn23
を形成する場合には前記水溶液に塩化インジウム(II
I)を溶解する。その後ペルオクソ2硫酸カリウム、過
酸化水素、α−クミルヒドロペルオキシドなどの適当な
触媒を添加して重合させる。場合によっては、界面活性
剤を添加して乳化を安定化させてもよい。
As a method of forming the transparent conductive oxide coated particles, for example, a wet method can be used. That is, a polymer resin forming an inner shell is prepared by emulsion polymerization, and during this polymerization, fine particles of a transparent conductive oxide are simultaneously suspended so that the inner shell is a polymer resin and the outer shell is a transparent conductive oxide. The particles formed in 1. are obtained. When an acrylic resin is used as the polymer resin, for example, acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate, and monomers such as methacrylic monomers are dispersed in an aqueous solution. Form an emulsion. Similarly, when producing other resins, the monomers of the respective resins are used as starting materials. Further, as a transparent conductive oxide for the outer shell, for example, In 2 O 3
To form indium chloride (II
Dissolve I). Then, a suitable catalyst such as potassium peroxodisulfate, hydrogen peroxide, α-cumyl hydroperoxide, etc. is added and polymerized. In some cases, a surfactant may be added to stabilize the emulsification.

【0024】球形の透明導電酸化物被覆粒子は、重合条
件によって所望の粒径に作製されるが、粒径が均一でな
い場合は、適当な公知の方法で分級を行い、所望の粒径
にそろえても良い。球形の透明導電性酸化物被覆粒子を
形成するための別の方法としては、例えば、高分子樹脂
からなる内殻を形成しておいて外殻の酸化物半導体をス
プレー法等で形成する方法としても良い。
The spherical transparent conductive oxide-coated particles are produced to have a desired particle size depending on the polymerization conditions. If the particle size is not uniform, the particles are classified by an appropriate known method to obtain the desired particle size. May be. As another method for forming spherical transparent conductive oxide coated particles, for example, as a method of forming an inner shell made of a polymer resin and then forming an outer shell oxide semiconductor by a spray method or the like. Is also good.

【0025】透明導電酸化物被覆粒子を基板上に積層す
るには、例えば、適当なバインダーに分散させてペース
トを作製し、適当な基板上に塗布する方法が用いられ
る。また、他の方法としては、内殻の高分子樹脂として
熱により溶けだす適当な材料を選び、バインダーを用い
ないで熱圧着により積層する方法も用いられる。例え
ば、内殻の高分子樹脂としてアクリル樹脂を用い、20
0℃以上に加熱することによりアクリル樹脂を溶融させ
て積層させることができる。
For laminating the transparent conductive oxide-coated particles on the substrate, for example, a method is used in which a paste is prepared by dispersing in a suitable binder, and the paste is applied onto the suitable substrate. Further, as another method, a method of selecting an appropriate material that is melted by heat as the polymer resin of the inner shell and laminating by thermocompression bonding without using a binder is also used. For example, acrylic resin is used as the polymer resin for the inner shell,
By heating at 0 ° C. or higher, the acrylic resin can be melted and laminated.

【0026】本発明の光起電力素子用基板はアモルファ
スシリコン太陽電池に好適に用いられるものであるが、
アモルファスシリコンに限定されるものではなく、薄膜
多結晶シリコン太陽電池、CdS太陽電池などにも適用
でき、また半導体接合を2以上有するタンデム型太陽電
池や、ショットキー型太陽電池などにも適用できること
は言うまでも無い。
The photovoltaic element substrate of the present invention is preferably used for an amorphous silicon solar cell,
The present invention is not limited to amorphous silicon, but can be applied to thin-film polycrystalline silicon solar cells, CdS solar cells, etc., and can also be applied to tandem solar cells having two or more semiconductor junctions, Schottky solar cells, etc. Needless to say.

【0027】[0027]

【実施例】以下に本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】(実施例1)図1は、本発明の光起電力素
子基板の構成例である。図において、101は支持基
板、102は入射側電極を示す。
(Embodiment 1) FIG. 1 is a structural example of a photovoltaic element substrate of the present invention. In the figure, 101 is a supporting substrate and 102 is an incident side electrode.

【0029】内殻がアクリル樹脂、外殻がITO透明導
電性酸化物被覆粒子を以下の様にして作製した。
Particles coated with an acrylic resin for the inner shell and ITO transparent conductive oxide for the outer shell were prepared as follows.

【0030】まず、モノマーとしてアクリル酸メチル、
重合触媒として硫酸カリウムを水溶液に溶かしエマルジ
ョンとした。その後、透明導電性酸化物形成材料として
塩化インジウム(III)を溶解して重合を開始した。重
合終了後、塩析、凝固、ろ過、水洗、乾燥を行い透明導
電性酸化物被覆粒子を得た。この透明導電性酸化物被覆
粒子の粒径を測定したところ約1μmであった。
First, methyl acrylate as a monomer,
Potassium sulfate was dissolved in an aqueous solution as a polymerization catalyst to obtain an emulsion. Then, indium (III) chloride as a transparent conductive oxide forming material was dissolved to initiate polymerization. After completion of the polymerization, salting out, coagulation, filtration, washing with water and drying were carried out to obtain transparent conductive oxide-coated particles. The particle size of the transparent conductive oxide-coated particles was measured and found to be about 1 μm.

【0031】次に、前記透明導電性酸化物被覆粒子を1
cm角のコーニング社7059番ガラス基板上に塗布
し、熱風乾燥機中で加熱して図1に示す表面形状の入射
側電極102を作製した。本実施例において粒径2rは
1μmであり、高さhは0.5μmで間隔dは1μmで
あった。
Next, 1 part of the transparent conductive oxide-coated particles was added.
It was applied on a 70-cm square Corning No. 7059 glass substrate and heated in a hot air drier to form an incident side electrode 102 having the surface shape shown in FIG. In this example, the particle size 2r was 1 μm, the height h was 0.5 μm, and the interval d was 1 μm.

【0032】本実施例では内殻をアクリル樹脂とした
が、スチレン樹脂やナイロン樹脂とした場合も同様の結
果が得られ、外殻としてITOの代わりに、In23
TiO 2,SnO2,ZnO及びこれら材料に適当なドー
パントを添加した材料等とした場合でも同様の結果が得
られた。
In this embodiment, the inner shell is made of acrylic resin.
However, when styrene resin or nylon resin is used, the same result is obtained.
Fruit is obtained, and instead of ITO as an outer shell, In2O3,
TiO 2, SnO2, ZnO and suitable dopants for these materials
Similar results were obtained when using materials such as pant
Was done.

【0033】(実施例2)図4は、本発明の光起電力素
子基板を用いた光起電力素子の構成例である。図におい
て、400は光起電力素子、401は透光性支持基板、
402は入射側電極、403、404、405はそれぞ
れ半導体層、406は裏面電極を表す。本図ではpin
型アモルファスシリコン太陽電池を示すものであるが半
導体層がタンデム構造であっても、また、薄膜多結晶な
どであっても本実施例と同様の効果が得られることは言
うまでも無い。
(Embodiment 2) FIG. 4 shows a constitutional example of a photovoltaic element using the photovoltaic element substrate of the present invention. In the figure, 400 is a photovoltaic element, 401 is a translucent support substrate,
Reference numeral 402 denotes an incident side electrode, 403, 404 and 405 denote semiconductor layers, and 406 denotes a back surface electrode. In this figure, pin
However, it is needless to say that the same effect as that of the present embodiment can be obtained even if the semiconductor layer has a tandem structure, a thin film polycrystal, or the like.

【0034】この光起電力素子を次のようにして作製し
た。まず、実施例1に示した方法で内殻がアクリル樹脂
で外殻がITOの透明導電性酸化物被覆粒子を作製し
た。
This photovoltaic element was produced as follows. First, transparent conductive oxide-coated particles having an acrylic resin inner shell and ITO outer shell were prepared by the method described in Example 1.

【0035】次に、実施例1と同様に前記透明導電性酸
化物被覆粒子を1cm角のコーニング社7059番ガラ
ス基板上に塗布し、熱風乾燥機中で加熱して入射側電極
402を作製した。本実施例において粒径2rは1μm
であり、高さhは0.5μmで間隔dは1μmであっ
た。
Next, in the same manner as in Example 1, the transparent conductive oxide-coated particles were applied onto a 1 cm square Corning No. 7059 glass substrate and heated in a hot air drier to form an incident side electrode 402. . In this embodiment, the particle size 2r is 1 μm
And the height h was 0.5 μm and the interval d was 1 μm.

【0036】さらに、不図示のRFプラズマCVD装置
を用いてアモルファスシリコンのp型半導体層403、
アモルファスシリコンのi型半導体層404、アモルフ
ァスシリコンのn型半導体層405を形成した。その
後、不図示のスパッタ装置を用いて銀の裏面電極406
を形成した。
Further, an amorphous silicon p-type semiconductor layer 403 is formed by using an RF plasma CVD apparatus (not shown).
An i-type semiconductor layer 404 of amorphous silicon and an n-type semiconductor layer 405 of amorphous silicon were formed. Then, a silver back electrode 406 is formed by using a sputtering device (not shown).
Was formed.

【0037】このようにして作製した光起電力素子の初
期特性及び信頼性試験後の特性を測定した。特性の測定
には、JISC8913結晶系太陽電池セル出力測定方
法を用いたAM1.5グローバルの太陽光スペクトルで
100mW/cm2の光量の疑似太陽光源を用いた。ま
た、信頼性試験は、JISC8917結晶系太陽電池モ
ジュールの環境試験方法および耐久試験方法に定められ
た温湿度サイクル試験出力測定方法A−2に基づいて行
った。
The initial characteristics of the photovoltaic element thus manufactured and the characteristics after the reliability test were measured. For the measurement of the characteristics, a pseudo solar light source having a light amount of 100 mW / cm 2 in the AM1.5 global sunlight spectrum using the JISC8913 crystalline solar cell output measuring method was used. The reliability test was performed based on the temperature / humidity cycle test output measurement method A-2 defined in the environmental test method and the durability test method of the JIS C8917 crystalline solar cell module.

【0038】測定の結果、初期変換効率は5%±0.2
5%であった。また、シャント抵抗は、55kΩcm2
であり、シャントはほとんどないことが分かった。
As a result of the measurement, the initial conversion efficiency is 5% ± 0.2.
It was 5%. The shunt resistance is 55 kΩcm 2
And it turns out that there are few shunts.

【0039】信頼性試験後の特性は、変換効率が4.8
%±0.5%と有為な効率低下はなく、シャント抵抗も
55kΩcm2と信頼性試験による変化はみられなかっ
た。
The characteristic after the reliability test is that the conversion efficiency is 4.8.
% ± 0.5%, there was no significant decrease in efficiency, and the shunt resistance was 55 kΩcm 2, which was not changed by the reliability test.

【0040】以上のことから本実施例の光起電力素子用
基板を用いることによってシャントを防いで効率の高い
太陽電池が得られることが分かる。
From the above, it can be seen that by using the photovoltaic device substrate of this embodiment, a shunt can be prevented and a highly efficient solar cell can be obtained.

【0041】(比較例1)透明導電性酸化物602を従
来の方法で作製した以外は実施例2と同様にして従来の
光起電力素子600を作製した。
Comparative Example 1 A conventional photovoltaic element 600 was manufactured in the same manner as in Example 2 except that the transparent conductive oxide 602 was manufactured by the conventional method.

【0042】まず、1cm角のガラス基板上に不図示の
スパッタ装置を用いてITO層を形成した。形成した電
極602は先端が鋭利なテクスチャーであった。続い
て、不図示のRFプラズマCVD装置を用いてp型半導
体層603、i型半導体層604、n型半導体層605
を形成した。その後、不図示のスパッタ装置を用いて銀
の裏面電極606を形成した。
First, an ITO layer was formed on a 1 cm square glass substrate by using a sputtering device (not shown). The formed electrode 602 had a texture with a sharp tip. Subsequently, a p-type semiconductor layer 603, an i-type semiconductor layer 604, and an n-type semiconductor layer 605 are formed using an RF plasma CVD device (not shown).
Was formed. After that, a silver back electrode 606 was formed using a sputtering device (not shown).

【0043】このようにして作製した光起電力素子につ
いて、実施例2と同様にして初期効率の測定を行ったと
ころ、変換効率は4.5%±1.25%であり、また、
シャント抵抗は10kΩcm2とシャントが多いことが
確認された。また、実施例2と同様にして信頼性試験を
行ったところ、変換効率は3.5%±0.5%となり、
シャント抵抗は1kΩcm2まで低下し、実施例1に比
べて信頼性に劣ることが分かった。
The initial efficiency of the photovoltaic element thus produced was measured in the same manner as in Example 2. The conversion efficiency was 4.5% ± 1.25%, and
It was confirmed that the shunt resistance was 10 kΩcm 2 and there were many shunts. Further, when a reliability test was conducted in the same manner as in Example 2, the conversion efficiency was 3.5% ± 0.5%,
The shunt resistance decreased to 1 kΩcm 2 , and it was found that the shunt resistance was inferior to that of Example 1.

【0044】(実施例3)次に、図2に示す光起電力素
子用基板を用い、図5に示す本発明の第2の好ましい光
起電力素子の構成例を実施例2とほぼ同様にして作製し
た。
(Embodiment 3) Next, using the substrate for a photovoltaic element shown in FIG. 2, a structural example of the second preferred photovoltaic element of the present invention shown in FIG. It was made.

【0045】まず、内殻がスチレン樹脂で外殻がITO
の透明導電性酸化物披覆粒子を、形成後分級を行わなか
った以外は実施例2と同様にして作製した。
First, the inner shell is styrene resin and the outer shell is ITO.
The transparent conductive oxide covering particles of No. 3 were produced in the same manner as in Example 2 except that classification was not performed after formation.

【0046】得られた透明導電性酸化物被覆粒子の粒径
を測定したところ0.5〜8μmであった。
The particle size of the obtained transparent conductive oxide-coated particles was measured and found to be 0.5 to 8 μm.

【0047】次に、前記透明導電性酸化物被覆粒子を1
cm角のガラス基板上に塗布し、加熱して図5に示す表
面形状の入射側電極502を作製した。粒径2rは0.
5〜8μmであり、高さhは0.25〜4μmで、間隔
dは0.25〜4μmであった。さらに、不図示のRF
プラズマCVD装置を用いてp型半導体層503、i型
半導体層504、n型半導体層505を形成した。その
後、不図示のスパッタ装置を用いて銀の裏面電極506
を形成した。
Next, the transparent conductive oxide-coated particles were mixed with 1
It was applied onto a cm square glass substrate and heated to form an incident side electrode 502 having a surface shape shown in FIG. The particle size 2r is 0.
It was 5 to 8 μm, the height h was 0.25 to 4 μm, and the interval d was 0.25 to 4 μm. Furthermore, RF (not shown)
A p-type semiconductor layer 503, an i-type semiconductor layer 504, and an n-type semiconductor layer 505 were formed using a plasma CVD apparatus. Then, a silver back electrode 506 is formed by using a sputtering device (not shown).
Was formed.

【0048】このようにして作製した光起電力素子の初
期特性を実施例2と同様にして測定したところ、変換効
率は5.5%±0.1%であった。また、シャント抵抗
は、35kΩcm2であり、シャントはほとんどないこ
とが分かった。
When the initial characteristics of the thus-produced photovoltaic element were measured in the same manner as in Example 2, the conversion efficiency was 5.5% ± 0.1%. The shunt resistance was 35 kΩcm 2 , and it was found that there was almost no shunt.

【0049】信頼性試験後の特性は、変換効率が5.3
%±0.2%と、有為な効率低下は生じていなかった。
また、シャント抵抗は、20kΩcm2であり殆ど変化
していないことが分かった。
The characteristic after the reliability test is that the conversion efficiency is 5.3.
% ± 0.2%, which means that significant reduction in efficiency did not occur.
Further, it was found that the shunt resistance was 20 kΩcm 2 and hardly changed.

【0050】以上のように、本発明により、初期特性が
高く且つ信頼性の高い光起電力素子が得られることが分
かる。
As described above, according to the present invention, it is understood that a photovoltaic element having high initial characteristics and high reliability can be obtained.

【0051】本実施例では、実施例2と同様に内殻にス
チレン樹脂を用いたが、アクリル樹脂やナイロン樹脂で
も同様の結果が得られた。また、外殻をIn23,Ti
2,SnO2,ZnO等とした場合も同様の結果が得ら
れる。
In this example, a styrene resin was used for the inner shell as in Example 2, but similar results were obtained with an acrylic resin or a nylon resin. In addition, the outer shell is made of In 2 O 3 , Ti
Similar results are obtained when O 2 , SnO 2 , ZnO, etc. are used.

【0052】[0052]

【発明の効果】請求項1の発明により、即ち、高分子樹
脂の内殻と該内殻を被覆する酸化物半導体層外殻からな
る透明導電性酸化物被覆粒子を堆積してなる光起電力素
子用基板を用いることにより、初期特性に優れ信頼性の
良好な光起電力素子を適用することが可能となる。
According to the first aspect of the present invention, that is, a photovoltaic layer formed by depositing transparent conductive oxide coated particles having an inner shell of a polymer resin and an outer shell of an oxide semiconductor layer covering the inner shell. By using the element substrate, it is possible to apply a photovoltaic element having excellent initial characteristics and good reliability.

【0053】また、請求項5の発明により、即ち、高分
子樹脂形成用モノマーと、酸化物半導体とを混合して懸
濁重合を行うことで高分子樹脂の内殻と該内殻を被覆す
る酸化物半導体層外殻からなる透明導電性酸化物被覆粒
子を形成し、該透明導電性酸化物被覆粒子を基板上に堆
積することにより、高特性、高信頼性の光起電力素子に
最適なテクスチャー構造を有する光起電力素子基板を簡
便で安定性良く製造することが可能となる。
Further, according to the invention of claim 5, that is, by mixing a monomer for forming a polymer resin and an oxide semiconductor and carrying out suspension polymerization, the inner shell of the polymer resin and the inner shell are coated. By forming transparent conductive oxide-coated particles composed of an outer shell of an oxide semiconductor layer and depositing the transparent conductive oxide-coated particles on a substrate, it is suitable for a photovoltaic device having high characteristics and high reliability. It is possible to easily and stably manufacture a photovoltaic device substrate having a texture structure.

【0054】また、前記高分子樹脂は、アクリル、スチ
レン、ナイロンから選ばれる少なくとも一種類の高分子
とすることで製造が簡便で特性の良好な光起電力素子用
基板が得られる。
When the polymer resin is at least one kind of polymer selected from acrylic, styrene and nylon, it is possible to obtain a substrate for a photovoltaic element which is easy to manufacture and has good characteristics.

【0055】前記酸化物半導体はIn23,TiO2
SnO2,ITO,ZnO及び前記材料にドーパントを
添加した材料から選ばれる少なくとも一種類からなるこ
とにより抵抗が低く良好な特性の光起電力素子用基板が
得られる。
The oxide semiconductor is In 2 O 3 , TiO 2 ,
By using at least one selected from SnO 2 , ITO, ZnO and a material obtained by adding a dopant to the above materials, a substrate for a photovoltaic device having low resistance and good characteristics can be obtained.

【0056】前記透明導電性酸化物被覆粒子の直径を
0.3〜10μmとすることで光学特性の良好な光起電
力素子用基板が得られる。
By setting the diameter of the transparent conductive oxide-coated particles to 0.3 to 10 μm, a substrate for a photovoltaic element having good optical characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光起電力素子用基板を示す模式図であ
る。
FIG. 1 is a schematic diagram showing a photovoltaic device substrate of the present invention.

【図2】本発明の光起電力素子用基板の他の構成例を示
す模式図である。
FIG. 2 is a schematic view showing another configuration example of the substrate for photovoltaic element of the present invention.

【図3】従来の光起電力素子用基板を示す模式図であ
る。
FIG. 3 is a schematic view showing a conventional photovoltaic device substrate.

【図4】本発明の光起電力素子用基板を用いた光起電力
素子の構成例を示す模式図である。
FIG. 4 is a schematic view showing a configuration example of a photovoltaic element using the photovoltaic element substrate of the present invention.

【図5】本発明の光起電力素子用基板を用いた光起電力
素子の他の構成例を示す模式図である。
FIG. 5 is a schematic view showing another configuration example of a photovoltaic element using the photovoltaic element substrate of the present invention.

【図6】従来の光起電力素子を示す模式図である。FIG. 6 is a schematic view showing a conventional photovoltaic device.

【図7】従来の光起電力素子を示す模式図である。FIG. 7 is a schematic view showing a conventional photovoltaic device.

【符号の説明】 100、200、300 101、201、301、401、501、601、7
01 支持基板、 102、202、303、404、505、606、7
07 電極、 400、500、600、700 光起電力素子、 403、503、603、703 p型半導体層、 404、504、604、704 i型半導体層、 405、505、605、705 n型半導体層、 406、506、606、706 裏面電極。
[Explanation of Codes] 100, 200, 300 101, 201, 301, 401, 501, 601, 7
01 support substrate, 102, 202, 303, 404, 505, 606, 7
07 electrode, 400, 500, 600, 700 photovoltaic element, 403, 503, 603, 703 p-type semiconductor layer, 404, 504, 604, 704 i-type semiconductor layer, 405, 505, 605, 705 n-type semiconductor layer , 406, 506, 606, 706 Backside electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷部 明男 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akio Hasebe 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 高分子樹脂の内殻と該内殻を被覆する酸
化物半導体層の外殻とからなる透明導電性酸化物被覆粒
子を堆積してなることを特徴とする光起電力素子用基
板。
1. A photovoltaic element comprising a transparent conductive oxide-coated particle comprising an inner shell of a polymer resin and an outer shell of an oxide semiconductor layer covering the inner shell. substrate.
【請求項2】 前記高分子樹脂は、アクリル、スチレン
及びナイロンから選ばれる少なくとも一種類の高分子か
らなることを特徴とする請求項1に記載の光起電力素子
用基板。
2. The substrate for a photovoltaic element according to claim 1, wherein the polymer resin is made of at least one kind of polymer selected from acryl, styrene and nylon.
【請求項3】 前記酸化物半導体は、In23,TiO
2,SnO2,ITO,ZnO及びこれらにドーパントを
添加したものから選ばれる少なくとも一種類からなるこ
とを特徴とする請求項1または2記載の光起電力素子用
基坂。
3. The oxide semiconductor is In 2 O 3 , TiO
The substrate for a photovoltaic element according to claim 1 or 2, comprising at least one selected from the group consisting of 2 , SnO 2 , ITO, ZnO, and dopants added to these.
【請求項4】 前記透明導電性酸化物被覆粒子の直径は
0.3〜10μmであることを特徴とする請求項1乃至
3のいずれか1項に記載の光起電力素子用基板。
4. The substrate for a photovoltaic element according to claim 1, wherein the diameter of the transparent conductive oxide-coated particles is 0.3 to 10 μm.
【請求項5】 高分子樹脂形成用モノマーと酸化物半導
体とを混合して懸濁重合を行うことで高分子樹脂の内殻
と該内殻を被覆する酸化物半導体層の外殻とからなる透
明導電性酸化物被覆粒子を形成し、該透明導電性酸化物
被覆粒子を基板上に堆積することにより作製することを
特徴とする光起電力素子用基板の作製方法。
5. An inner shell of the polymer resin and an outer shell of the oxide semiconductor layer covering the inner shell by mixing the polymer resin-forming monomer and the oxide semiconductor to carry out suspension polymerization. A method for producing a substrate for a photovoltaic element, which comprises producing transparent conductive oxide-coated particles and depositing the transparent conductive oxide-coated particles on a substrate.
【請求項6】 前記高分子樹脂は、アクリル、スチレン
及びナイロンから選ばれる少なくとも一種類の高分子か
らなることを特徴とする請求項5に記載の光起電力素子
用基板の作製方法。
6. The method for manufacturing a photovoltaic device substrate according to claim 5, wherein the polymer resin is made of at least one polymer selected from acryl, styrene and nylon.
【請求項7】 前記酸化物半導体は、In23,TiO
2,SnO2,ITO,ZnO及びこれらにドーパントを
添加したものから選ばれる少なくとも一種類からなるこ
とを特徴とする請求項5または6に記載の光起電力素子
用基板の作製方法。
7. The oxide semiconductor is In 2 O 3 , TiO
7. The method for producing a substrate for a photovoltaic element according to claim 5, comprising at least one selected from the group consisting of 2 , SnO 2 , ITO, ZnO, and dopants added to these.
【請求項8】 前記透明導電性酸化物被覆粒子の直径
は、0.3〜10μmであることを特徴とする請求項5
乃至7のいずれか1項に記載の光起電力素子用基板の作
製方法。
8. The diameter of the transparent conductive oxide-coated particles is 0.3 to 10 μm.
8. A method for manufacturing a photovoltaic device substrate according to any one of items 1 to 7.
JP6222134A 1994-09-16 1994-09-16 Substrate for photovoltaic element and its manufacture Pending JPH0888380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6222134A JPH0888380A (en) 1994-09-16 1994-09-16 Substrate for photovoltaic element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6222134A JPH0888380A (en) 1994-09-16 1994-09-16 Substrate for photovoltaic element and its manufacture

Publications (1)

Publication Number Publication Date
JPH0888380A true JPH0888380A (en) 1996-04-02

Family

ID=16777710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6222134A Pending JPH0888380A (en) 1994-09-16 1994-09-16 Substrate for photovoltaic element and its manufacture

Country Status (1)

Country Link
JP (1) JPH0888380A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
US6919035B1 (en) * 2001-05-18 2005-07-19 Ensci Inc. Metal oxide coated polymer substrates
EP0915523A3 (en) * 1997-10-29 2005-11-02 Canon Kabushiki Kaisha A photovoltaic element having a back side transparent and electrically conductive layer with a light incident side surface region having a specific cross section and a module comprising said photovoltaic element
WO2009022853A2 (en) * 2007-08-16 2009-02-19 Jusung Engineering Co., Ltd. Thin film type solar cell and method for manufacturing the same
CN102044593A (en) * 2009-10-19 2011-05-04 杜邦太阳能有限公司 Process of manufacturing TCO substrate with light trapping feature and device thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915523A3 (en) * 1997-10-29 2005-11-02 Canon Kabushiki Kaisha A photovoltaic element having a back side transparent and electrically conductive layer with a light incident side surface region having a specific cross section and a module comprising said photovoltaic element
US6919035B1 (en) * 2001-05-18 2005-07-19 Ensci Inc. Metal oxide coated polymer substrates
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
WO2009022853A2 (en) * 2007-08-16 2009-02-19 Jusung Engineering Co., Ltd. Thin film type solar cell and method for manufacturing the same
WO2009022853A3 (en) * 2007-08-16 2009-04-23 Jusung Eng Co Ltd Thin film type solar cell and method for manufacturing the same
CN101779292A (en) * 2007-08-16 2010-07-14 周星工程股份有限公司 Thin film type solar cell and method for manufacturing the same
KR101363327B1 (en) * 2007-08-16 2014-02-14 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same
CN102044593A (en) * 2009-10-19 2011-05-04 杜邦太阳能有限公司 Process of manufacturing TCO substrate with light trapping feature and device thereof

Similar Documents

Publication Publication Date Title
US8338693B2 (en) Solar arrays and other photovoltaic (PV) devices using PV enhancement films for trapping light
JP2003179241A (en) Thin film solar cell
CN109004053A (en) The crystalline silicon of double-side photic/film silicon heterojunction solar battery and production method
JP2013524499A (en) Thin film photovoltaic devices with an enhanced light capture scheme.
US20110240121A1 (en) Nanocrystalline Superlattice Solar Cell
EP2599127B1 (en) Multiple-junction photoelectric device and its production process
CN103493215A (en) Thin film silicon solar cell in multi-junction configuration on textured glass
KR101164326B1 (en) Silicon thin film solar cells using periodic or random metal nanoparticle layer and fabrication method thereof
CN103633193B (en) A kind of micro structure for silicon-based thin film solar cell falls into light method
JP4789131B2 (en) Solar cell and method for manufacturing solar cell
CN102332499A (en) Method for utilizing microparticles to produce double-textured transparent electrode
JPH0888380A (en) Substrate for photovoltaic element and its manufacture
JP2005064273A (en) Electrode for photoelectromotive force element and photoelectromotive force element employing the same
JP2005347444A (en) Photovoltaic element
CN106952977B (en) A kind of solar cell encapsulation structure
JP5266375B2 (en) Thin film solar cell and manufacturing method thereof
CN101866968B (en) Spherical thin-film solar cell, preparation method thereof and spatial arrangement assembly based on cell
CN201222505Y (en) Solar battery structure
US20130118547A1 (en) Photovoltaic window with light-turning features
JP2024502584A (en) solar cells
JP2008053273A (en) Solar cell and its manufacturing method
KR101557020B1 (en) Scattering metal-layer coated electrode and solar cell using the same, and a method of manufacturing them
CN215815897U (en) Silicon heterojunction photovoltaic cell and photovoltaic device suitable for indoor power generation
Isabella et al. Front/rear decoupled texturing in refractive and diffractive regimes for ultra-thin silicon-based solar cells
Tanaka et al. Plasmon effect in Si solar cells coated with a thin Polymer film containing silver or gold nanoparticles