JPH088786A - Adaptive equalizer - Google Patents

Adaptive equalizer

Info

Publication number
JPH088786A
JPH088786A JP13462594A JP13462594A JPH088786A JP H088786 A JPH088786 A JP H088786A JP 13462594 A JP13462594 A JP 13462594A JP 13462594 A JP13462594 A JP 13462594A JP H088786 A JPH088786 A JP H088786A
Authority
JP
Japan
Prior art keywords
signal
phase difference
input signal
inputted
adaptive equalizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13462594A
Other languages
Japanese (ja)
Inventor
Sadaki Futaki
貞樹 二木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13462594A priority Critical patent/JPH088786A/en
Publication of JPH088786A publication Critical patent/JPH088786A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an adaptive equalizer which has an automatic frequency control function, the followup ability for a high speed fading and an excellent operation also for a multifading. CONSTITUTION:An ideal signal 15 is inputted in a transversal filter 16 estimating the state of a transmission line and a signal which is close to an input signal 13 is inputted in a delay detector 1T. In the delay detector 17, an estimation phase difference 18 is obtained from this input signal 13. From a delay detector 11 where the input signal 13 is inputted, a reception phase difference 19 is obtained. The square of an error 20 from which the estimation phase difference 18 and the reception phase difference 19 are subtracted is calculated by an arithmetic unit 21. The result is inputted in a MLSE equalizer 22, and the most likely ideal signal 15 becomes a hard decision output signal 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動通信用受信機等に
使用し、自動周波数制御(AFC)を行い、高速フェージ
ング,マルチパスフェージング等に対しても動作が良好
となる適応等化器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is an adaptive equalizer which is used in a receiver for mobile communication, performs automatic frequency control (AFC), and operates well against high speed fading, multipath fading, etc. It is about.

【0002】[0002]

【従来の技術】図4は従来の自動周波数制御装置を有す
る復調器のブロック図を示す。図4において、1は受信
信号の周波数オフセットを検出し補正する自動周波数制
御装置、2は受信信号の復調を行う復調装置、3は入力
信号、4は出力データの硬判定出力信号である。
2. Description of the Related Art FIG. 4 shows a block diagram of a demodulator having a conventional automatic frequency controller. In FIG. 4, 1 is an automatic frequency control device for detecting and correcting a frequency offset of a received signal, 2 is a demodulator for demodulating the received signal, 3 is an input signal, and 4 is a hard decision output signal of output data.

【0003】前記従来例の動作について説明する。入力
信号3は、自動周波数制御装置1に入力され、ここで周
波数オフセットを検出し入力信号3の周波数ピークを最
適周波数ピーク位置に変換し、復調装置2に入力され
る。復調装置2では、入力された周波数ずれのない信号
を遅延検波手段あるいは適応等化器手段により硬判定出
力信号4に復調する。
The operation of the conventional example will be described. The input signal 3 is input to the automatic frequency control device 1, where the frequency offset is detected, the frequency peak of the input signal 3 is converted to the optimum frequency peak position, and the input signal 3 is input to the demodulation device 2. The demodulator 2 demodulates the input signal having no frequency shift into the hard decision output signal 4 by the delay detection means or the adaptive equalizer means.

【0004】このように、前記従来例の自動周波数制御
装置1を用いた復調器では、自動周波数制御装置1と復
調装置2とが別々の構成で、それぞれの動作を行ってい
る。
As described above, in the demodulator using the conventional automatic frequency control device 1, the automatic frequency control device 1 and the demodulation device 2 have different configurations and perform their respective operations.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
復調装置に使用される遅延検波手段ではマルチパスフェ
ージングに対しては受信性能が悪く、また、従来の復調
装置に使用される適応等化手段では、マルチパスフェー
ジングに対しては受信性能は良いが、遅延波のない高速
フェージングに対しては、遅延検波手段と比較すると受
信性能が悪いという問題があった。
However, the delay detection means used in the conventional demodulation device has poor reception performance against multipath fading, and the adaptive equalization means used in the conventional demodulation device has the disadvantage. However, there is a problem that the reception performance is good for multipath fading, but the reception performance is poor as compared with the differential detection means for fast fading without delay waves.

【0006】本発明は、前記従来技術の問題を解決する
ものであり、自動周波数制御機能を有し、高速フェージ
ングに対して追従性があり、マルチパスフェージングに
対しても動作が良好で、信号の明瞭度を向上できる適応
等化器を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, has an automatic frequency control function, has followability for high-speed fading, operates well even for multipath fading, and It is an object of the present invention to provide an adaptive equalizer capable of improving the clarity of the.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明は、受信信号を遅延検波する遅延検波手段
と、該遅延検波手段からの信号を復調する適応等化手段
とを備え、自動周波数制御を行うことを特徴とする。
In order to achieve this object, the present invention comprises a differential detection means for differentially detecting a received signal, and an adaptive equalization means for demodulating a signal from the differential detection means, It is characterized by performing automatic frequency control.

【0008】また、遅延検波手段と適応等化手段により
受信信号の遅延波と線形歪みによる劣化した信号特性を
補正するように構成したものである。
Further, the delay detection means and the adaptive equalization means are configured to correct the delayed wave of the received signal and the degraded signal characteristic due to the linear distortion.

【0009】[0009]

【作用】前記構成によれば、適応等化手段と遅延検波手
段を設けることにより、自動周波数制御機能を有し、高
速フェージングによる変動に対して追従性が高く、マル
チパスフェージングに対しても受信性能が良好となる。
According to the above construction, by providing the adaptive equalization means and the differential detection means, the automatic frequency control function is provided, the followability with respect to the fluctuation due to the high speed fading is high, and the reception is also possible with respect to the multipath fading. The performance is good.

【0010】[0010]

【実施例】以下、本発明の適応等化器の実施例を図面を
参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the adaptive equalizer of the present invention will be described in detail below with reference to the drawings.

【0011】図1は本発明の一実施例における適応等化
器の概略を示すブロック図で、本実施例は基地局と無線
回線で接続される携帯電話機の受信装置における復調器
を例としている。
FIG. 1 is a block diagram showing the outline of an adaptive equalizer according to an embodiment of the present invention. This embodiment takes as an example a demodulator in a receiving device of a mobile telephone connected to a base station by a wireless line. .

【0012】図1において、11は入力信号を遅延検波す
る遅延検波装置、12は遅延検波したした信号を復調する
適応等化装置、13は無線回線を通じて基地局から送られ
た電波をベースバンド帯信号に変調した受信信号である
入力信号、14は硬判定出力信号である。
In FIG. 1, reference numeral 11 is a delay detection device for delay-detecting an input signal, 12 is an adaptive equalization device for demodulating the delay-detected signal, and 13 is a baseband band of radio waves sent from a base station through a wireless line. An input signal, which is a received signal modulated into a signal, and 14 is a hard decision output signal.

【0013】また、図2は本実施例の適応等化器の動作
を説明するための詳細図で、15は理想信号、16は伝送路
の状態を推定したトランスバーサルフィルタ、17は1シ
ンボル前の信号と現在の信号により遅延検波する遅延検
波装置、18は推定位相差、19は受信位相差、20は推定位
相差18と受信位相差19の誤差、21は誤差20の2乗を求め
る演算装置、22は誤差20の2乗からデータ系列を復調す
るMLSE(MaximumLikelihood Sequent Estimate)等化
器、23はトランスバーサルフィルタ16の係数更新を行う
係数推定器である。
FIG. 2 is a detailed diagram for explaining the operation of the adaptive equalizer of the present embodiment, in which 15 is an ideal signal, 16 is a transversal filter which estimates the state of the transmission path, and 17 is one symbol before. A differential detection device that performs differential detection based on the current signal and the current signal, 18 is an estimated phase difference, 19 is a received phase difference, 20 is an error between the estimated phase difference 18 and the received phase difference 19, and 21 is an operation for obtaining the square of the error 20. An apparatus, 22 is an MLSE (Maximum Likelihood Sequent Estimate) equalizer that demodulates a data sequence from the square of the error 20, and 23 is a coefficient estimator that updates the coefficient of the transversal filter 16.

【0014】次に、本実施例の動作について説明する。
入力信号13は遅延検波装置11に入力され同相成分と直交
成分に分解され、適応等化装置12に入力される。適応等
化装置12では、周波数オフセット変動分とフェージング
による変動分を補正し、硬判定出力信号14を出力する。
Next, the operation of this embodiment will be described.
The input signal 13 is input to the differential detection device 11, decomposed into an in-phase component and a quadrature component, and input to the adaptive equalization device 12. The adaptive equalizer 12 corrects the frequency offset variation and the variation due to fading, and outputs a hard decision output signal 14.

【0015】ここで、理想信号15を伝送路の状態を推定
したトランスバーサルフィルタ16に入力すると、入力信
号13に近い信号が出力され遅延検波装置17に入力され
る。遅延検波装置17では、この入力信号13を遅延検波し
推定位相差18を得る。また、受信位相差19は入力信号13
を入力した遅延検波装置11から得られる。推定位相差18
と受信位相差19を減算した結果が誤差20となり、この誤
差20を2乗したものを演算装置21により求める。誤差20
を2乗したものがMLSE等化器22に入力され、いちば
ん尤もらしい理想信号15が硬判定出力信号14となる。
Here, when the ideal signal 15 is input to the transversal filter 16 which estimates the state of the transmission line, a signal close to the input signal 13 is output and input to the differential detection device 17. The differential detection device 17 differentially detects the input signal 13 to obtain an estimated phase difference 18. In addition, the reception phase difference 19 is the input signal 13
Is obtained from the differential detection device 11. Estimated phase difference 18
The result of subtracting the received phase difference 19 is an error 20, and a square of this error 20 is obtained by the arithmetic unit 21. Error 20
The squared value is input to the MLSE equalizer 22, and the most likely ideal signal 15 becomes the hard decision output signal 14.

【0016】次に、トランスバーサルフィルタ16の係数
更新を行う係数推定器23について説明する。図3は本実
施例の適応等化器のLMS(least mean square)アルゴ
リズムの説明図で、24は入力信号(Xi)、25は遅延検波
装置、26は基地局から送られた送信信号である理想信号
(Ri)、27はトランスバーサルフィルタ16の状態ベクト
ルである伝送路推定状態ベクトル(Wi)、28は伝送路の
状態をあらわす伝送路状態ベクトル(Hi)、29は遅延検
波装置、30は誤差(αi)である。
Next, the coefficient estimator 23 for updating the coefficient of the transversal filter 16 will be described. FIG. 3 is an explanatory diagram of the LMS (least mean square) algorithm of the adaptive equalizer of the present embodiment, in which 24 is an input signal (X i ), 25 is a differential detection device, and 26 is a transmission signal sent from the base station. Some ideal signal
(R i ), 27 is a transmission path estimation state vector (W i ) which is a state vector of the transversal filter 16, 28 is a transmission path state vector (H i ) representing the state of the transmission path, 29 is a delay detection device, 30 Is the error (α i ).

【0017】入力信号24(Xi)を遅延検波装置25で遅延
検波を行うと、遅延検波後の信号は、時刻iの入力信号
24(Xi)と1シンボル前の入力信号24(Xi-1)を用いて、
(数1)のように表される。
When differential detection is performed on the input signal 24 (X i ) by the differential detection device 25, the signal after differential detection is the input signal at time i.
Using 24 (X i ) and the input signal 24 (X i-1 ) one symbol before,
It is expressed as (Equation 1).

【0018】[0018]

【数1】 [Equation 1]

【0019】ここで、伝送路推定状態ベクトル27(Wi)
=伝送路状態ベクトル28(Hi)であるなら誤差30(αi)は
0となり、基地局から送信されたデータ系列である理想
信号26(Ri)が推定できる。しかし、伝送路状態ベクト
ル28(Hi)は未知の状態ベクトルであるので、誤差30(α
i)の信号をもとにトランスバーサルフィルタの伝送路推
定状態ベクトル27(Wi)をLMSアルゴリズムを用いて
推定する。
Here, the transmission channel estimated state vector 27 (W i )
== Transmission path state vector 28 (H i ), the error 30 (α i ) becomes 0, and the ideal signal 26 (R i ) which is the data sequence transmitted from the base station can be estimated. However, since the transmission line state vector 28 (H i ) is an unknown state vector, the error 30 (α
Based on the signal i ), the channel estimation state vector 27 (W i ) of the transversal filter is estimated using the LMS algorithm.

【0020】遅延検波を式で表すと(数1)で表されるの
で、誤差30(αi)の信号は(数2)で表される。
Since the differential detection is expressed by the equation (1), the signal having the error 30 (α i ) is expressed by the equation (2).

【0021】[0021]

【数2】 [Equation 2]

【0022】αi 2を伝送路推定状態ベクトル27(Wi)で
偏微分すると伝送路推定状態ベクトル27(Wi)により最
も急速にαi 2を変化させる方向が得られる。
The direction of changing the fastest alpha i 2 by alpha i 2 the transmission path estimated state vector 27 (W i) and partial differentiation in the transmission path estimated state vector 27 (W i) is obtained.

【0023】[0023]

【数3】 (Equation 3)

【0024】したがって、更新する伝送路推定状態ベク
トル27(Wi)は、
Therefore, the channel estimation state vector 27 (W i ) to be updated is

【0025】[0025]

【数4】 [Equation 4]

【0026】となる。ここで、定数Cは、時刻iにおい
て、Wi+1が得られているとαi=0となるように定めれ
ばよいので、(数5)のように求まる。
[0026] Here, the constant C can be determined so that α i = 0 when W i + 1 has been obtained at the time i, and thus is calculated as in (Equation 5).

【0027】[0027]

【数5】 (Equation 5)

【0028】したがって、更新するWi+1は(数6)のよ
うに変形される。
Therefore, the updating W i + 1 is transformed as shown in (Equation 6).

【0029】[0029]

【数6】 (Equation 6)

【0030】[0030]

【外1】 [Outer 1]

【0031】次に、周波数オフセットが存在した場合に
ついて説明する。周波数オフセットが存在すると(数2)
は(数7)のように変形され、
Next, the case where there is a frequency offset will be described. If there is a frequency offset (Equation 2)
Is transformed into (Equation 7),

【0032】[0032]

【数7】 (Equation 7)

【0033】(数7)のαi 2をWiで偏微分すると更新す
るWi+1は、
[0033] W i + 1 to the α i 2 update to partial differential in W i of (number 7),

【0034】[0034]

【数8】 [Equation 8]

【0035】となり、周波数オフセットはトランスバー
サルフィルタの伝送路推定状態ベクトル27の更新に関与
しない。
Therefore, the frequency offset does not participate in updating the transmission path estimation state vector 27 of the transversal filter.

【0036】なお、本実施例では、トランスバーサルフ
ィルタの係数更新アルゴリズムにLMSアルゴリズムを
用いているが、他の係数更新アルゴリズムであってもよ
い。また、適応等化手段にMLSE等化器を用いている
が、他の適応等化手段であってもよい。
Although the LMS algorithm is used as the coefficient updating algorithm of the transversal filter in this embodiment, other coefficient updating algorithms may be used. Further, although the MLSE equalizer is used as the adaptive equalizer, another adaptive equalizer may be used.

【0037】[0037]

【発明の効果】以上説明したように、本発明の適応等化
器は、遅延検波手段を用いたアルゴリズムを用いること
により、周波数オフセットを適応的に補償するという効
果を有する。また、適応等化手段と遅延検波手段を用い
ることにより、レイリーフェージングによる1シンボル
あたりの位相変化量を推定することが可能となり、トラ
ンスバーサルフィルタの伝送路推定状態ベクトルを容易
に更新し、フェージングによる劣化した信号特性を補正
し、音声やデータ通信における明瞭度を向上させること
ができるという効果を奏する。
As described above, the adaptive equalizer of the present invention has the effect of adaptively compensating the frequency offset by using the algorithm using the differential detection means. Further, by using the adaptive equalization means and the differential detection means, it is possible to estimate the amount of phase change per symbol due to Rayleigh fading, easily update the transmission path estimation state vector of the transversal filter, and It is possible to correct degraded signal characteristics and improve the clarity of voice and data communication.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における適応等化器の概略を示
すブロック図である。
FIG. 1 is a block diagram showing an outline of an adaptive equalizer in an embodiment of the present invention.

【図2】本実施例における適応等化器を示す詳細図であ
る。
FIG. 2 is a detailed diagram showing an adaptive equalizer in this embodiment.

【図3】適応等化器のLMSアルゴリズムの説明図であ
る。
FIG. 3 is an explanatory diagram of an LMS algorithm of an adaptive equalizer.

【図4】従来の自動周波数制御装置を有する復調器を示
すブロック図である。
FIG. 4 is a block diagram showing a demodulator having a conventional automatic frequency control device.

【符号の説明】[Explanation of symbols]

1…自動周波数制御装置、 2…復調装置、 3,13,
24…入力信号、 4,14…硬判定出力信号、 11,17,
25,29…遅延検波装置、 12…適応等化装置、15,26…
理想信号、 16…トランスバーサルフィルタ、 18…推
定位相差、 19…受信位相差、 20,30…誤差、 21…
演算装置、 22…MLSE等化器、 23…係数推定器、
27…伝送路推定状態ベクトル、 28…伝送路状態ベク
トル。
1 ... Automatic frequency control device, 2 ... Demodulation device, 3, 13,
24 ... Input signal, 4,14 ... Hard decision output signal, 11,17,
25, 29 ... Differential detection device, 12 ... Adaptive equalization device, 15, 26 ...
Ideal signal, 16 ... Transversal filter, 18 ... Estimated phase difference, 19 ... Received phase difference, 20, 30 ... Error, 21 ...
Arithmetic unit, 22 ... MLSE equalizer, 23 ... coefficient estimator,
27 ... Channel estimated state vector, 28 ... Channel state vector.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 受信信号を遅延検波する遅延検波手段
と、該遅延検波手段からの信号を復調する適応等化手段
とを備え、自動周波数制御を行うことを特徴とする適応
等化器。
1. An adaptive equalizer, comprising: a delay detection unit that delay-detects a received signal; and an adaptive equalization unit that demodulates a signal from the delay detection unit, and performs automatic frequency control.
【請求項2】 遅延検波手段と適応等化手段とにより受
信信号の遅延波と線形歪みによる劣化した信号特性を補
正することを特徴とする請求項1記載の適応等化器。
2. The adaptive equalizer according to claim 1, wherein the delay detection means and the adaptive equalization means correct the deteriorated signal characteristics due to the delay wave and the linear distortion of the received signal.
JP13462594A 1994-06-16 1994-06-16 Adaptive equalizer Pending JPH088786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13462594A JPH088786A (en) 1994-06-16 1994-06-16 Adaptive equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13462594A JPH088786A (en) 1994-06-16 1994-06-16 Adaptive equalizer

Publications (1)

Publication Number Publication Date
JPH088786A true JPH088786A (en) 1996-01-12

Family

ID=15132756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13462594A Pending JPH088786A (en) 1994-06-16 1994-06-16 Adaptive equalizer

Country Status (1)

Country Link
JP (1) JPH088786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404827B1 (en) 1998-05-22 2002-06-11 Matsushita Electric Industrial Co., Ltd. Method and apparatus for linear predicting
KR100462471B1 (en) * 2002-09-05 2004-12-17 한국전자통신연구원 Apparatus for compensating phase error of digital signal and method of the same
KR100585965B1 (en) * 2003-12-27 2006-06-01 한국전자통신연구원 Phase Compensation Method and Apparatus for Receiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404827B1 (en) 1998-05-22 2002-06-11 Matsushita Electric Industrial Co., Ltd. Method and apparatus for linear predicting
KR100462471B1 (en) * 2002-09-05 2004-12-17 한국전자통신연구원 Apparatus for compensating phase error of digital signal and method of the same
KR100585965B1 (en) * 2003-12-27 2006-06-01 한국전자통신연구원 Phase Compensation Method and Apparatus for Receiver

Similar Documents

Publication Publication Date Title
AU657287B2 (en) Apparatus and method for equalizing a corrupted signal in a receiver
JP4143128B2 (en) Mobile station speed estimation method in cellular communication system
JP4579472B2 (en) Equalization with DC offset compensation
JP2846959B2 (en) Adaptive equalizer
JP2770626B2 (en) Adaptive receiver
US5031193A (en) Method and apparatus for diversity reception of time-dispersed signals
US7200172B2 (en) Method and apparatus for determining components of a channel impulse response for use in a SAIC equalizer
JP4000088B2 (en) Wireless receiver and reception filtering method
WO2001060001A1 (en) Methods and systems for decoding symbols by combining matched-filtered samples with hard symbol decisions
WO2002032067A1 (en) Method for automatic frequency control
US7006811B2 (en) Method and apparatus for switching on and off interference cancellation in a receiver
JP2008005357A (en) Dc offset removing apparatus and dc offset removing method
US5659576A (en) Balanced processing based on receiver selection
EP1072133B1 (en) Self-optimizing channel equalization and detection
JPH088786A (en) Adaptive equalizer
JPWO2006090438A1 (en) Receiver
KR101059878B1 (en) Timing offset compensation method of interference cancellation receiver
JP2846215B2 (en) Digital communication receiver
JPH07162361A (en) Adaptive equalizer
EP1466455B1 (en) Frequency error estimation
JP2007096787A (en) Data receiver and its control method
JPH05343948A (en) Automatic equalizer
JP2008219517A (en) Adaptive equalizer
JPH05175783A (en) Automatic equalizer
JP2000114989A (en) Maximum likelihood series estimation type equalizer and maximum likelihood series estimating method