JPH0887701A - Method for evaluating magnetic recording medium - Google Patents

Method for evaluating magnetic recording medium

Info

Publication number
JPH0887701A
JPH0887701A JP21932694A JP21932694A JPH0887701A JP H0887701 A JPH0887701 A JP H0887701A JP 21932694 A JP21932694 A JP 21932694A JP 21932694 A JP21932694 A JP 21932694A JP H0887701 A JPH0887701 A JP H0887701A
Authority
JP
Japan
Prior art keywords
magnetic
line width
magnetic force
bit length
standard deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21932694A
Other languages
Japanese (ja)
Inventor
Akiyasu Kumagai
明恭 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21932694A priority Critical patent/JPH0887701A/en
Publication of JPH0887701A publication Critical patent/JPH0887701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE: To easily evaluate reproducing noises of a magnetic recording medium by calculating an amplitude standard deviation, line width standard deviation and (bit length-line width average value)<-1> from magnetic force microscopic images and using any thereof in correspondence to the bit length. CONSTITUTION: The line width 8, the amplitude 7 and the bit length 5 are as shown in Fig. and the magnetic force microscopic images 4 are as shown by a drawing of Fig. (a). The change in the line width is as shown in Fig. (b). The information shown by the magnetic force microscopic images 4 is the interaction of the magnetic force between a probe 2 and a sample 3 and since the rugged images of the magnetic interaction are obtd. by attraction or repulsion, the line width to the wire-shaped magnetic ruggedness is obtd. The waving in the bit length 5 direction of the magnetic ruggedness is evaluated by observing the change in the line width 8 when the plural magnetic force microscopic images 4 are obtd. by shifting the sections perpendicular to a track direction toward the track direction and executing scanning in accordance with the scanning loci 6 of a magnetic force microscope.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は磁気記録媒体の特性評
価方法に係り、特に媒体の再生ノイズ特性を磁気力顕微
鏡像を用いて定量的に評価する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium characteristic evaluation method, and more particularly to a method for quantitatively evaluating reproduction noise characteristics of a medium by using a magnetic force microscope image.

【0002】[0002]

【従来の技術】磁気記録媒体であるハードディスクがコ
ンピュータの主記憶装置に使用されている。図8は従来
のハードディスクを示す断面図である。Al基体81の上
にニッケルリンNiP層82,Cr下地層83,Co系
合金磁性層84,カーボン保護層85,液体潤滑層86
が順次積層される。NiP層82は約10μmの膜厚を
有しAl基体上にメッキ付けされる。Cr下地層は50n
mの膜厚でスパッタ法により成膜される。Co系合金磁
性層は20〜30nm,カーボン系保護層は15nmの
膜厚でそれぞれスパッタ法で成膜される。液体潤滑層は
2nmの膜厚でディップ法で形成される。
2. Description of the Related Art A hard disk, which is a magnetic recording medium, is used as a main storage device of a computer. FIG. 8 is a sectional view showing a conventional hard disk. On the Al substrate 81, a nickel phosphorus NiP layer 82, a Cr underlayer 83, a Co-based alloy magnetic layer 84, a carbon protective layer 85, a liquid lubricating layer 86.
Are sequentially stacked. The NiP layer 82 has a thickness of about 10 μm and is plated on the Al substrate. Cr underlayer is 50n
A film having a thickness of m is formed by a sputtering method. The Co-based alloy magnetic layer has a thickness of 20 to 30 nm, and the carbon-based protective layer has a thickness of 15 nm. The liquid lubricating layer is formed by a dip method with a film thickness of 2 nm.

【0003】このような磁気記録媒体のCo系合金磁性
層84は長手方向に磁化された磁区を有している。磁区
に対する情報の記録,再生,消去は液体潤滑層86に接
する図示しないヘッドを介して媒体を高速回転すること
により行われる。ヘッドは媒体に記録された磁気信号を
電気信号に変換して情報の再生である読み出しを行い、
また入力電気信号を磁気信号に変化して媒体に情報の書
き込みを行う。 この媒体の情報を読み出す際には再生
ノイズが発生するので媒体の再生出力(ヘッド信号)に
つきS/N比を良好にする必要がある。
The Co type alloy magnetic layer 84 of such a magnetic recording medium has magnetic domains magnetized in the longitudinal direction. Recording, reproducing, and erasing of information for magnetic domains are performed by rotating the medium at high speed via a head (not shown) in contact with the liquid lubricating layer 86. The head converts the magnetic signal recorded on the medium into an electric signal to perform reading, which is reproduction of information,
Further, the input electric signal is converted into a magnetic signal to write information on the medium. Since reproduction noise occurs when reading information from this medium, it is necessary to improve the S / N ratio for the reproduction output (head signal) of the medium.

【0004】図9は再生出力のS/N比測定のための基
準データを示し、図(a)は再生出力電圧を示す線図、
図(b)は再生出力のスペクトルを示す線図、図(c)
は回路ノイズのスペクトルを示す線図、図(d)は再生
ノイズ領域AN を示す線図である。図(a)においてT
AAは再生出力のピークツーピーク電圧VP-P を示して
いる。図(b)において、ピークはビットの周波数に対
応している。これはスペクトルアナライザを用いて測定
される。図(c)はヘッドを媒体に着地させてスペクト
ル解析したもので、これは媒体の再生出力を含まない回
路ノイズに相当する。図(d)は媒体の再生出力から回
路ノイズを差引いた再生ノイズ領域AN を示している。
FIG. 9 shows reference data for S / N ratio measurement of reproduction output, and FIG. 9A is a diagram showing reproduction output voltage.
Figure (b) is a diagram showing the spectrum of the reproduction output, Figure (c)
Is a diagram showing a spectrum of circuit noise, and FIG. 7D is a diagram showing a reproduced noise region A N. T in Figure (a)
AA indicates the peak-to-peak voltage V PP of the reproduction output. In the figure (b), the peak corresponds to the bit frequency. This is measured using a spectrum analyzer. FIG. 6C shows the spectrum analysis with the head landing on the medium, which corresponds to circuit noise that does not include the reproduction output of the medium. FIG. 6D shows a reproduction noise area A N obtained by subtracting circuit noise from the reproduction output of the medium.

【0005】上述のデータを用い媒体のS/N比SNR
は(1)式で算出される。
The S / N ratio SNR of the medium using the above data
Is calculated by the equation (1).

【0006】[0006]

【数1】 SNR=20Log(S/Nrms )〔dB〕 (1) ここに信号Sと再生ノイズNrms はそれぞれ(2)式と
(3)式で表される。
## EQU1 ## SNR = 20Log (S / N rms ) [dB] (1) Here, the signal S and the reproduction noise N rms are expressed by the equations (2) and (3), respectively.

【0007】[0007]

【数2】 S=TAA/2 (2)## EQU00002 ## S = TAA / 2 (2)

【0008】[0008]

【数3】 ここにNW は再生出力のノイズ成分であり、NC は回路
ノイズである。Γはスペクトルアナライザの分解能を示
す。
(Equation 3) Here, N W is the noise component of the reproduction output, and N C is the circuit noise. Γ indicates the resolution of the spectrum analyzer.

【0009】[0009]

【発明が解決しようとする課題】上述のように再生出力
のS/N比を決定することは面倒な手続きを要するの
で、簡易な方法で再生出力のS/N比を決定することが
求められている。このような方法の1つとして磁気力顕
微鏡像により定性的にノイズ特性を議論したものが本田
幸雄、鈴木幹夫、稲葉信幸、富山大士、二本正昭,第4
1回応用物理学関係連合講演会 講演予稿集 NO.
1,p67(1994)に見られる。前記予稿集によれ
ば例えば再生ノイズの大きな媒体は記録ビットの境界が
ブロードな漏洩磁束分布となり,隣接記録領域間で磁気
干渉が観測されるとしている。
Since determining the S / N ratio of the reproduction output as described above requires a troublesome procedure, it is required to determine the S / N ratio of the reproduction output by a simple method. ing. As one of such methods, there is a qualitative discussion of noise characteristics using magnetic force microscope images. Yukio Honda, Mikio Suzuki, Nobuyuki Inaba, Daishi Toyama, Masaaki Nihon, No.4.
Proceedings of the 1st Joint Lecture on Applied Physics NO.
1, p67 (1994). According to the above-mentioned proceedings, for example, in a medium having a large reproduction noise, the boundary between recording bits has a broad leakage flux distribution, and magnetic interference is observed between adjacent recording areas.

【0010】この発明は上述の点に鑑みてなされ、その
目的は磁気力顕微鏡像を用い磁気記録媒体の再生ノイズ
特性を定量的に評価する方法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a method for quantitatively evaluating the reproduction noise characteristic of a magnetic recording medium using a magnetic force microscope image.

【0011】[0011]

【課題を解決するための手段】上述の目的はこの発明に
よれば磁性層に長手方向磁区を有する磁気記録媒体の評
価方法において、線幅平均値をmW ,振幅標準偏差と線
幅標準偏差をそれぞれσA ,σW 、ビット長をLB とし
たときに磁気力顕微鏡を用いて媒体の磁性層を走査し、
得られた磁気力顕微鏡像からσA ,σW または(LB
W -1を算出し、ビット長に対応してこれらのうちい
ずれかを用いてノイズ特性を評価するとすることにより
達成される。
SUMMARY OF THE INVENTION According to the present invention, the above object is to provide a method for evaluating a magnetic recording medium having longitudinal magnetic domains in a magnetic layer, wherein a line width average value is m W , an amplitude standard deviation and a line width standard deviation. each sigma a, sigma W, the magnetic layer of the medium using a magnetic force microscope when the bit length was L B scans,
From the obtained magnetic force microscope image σ A, σ W or (L B -
This is achieved by calculating m W −1 and using any one of them in accordance with the bit length to evaluate the noise characteristic.

【0012】上述の発明において、ビット長が0.6μ
m以下の場合に振幅の標準偏差σAを用いるとするこ
と,ピット長が0.6μm未満のときは線幅の標準偏差
σW を用いるとすること、またはビット長が0.6μm
を越えるきは(LB −mW -1を用いるとすることが有
効である。
In the above invention, the bit length is 0.6 μm.
be used the standard deviation sigma A amplitude when: m, the pit length is to use a standard deviation sigma W line width when less than 0.6 .mu.m or bit length is 0.6 .mu.m,
Ki exceeds, it is effective to use (L B -m W) -1.

【0013】[0013]

【作用】ビット遷移領域の磁気力顕微鏡像の歪みが再生
ノイズと、相関関係を示す。
The distortion of the magnetic force microscope image in the bit transition region shows a correlation with the reproduction noise.

【0014】[0014]

【実施例】図1は磁気力顕微鏡像測定方法を示す原理図
である。微小な板バネ1の先端に磁性体探針2を有し、
磁性体探針2と、試料3の磁気力相互作用(引力または
斥力)を板バネ1の変位により検出して磁気的な像を得
ることができる。板バネ1の変位の検出方法としては、
板バネ1を共振周波数付近で振動させて探針が力を受け
た際の板バネ1の振幅の変換をモニターするのが最も一
般的である。磁気力の検出方法は各装置により多少異な
る場合があるので、試料3と探針2間に働く磁気的相互
作用を板バネ1の変位として捕らえる顕微鏡はすべて磁
気力顕微鏡の範疇にある。本実施例では磁気力顕微鏡に
セイコー電子工業製SFA300(ハード),SPI3
700(ソフト)を用いて測定した。試料3上を探針2
で走査すると、図に示すように磁気記録がなされている
(矢印は磁化の方向)場合には、図に示す磁気力顕微鏡
像4が得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a principle diagram showing a magnetic force microscope image measuring method. It has a magnetic probe 2 at the tip of a minute leaf spring 1,
The magnetic force interaction between the magnetic probe 2 and the sample 3 (attractive force or repulsive force) can be detected by the displacement of the leaf spring 1 to obtain a magnetic image. As a method of detecting the displacement of the leaf spring 1,
It is most common to vibrate the leaf spring 1 near the resonance frequency and monitor the conversion of the amplitude of the leaf spring 1 when the probe receives a force. Since the method of detecting the magnetic force may be slightly different depending on each device, all microscopes that capture the magnetic interaction acting between the sample 3 and the probe 2 as the displacement of the leaf spring 1 are in the category of the magnetic force microscope. In this embodiment, a magnetic force microscope is used with SFA300 (hardware) and SPI3 manufactured by Seiko Instruments Inc.
It measured using 700 (software). The probe 2 on the sample 3
When the magnetic recording is performed as shown in the drawing (the arrow indicates the direction of magnetization), the magnetic force microscope image 4 shown in the drawing is obtained by scanning with.

【0015】図2は磁気記録媒体の磁気力顕微鏡像を示
す斜視図である。記録部はトラック方向(図1の磁気力
顕微鏡像4を含む平面に垂直の方向)に幅を持つのでト
ラック方向で探針2を微小にずらしつつ走査することに
より三次元像を得ることができる。図3は本発明におけ
る線幅,振幅,ビット長の定義を示し、図(a)は磁気
力顕微鏡像の線図、図(b)は線幅変化を示す平面図で
ある。磁気力顕微鏡像4が示す情報は探針2と試料3の
磁気力相互作用であるが、引力または斥力により磁気的
相互作用の凹凸像が得られるため線状の磁気的凹凸に対
して線幅8が定義できる。トラック方向に垂直な断面を
トラック方向に位置をずらして磁気力顕微鏡の走査軌跡
6に従って走査し、複数の磁気力顕微鏡像を得た場合、
線幅8の変化を観察することにより磁気的凹凸のピット
長5方向のうねりが評価できる。線幅8の変化は各断面
磁気力顕微鏡像における線幅8の標準偏差σW で評価し
た。ビット長は5により振幅は7で定義される。
FIG. 2 is a perspective view showing a magnetic force microscope image of the magnetic recording medium. Since the recording portion has a width in the track direction (direction perpendicular to the plane including the magnetic force microscope image 4 in FIG. 1), a three-dimensional image can be obtained by scanning while slightly moving the probe 2 in the track direction. . 3A and 3B show definitions of line width, amplitude, and bit length in the present invention. FIG. 3A is a diagram of a magnetic force microscope image, and FIG. 3B is a plan view showing changes in line width. The information indicated by the magnetic force microscope image 4 is the magnetic force interaction between the probe 2 and the sample 3. However, since an uneven image of the magnetic interaction is obtained by the attractive force or the repulsive force, the line width is different from the linear magnetic unevenness. 8 can be defined. When a plurality of magnetic force microscope images are obtained by scanning a cross section perpendicular to the track direction by shifting the position in the track direction according to the scanning locus 6 of the magnetic force microscope,
By observing the change in the line width 8, the waviness of the magnetic unevenness in the pit length 5 direction can be evaluated. The change in the line width 8 was evaluated by the standard deviation σ W of the line width 8 in each cross-section magnetic force microscope image. The bit length is defined by 5 and the amplitude is defined by 7.

【0016】図4は再生ノイズの線幅標準偏差依存性を
示す線図である。評価に用いた試料は、磁性層の種類,
成膜条件により様々なノイズ特性とした媒体であり、ビ
ット長0.3μmで磁気記録されている。横軸は上記で
定義した線幅8の標準偏差、縦軸は媒体の再生ノイズで
ある。線幅は図3における磁気力顕微鏡像の振幅7に対
し、谷側より5×振幅/8の高さで計測した。この磁気
記録媒体のノイズ特性は概ねパラメータσW によって記
述できることがわかる。σW は上述のように記録ビット
のビット長方向のうねりを示しており、うねりが大きな
媒体ほど隣接するビットとの磁気的干渉が大きいことを
示している。
FIG. 4 is a diagram showing the dependence of the reproduced noise on the line width standard deviation. The samples used for evaluation are the type of magnetic layer,
The medium has various noise characteristics depending on the film forming conditions, and is magnetically recorded with a bit length of 0.3 μm. The horizontal axis represents the standard deviation of the line width 8 defined above, and the vertical axis represents the reproduction noise of the medium. The line width was measured at a height of 5 × amplitude / 8 from the valley side with respect to the amplitude 7 of the magnetic force microscope image in FIG. It can be seen that the noise characteristic of this magnetic recording medium can be roughly described by the parameter σ W. As described above, σ W indicates the waviness of the recording bit in the bit length direction, and indicates that the larger the waviness, the greater the magnetic interference with the adjacent bit.

【0017】図5は再生ノイズ(ビット長−線幅平均
値)-1依存性を示す線図である。評価に用いた媒体は、
図4と同一の媒体にビット長1μmで磁気記録されてい
るものである。横軸は1/(ビット長−線幅平均値)を
示し、縦軸は媒体の再生ノイズを示す。(ビット長−線
幅平均値)なるパラメータは磁気的凹凸の急峻性を表し
ており、比較的長いビット長を有する試料では急峻性の
低い試料ほど隣接する記録ビットの磁気的な干渉が強い
可能性がある。
FIG. 5 is a diagram showing reproduction noise (bit length-line width average value) -1 dependence. The medium used for evaluation is
It is magnetically recorded on the same medium as in FIG. 4 with a bit length of 1 μm. The horizontal axis represents 1 / (bit length-line width average value), and the vertical axis represents reproduction noise of the medium. The parameter (bit length-line width average value) represents the steepness of the magnetic unevenness. In a sample having a relatively long bit length, a sample having a lower steepness may have stronger magnetic interference between adjacent recording bits. There is a nature.

【0018】図6と図7は再生ノイズの振幅標準偏差依
存性を示す線図である。横軸は図3に示した振幅を同一
試料において数か所計測し、その標準偏差σA を示す。
縦軸は媒体の再生ノイズである。図6と図7のビット長
はそれぞれ0.3μm,0.6μmでありいずれのビッ
ト長においても振幅標準偏差は再生ノイズと良い相関が
ある。
FIGS. 6 and 7 are diagrams showing the dependence of the reproduced noise on the amplitude standard deviation. The horizontal axis indicates the standard deviation σ A of the amplitude shown in FIG. 3 measured at several points in the same sample.
The vertical axis represents the reproduction noise of the medium. The bit lengths in FIGS. 6 and 7 are 0.3 μm and 0.6 μm, respectively, and the amplitude standard deviation has a good correlation with the reproduction noise at any bit length.

【0019】[0019]

【発明の効果】この発明によれば磁気力顕微鏡像から振
幅標準偏差,線幅標準偏差,(ビット長−線幅平均値)
-1を算出するのでビット長に対応してこれらのうちのい
ずれかを用いて磁気記録媒体の再生ノイズを容易に評価
することができる。ビット長が0.6μm以下の場合に
は振幅の標準偏差,ビット長が0.6μm未満のときは
線幅の標準偏差,ビット長が0.6μmを越えるきとは
(ビット長−線幅平均値)-1を用いることが再生ノイズ
の評価に有効である。
According to the present invention, the amplitude standard deviation, line width standard deviation, (bit length-line width average value) from the magnetic force microscope image.
Since -1 is calculated, it is possible to easily evaluate the reproduction noise of the magnetic recording medium using any one of them in accordance with the bit length. When the bit length is 0.6 μm or less, the standard deviation of the amplitude, when the bit length is less than 0.6 μm, the standard deviation of the line width, and when the bit length exceeds 0.6 μm (bit length-line width average) It is effective to use the value) -1 to evaluate the reproduction noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気力顕微鏡像測定方法を示す原理図FIG. 1 is a principle diagram showing a magnetic force microscope image measuring method.

【図2】磁気記録媒体の磁気力顕微鏡像を示す斜視図FIG. 2 is a perspective view showing a magnetic force microscope image of a magnetic recording medium.

【図3】本発明における線幅,振幅,ビット長の定義を
示し、図(a)は磁気力顕微鏡像の線図、図(b)は線
幅変化を示す平面図
3A and 3B show definitions of line width, amplitude, and bit length in the present invention, FIG. 3A is a diagram of a magnetic force microscope image, and FIG. 3B is a plan view showing changes in line width.

【図4】再生ノイズの線幅標準偏差依存性を示す線図FIG. 4 is a diagram showing the dependence of reproduced noise on a line width standard deviation.

【図5】再生ノイズの(ビット長−線幅平均値)-1依存
性を示す線図
FIG. 5 is a diagram showing (bit length-line width average value) −1 dependence of reproduction noise.

【図6】再生ノイズの振幅標準偏差依存性を示す線図FIG. 6 is a diagram showing amplitude standard deviation dependence of reproduction noise.

【図7】再生ノイズの振幅標準偏差依存性を示す線図FIG. 7 is a diagram showing the dependence of reproduced noise on the amplitude standard deviation.

【図8】従来のハードディスクを示す断面図FIG. 8 is a sectional view showing a conventional hard disk.

【図9】再生出力のS/N比測定のための基準データを
示し、図(a)は再生出力電圧を示す線図、図(b)は
再生出力のスペクトルを示す線図、図(c)は回路ノイ
ズのスペクトルを示す線図、図(d)は再生ノイズ領域
N を示す線図
9A and 9B show reference data for S / N ratio measurement of reproduction output, FIG. 9A is a diagram showing a reproduction output voltage, FIG. 9B is a diagram showing a spectrum of a reproduction output, and FIG. ) Is a diagram showing a spectrum of circuit noise, and FIG. 6D is a diagram showing a reproduced noise region A N.

【符号の説明】[Explanation of symbols]

1 板バネ 2 探針 3 試料 4 磁気力顕微鏡像 5 ビット長 6 磁気力顕微鏡の走査軌跡 7 振幅 8 線幅 1 leaf spring 2 probe 3 sample 4 magnetic force microscope image 5 bit length 6 scanning locus of magnetic force microscope 7 amplitude 8 line width

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】磁性層に長手方向磁区を有する磁気記録媒
体の評価方法において、線幅平均値をmW ,振幅標準偏
差と線幅標準偏差をそれぞれσA ,σW 、ビット長をL
B としたときに磁気力顕微鏡を用いて媒体の磁性層を走
査し、得られた磁気力顕微鏡像からσA ,σW 、または
(LB −mW -1を算出し、ビット長に対応してこれら
のうちいずれかを用いることを特徴とする磁気記録媒体
の評価方法。
1. A method for evaluating a magnetic recording medium having longitudinal magnetic domains in a magnetic layer, wherein a line width average value is m W , an amplitude standard deviation and a line width standard deviation are σ A and σ W , respectively, and a bit length is L.
Scans the magnetic layer of the medium using a magnetic force microscope is taken as B, and the obtained magnetic force microscope image σ A, σ W, or calculates (L B -m W) -1, the bit length Correspondingly, one of these methods is used for evaluating a magnetic recording medium.
【請求項2】請求項1に記載の評価方法において、ビッ
ト長が0.6μm以下の場合に振幅の標準偏差σA を用
いることを特徴とする磁気記録媒体の評価方法。
2. The method for evaluating a magnetic recording medium according to claim 1, wherein the standard deviation σ A of the amplitude is used when the bit length is 0.6 μm or less.
【請求項3】請求項1に記載の評価方法において、ビッ
ト長が0.6μm未満のときに線幅の標準偏差σW を用
いることを特徴とする磁気記録媒体の評価方法。
3. The magnetic recording medium evaluation method according to claim 1, wherein a standard deviation σ W of the line width is used when the bit length is less than 0.6 μm.
【請求項4】請求項1に記載の評価方法において、ピッ
ト長が0.6μmを越える場合に(LB −mW -1を用
いることを特徴とする磁気記録媒体の評価方法。
4. The method for evaluating a magnetic recording medium according to claim 1, wherein (L B −m W ) −1 is used when the pit length exceeds 0.6 μm.
JP21932694A 1994-09-14 1994-09-14 Method for evaluating magnetic recording medium Pending JPH0887701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21932694A JPH0887701A (en) 1994-09-14 1994-09-14 Method for evaluating magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21932694A JPH0887701A (en) 1994-09-14 1994-09-14 Method for evaluating magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0887701A true JPH0887701A (en) 1996-04-02

Family

ID=16733718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21932694A Pending JPH0887701A (en) 1994-09-14 1994-09-14 Method for evaluating magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0887701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081394A (en) * 1997-01-16 2000-06-27 Nec Corporation Recorded magnetization state measuring method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081394A (en) * 1997-01-16 2000-06-27 Nec Corporation Recorded magnetization state measuring method and device

Similar Documents

Publication Publication Date Title
US20040233561A1 (en) High precision fly height measurement
US6147488A (en) Measurement method of time dependent magnetic remanence in a recording medium
US7206150B2 (en) In situ media defect image analysis
US7411754B2 (en) System and method for measuring readback signal amplitude asymmetry in a perpendicular magnetic recording disk drive
JPH0887701A (en) Method for evaluating magnetic recording medium
JP2004530237A (en) Method and apparatus for measuring signal degradation
Ma et al. Contribution of lubricant thickness to head-media spacing
Svedberg et al. Magnetic force microscopy study of perpendicular media: Signal-to-noise determination and transition noise analysis
JP3016368B2 (en) Recording magnetization state measurement device
Yamamoto et al. Scanning magnetoresistance microscopy (SMRM) as a diagnostic for high density recording
Moser et al. Transition position jitter in longitudinal magnetic recording media
JPH0922527A (en) Magnetic recording medium evaluating method
JP2004303318A (en) Magnetic disk device
Giljer et al. Magnetic recording measurements of high coercivity longitudinal media using magnetic force microscopy (MFM)
JPH10320701A (en) Measuring method of s/n of magnetic recording medium
Leonhardt et al. Comparison of perpendicular and longitudinal magnetic recording using a contact write/read tester
JPH11110703A (en) Measurement of medium noise of magnetic recording medium
US7027252B2 (en) Servo track writer calibration
JPH1116164A (en) Method for evaluating off-track characteristic of magnetic recording medium
Pappas et al. Second-harmonic magnetoresistive imaging to authenticate and recover data from magnetic storage media
JPH10320702A (en) Measuring method of overwrite characteristic of magnetic recording medium
Feng et al. Impact of media design on track edge in perpendicular magnetic recording
JPH11175966A (en) Method for measuring medium noise of magnetic recording medium
Yuan et al. Absolute head media spacing measurement in situ
JPH10320704A (en) Measuring method of magnetic signal intensity of magnetic recording medium