JPH0886774A - Ultrasonic testing device - Google Patents

Ultrasonic testing device

Info

Publication number
JPH0886774A
JPH0886774A JP6219800A JP21980094A JPH0886774A JP H0886774 A JPH0886774 A JP H0886774A JP 6219800 A JP6219800 A JP 6219800A JP 21980094 A JP21980094 A JP 21980094A JP H0886774 A JPH0886774 A JP H0886774A
Authority
JP
Japan
Prior art keywords
probe
flaw detection
ultrasonic
thin tube
test apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6219800A
Other languages
Japanese (ja)
Inventor
Sumio Kogure
澄夫 木暮
Kazuhiro Suzuki
一弘 鈴木
Mitsuaki Shiraishi
寧顕 白石
Yoji Yoshida
洋司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP6219800A priority Critical patent/JPH0886774A/en
Publication of JPH0886774A publication Critical patent/JPH0886774A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE: To miniaturize an inserting probe, a rotating device and a device for moving an ultrasonic probe so as to increase the applicability of ultrasonic testing by providing a signal cable, an inserting rod, a rotary drive means and a movement means. CONSTITUTION: In order to fully cover the testing range of the inner surface of a heat transfer pipe 31, a flaw detecting probe 10 is fed in the direction of the axis of the heat transfer pipe 31 while being rotated by an inserting rod 50 to spirally scan the inside of the pipe for flaw detection. In this case, since a rotary drive can be installed outside the small-diameter pipe having little space, limitations on size are greatly reduced for ease of manufacture. The inserting rod 50 by which the probe 10 is inserted into the inner surface of the small-diameter pipe is made by a flexible tube and retains a signal cable 12 and a water feeding tube 71 on its inner surface. The tubes and the cable are integrated together and rotated to maintain the properties of the testing probe for rotary scanning and for insertion and to secure the corresponding flexibility at any constricted part. Therefore, an effective testing means can be provided for any heat exchanger that cannot be tested.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非破壊検査技術の一つ
である超音波探傷試験装置に係り、特に、熱交換器の伝
熱管のような細管の中に挿入して損傷の検出及びその形
態や程度を精度良く測定するための超音波探傷試験装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detector, which is one of nondestructive inspection techniques, and more particularly, to detect damage by inserting it into a thin tube such as a heat transfer tube of a heat exchanger. The present invention relates to an ultrasonic flaw detection test device for accurately measuring the form and degree of the damage.

【0002】[0002]

【従来の技術】従来の細管の超音波探傷試験は、例えば
特開昭57−54857 号公報のように、金属製の挿入棒の先
端に超音波探傷プローブを設けたものを細管に挿入し
て、先端の超音波探傷プローブを電動機で直接回転させ
たり、また、超音波反射鏡を回転させながら挿入棒を移
動させて、細管の内面を螺旋状に走査していた。また、
特開平2−80949号公報には、屈曲自在に形成された挿入
棒内にケーブルを配置してこのケーブルを回転させるこ
とによって挿入プローブを回転させ、そしてこの挿入プ
ローブを回転させる装置自体を移動させることによっ
て、挿入プローブを細管の軸方向に移動させることが提
案されている。
2. Description of the Related Art A conventional ultrasonic flaw detection test for a thin tube is carried out by inserting a metal insertion rod provided with an ultrasonic flaw detection probe at the tip thereof into a thin tube as disclosed in, for example, JP-A-57-54857. The ultrasonic probe at the tip is directly rotated by an electric motor, or the insertion rod is moved while rotating the ultrasonic reflecting mirror to spirally scan the inner surface of the thin tube. Also,
In Japanese Patent Laid-Open No. 2-80949, a cable is placed in a bendable insertion rod, the insertion probe is rotated by rotating the cable, and the device itself for rotating the insertion probe is moved. Therefore, it has been proposed to move the insertion probe in the axial direction of the capillary.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、挿入
プロープを細管の周方向及び軸方向に移動させる手段を
それぞれ別体に構成していたので、探傷試験装置自体が
大型となり、熱交換器の管板付近のような狭い空間に適
用することが困難となり、ごく限られた空間でしか試験
を行うことができなかった。
In the above prior art, since the means for moving the insertion probe in the circumferential direction and the axial direction of the thin tube are separately configured, the flaw detection test apparatus itself becomes large and the heat exchanger. It was difficult to apply it to a narrow space such as near the tube sheet of, and the test could be conducted only in a very limited space.

【0004】また、特開昭57−54857 号公報のように、
超音波探傷子を電動機等で回転させる場合は、この電動
機を挿入プローブに内蔵させなければならず、挿入プロ
ーブ自体が大きくなり、適用範囲を狭くしてしまうとい
う懸念があった。
Further, as in Japanese Patent Laid-Open No. 57-54857,
When the ultrasonic flaw detector is rotated by an electric motor or the like, this electric motor must be built in the insertion probe, and there is a concern that the insertion probe itself becomes large and the applicable range is narrowed.

【0005】本発明は、上記の事情を鑑みてなされた発
明であり、その目的は、超音波探傷子を、挿入プローブ
を介して細管の外側から回転させるようにして挿入プロ
ーブを小型化し、かつこの回転装置及び超音波探傷子を
細管の軸方向へ移動走査させるための移動装置を小型化
して超音波探傷の適用範囲を広くするのに好適な超音波
探傷試験装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to miniaturize an insertion probe by rotating an ultrasonic flaw detector from the outside of a thin tube through the insertion probe, and An object of the present invention is to provide an ultrasonic flaw detection test apparatus suitable for expanding the application range of ultrasonic flaw detection by downsizing the rotating device and a moving device for moving and scanning the ultrasonic flaw detector in the axial direction of the capillary.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る超音波探傷試験装置は、細管内部に、超
音波探触子を有する探傷プローブを挿入して細管内面を
探傷する超音波探傷試験装置において、(a)一方の端
部が前記探傷プローブに連結され、前記超音波探触子か
ら得られる探傷信号を伝送する信号ケーブルと、前記超
音波探触子の近傍に接触媒質を供給するチューブとを内
挿し、かつ屈曲自在に形成された挿入棒と、(b)前記
挿入棒の他方の端部を連結して支持する支持部材と、
(c)前記支持部材を前記細管の周方向に回転駆動させ
る回転駆動手段と、(d)前記回転駆動手段による前記
支持部材の回転動作に協同して、該支持部材を前記細管
の軸方向に進退させる進退手段、とを設けたことを特徴
とする。
To achieve the above object, an ultrasonic flaw detector according to the present invention is an ultrasonic flaw detector which inserts a flaw detection probe having an ultrasonic probe into a thin tube to detect flaws on the inner surface of the thin tube. In an ultrasonic flaw detector, (a) a signal cable having one end connected to the flaw detection probe and transmitting a flaw detection signal obtained from the ultrasonic probe, and a contact medium near the ultrasonic probe. An insertion rod that is inserted into a tube for supplying and that is bendable, and (b) a support member that connects and supports the other end of the insertion rod.
(C) rotation driving means for rotationally driving the supporting member in the circumferential direction of the capillary, and (d) cooperating with the rotation operation of the supporting member by the rotation driving means to move the supporting member in the axial direction of the capillary. And a means for moving back and forth.

【0007】また、前記探傷プローブの軸方向先端部
に、前記細管の半径方向及び軸方向に伸縮可能に形成さ
れ、かつ前記細管内面の複数箇所と接触して前記探傷プ
ローブを回転可能に支持する探傷プローブ支持手段を設
けてもよい。
Further, an axial tip end portion of the flaw detection probe is formed so as to be expandable and contractible in the radial direction and the axial direction of the thin tube, and contacts the plural points on the inner surface of the thin tube to rotatably support the flaw detection probe. A flaw detection probe supporting means may be provided.

【0008】更に、前記進退手段は、前記支持部材の外
周部に形成されたねじ部と、該ねじ部に係合して前記支
持部材を支持するねじ部材とから構成されても良い。
Further, the advancing / retreating means may be composed of a screw portion formed on an outer peripheral portion of the supporting member, and a screw member engaging with the screw portion to support the supporting member.

【0009】更にまた、前記探傷プローブ支持手段は、
少なくとも1つ以上の屈曲部を有するパンタグラフ部を
前記細管の周方向に複数個配置して形成した調芯装置
を、前記細管の軸方向にバネ部材を介して複数個連結し
て形成され、かつ前記屈曲部に、前記細管内面と接触す
る車輪手段を設けた構造でも良い。
Furthermore, the flaw detection probe supporting means is
A plurality of pantograph parts having at least one bent portion arranged in the circumferential direction of the thin tube are formed, and a plurality of aligning devices are connected in the axial direction of the thin tube via a spring member, and A structure in which wheel means for contacting the inner surface of the thin tube is provided in the bent portion may be used.

【0010】更にまた、前記支持部材の周方向及び軸方
向の移動量に基づいて、前記超音波探触子の位置を検出
する位置検出手段を設けてもよい。
Further, a position detecting means for detecting the position of the ultrasonic probe may be provided based on the amount of movement of the supporting member in the circumferential direction and the axial direction.

【0011】[0011]

【作用】屈曲自在な探傷プローブ挿入棒は熱交換器管板
に近接した障害物を回避して伝熱細管に探傷プローブを
挿入することを可能にするので、従来適用が困難だった
熱交換器の細管の試験を可能にする。挿入棒を直接回転
させることによってその先端に取り付けた探傷プローブ
を回転させる方式は、その回転駆動装置を、狭い空間し
かない細管の外に設置することができるので、大きさに
関する制約が大幅に緩和され製作が容易になる。また、
信号ケーブルや給水チューブを挿入棒の内部に設けるこ
とにより、挿入棒を回転させたときに挿入棒に巻きつい
たり、細管の内面に擦ったりして損傷することを防止で
きる。
[Function] The bendable flaw detection probe insertion rod enables the flaw detection probe to be inserted into the heat transfer thin tube while avoiding obstacles close to the heat exchanger tube plate. Allows testing of thin tubes. The method of rotating the flaw detection probe attached to the tip by directly rotating the insertion rod allows the rotation drive device to be installed outside the narrow tube that has only a small space, so the size restriction is greatly eased. And easy to manufacture. Also,
By providing the signal cable and the water supply tube inside the insertion rod, it is possible to prevent the insertion rod from being wound around the insertion rod or being rubbed against the inner surface of the thin tube and being damaged when the insertion rod is rotated.

【0012】また、探傷プローブの先端に、細管の周方
向及び軸方向に伸縮可能に形成され、かつ探傷プローブ
を回転可能に支持する探傷プローブ支持手段を設けるこ
とにより、口径が異なる複数の細管に対して探傷試験を
行うことができる。探傷プローブを回転させても、その
回転軸は、大きく変動せず安定して探傷試験を行うこと
ができる。
Further, by providing a flaw detection probe support means at the tip of the flaw detection probe so as to be capable of expanding and contracting in the circumferential direction and the axial direction of the thin tube and for rotatably supporting the flaw detection probe, a plurality of thin tubes having different caliber can be provided. A flaw detection test can be performed. Even if the flaw detection probe is rotated, the rotation axis of the flaw detection probe does not largely change, and the flaw detection test can be stably performed.

【0013】探傷プローブ挿入棒の一部をスプラインを
持ったねじにして、これに組み合わせたスプライン歯車
で回転させながら雌ねじを押し当てることにより、一回
転毎にねじのピッチに相当する量を軸方向に送ることが
できる。このように構成することにより、挿入プローブ
を回転,移動させるための装置をそれぞれ独立して構成
する必要がないので、装置を小型化できる。このとき、
挿入棒の回転や軸方向の移動に追従する位置信号発生器
は、探傷プローブの現在位置の表示に使用され、試験に
よって検出された材料傷の位置の評定に利用される。
By making a part of the flaw detection probe insertion rod into a screw having a spline and pressing a female screw while rotating the spline gear combined with the spline gear, an amount corresponding to the pitch of the screw in the axial direction Can be sent to. With this configuration, it is not necessary to separately configure the devices for rotating and moving the insertion probe, and therefore the device can be downsized. At this time,
A position signal generator that follows the rotation and axial movement of the insertion rod is used to display the current position of the flaw detection probe and is used to evaluate the position of the material flaw detected by the test.

【0014】[0014]

【実施例】以下、本発明の一実施例を主に図1〜図3を
使用して説明する。本発明の実施例は火力発電設備ター
ビン高圧給水加熱器伝熱管の保守検査を行う超音波探傷
プローブに係り、図1は伝熱管に挿入された肉厚測定用
の超音波探傷プローブを示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below mainly with reference to FIGS. An embodiment of the present invention relates to an ultrasonic flaw detection probe for performing maintenance inspection of a heat transfer tube of a turbine high pressure feed water heater of a thermal power generation facility, and FIG. 1 shows an ultrasonic flaw detection probe for measuring wall thickness inserted in the heat transfer tube. .

【0015】伝熱管内面の探傷範囲を全てカバーするた
めに、プローブ10は挿入棒50によって回転しながら
伝熱管31の軸方向に送られ、管内を螺旋状に走査しな
がら探傷が行われる。
In order to cover the entire flaw detection range on the inner surface of the heat transfer tube, the probe 10 is fed in the axial direction of the heat transfer tube 31 while being rotated by the insertion rod 50, and flaw detection is performed while spirally scanning the inside of the tube.

【0016】その構造について説明すると、プローブ1
0の先端にはガイドローラ62を取り付けたパンタグラ
フ状の調芯装置60を直列に2ヶ配置し、それぞれの調
芯装置のパンタグラフは周方向に120°間かくで3ヶ
所取り付けてあり、伝熱管31の内面に均等に接触でき
るようになっている。さらに2つの調芯装置60の間に
はコイルバネ63を配置し、コイルバネ63のバネ力で
パンタグラフが押し広げられ、ガイドローラ62が均一
な圧力で伝熱管31の内面に接触される。また各パンタ
グラフの中にはコイルバネ5を取り付け、開いたパンタ
グラフを戻す役割を果たしている。この調芯装置3によ
り内径φ10〜φ20程度までの内径の異なる伝熱管に
1本のプローブで対応できるようにした。
The structure of the probe 1 will be described.
At the tip of 0, two pantograph-shaped aligning devices 60 with guide rollers 62 are arranged in series, and the pantographs of each aligning device are installed at three places at 120 ° intervals in the circumferential direction. The inner surface of 31 can be evenly contacted. Further, a coil spring 63 is arranged between the two aligning devices 60, the pantograph is spread by the spring force of the coil spring 63, and the guide roller 62 is brought into contact with the inner surface of the heat transfer tube 31 with a uniform pressure. In addition, a coil spring 5 is attached to each pantograph to restore the opened pantograph. With this aligning device 3, one probe can handle heat transfer tubes having different inner diameters of about φ10 to φ20.

【0017】調芯装置60とプローブ10の間にはベア
リング13を設け、調芯装置60を回転せずに探傷プロ
ーブ10が回転できるようにしてある。
A bearing 13 is provided between the centering device 60 and the probe 10 so that the flaw detection probe 10 can rotate without rotating the centering device 60.

【0018】探触子11から発射された超音波は給水チ
ューブ71から供給される水を媒体として、伝熱管の内
面に到達し母材へと伝搬して行く(水噴流式)。探触子
11の前後にはリング状の水シール72を取り付け、供
給された水の流失を極力防ぐようにしている。
The ultrasonic waves emitted from the probe 11 reach the inner surface of the heat transfer tube and propagate to the base material using the water supplied from the water supply tube 71 as a medium (water jet type). Ring-shaped water seals 72 are attached to the front and rear of the probe 11 to prevent the supplied water from flowing out as much as possible.

【0019】図3は今回実施した伝熱管検査のシステム
構成を示している。伝熱管31に挿入したプローブ10
には、装置固定棒212にて他の伝熱管に固定され、プ
ローブ駆動装置20による回転と送り動作が挿入棒50
で伝達される。またプローブ駆動装置20はコントロー
ラ15によって制御される。
FIG. 3 shows the system configuration of the heat transfer tube inspection carried out this time. Probe 10 inserted in heat transfer tube 31
Is fixed to another heat transfer tube by a device fixing rod 212, and rotation and feeding operation by the probe driving device 20 are performed by the insertion rod 50.
Transmitted by. The probe driving device 20 is controlled by the controller 15.

【0020】接触媒質に用いられる水は、水タンク45
に貯蔵された水が、ポンプ44で給水パイプに送られ
る。
The water used as the contact medium is a water tank 45.
The water stored in the pump is sent to the water supply pipe by the pump 44.

【0021】探傷信号は挿入棒50内の信号ケーブル1
2を伝ってスリップリング29を経て超音波探傷器41
へ入り、探傷画面として表示される。さらに探傷結果は
後述する位置信号発生器208,209から得られる探
傷プローブ10の位置の情報と共にXYレコーダ42や
記録計43に記録される。
The flaw detection signal is sent to the signal cable 1 in the insertion rod 50.
2 through the slip ring 29 and ultrasonic flaw detector 41
Enter and go to the flaw detection screen. Further, the flaw detection result is recorded in the XY recorder 42 and the recorder 43 together with the information on the position of the flaw detection probe 10 obtained from the position signal generators 208 and 209 described later.

【0022】図2はプローブ駆動装置20の詳細図で、
挿入棒50は挿入棒締め付けねじ202でスプライン軸
201と一体になるように締め付けられている。スプラ
イン軸201はその外周にスプライン溝とねじが切って
あり、これをキーで結合されたスプラインハブ203と
一体になった歯車204を介して、モータ207によっ
て回転駆動される。そのねじ部には、半円形の雌ねじ2
06がバネ205で押しつけられており、スプライン軸
201が回転するとこの雌ねじの働きで、スプライン軸
とそれに締め付けられている挿入棒が軸方向に送り出さ
れる。
FIG. 2 is a detailed view of the probe driving device 20,
The insertion rod 50 is fastened with an insertion rod fastening screw 202 so as to be integrated with the spline shaft 201. The spline shaft 201 has a spline groove and a screw thread formed on the outer periphery thereof, and the spline shaft 201 is rotationally driven by a motor 207 via a gear 204 integrated with a spline hub 203 joined by a key. The screw part has a semi-circular female thread 2
06 is pressed by the spring 205, and when the spline shaft 201 rotates, the female screw serves to axially send out the spline shaft and the insertion rod clamped thereto.

【0023】208は挿入棒の軸方向の送り量を測定す
る位置信号発生器、209は回転角度を測定するための
位置信号発生器である。210は探傷プローブ10から
の信号を外部に取り出すためのスリップリング。212
は細管を利用してプローブ駆動装置本体を管板面に固定
するための装置固定棒である。
Reference numeral 208 is a position signal generator for measuring the axial feed amount of the insertion rod, and 209 is a position signal generator for measuring the rotation angle. Reference numeral 210 is a slip ring for extracting the signal from the flaw detection probe 10 to the outside. 212
Is a device fixing rod for fixing the probe driving device main body to the tube plate surface using a thin tube.

【0024】以上このように構成された超音波探傷試験
装置の優れた特徴を、以下に説明する。
The superior characteristics of the ultrasonic flaw detector testing apparatus constructed as above will be described below.

【0025】図5に、この装置を、水室33を備えた熱
交換器の細管の試験に適用した状況を示しているが、こ
のような細管の試験には、探傷プローブ10を回転させ
ながら細管の内面奥深くまで挿入すること、および、そ
の位置まで、超音波の伝搬に必要な水等の接触媒質を供
給すること、信号ケーブル等の接続を安定に維持できる
こと等が必要条件となる。しかるに、従来は、細管内面
は狭隘で、探傷プローブを挿入できるまでに小型化する
のが精一杯で、それに回転駆動機構を組み込むことは至
難の技であった。
FIG. 5 shows a situation in which this apparatus is applied to a test of a thin tube of a heat exchanger having a water chamber 33. In the test of such a thin tube, the flaw detection probe 10 is rotated. It is necessary to insert the tubule deep into the inner surface, supply a contact medium such as water necessary for the propagation of ultrasonic waves to that position, and maintain stable connection of signal cables and the like. However, in the past, the inner surface of the thin tube was narrow, and miniaturization was utmost to make it possible to insert the flaw detection probe, and it was extremely difficult to incorporate a rotary drive mechanism into it.

【0026】剛性の高い金属の棒の先端に探傷プローブ
を取り付けて、これを細管の内部に挿入する方法は、図
5に示すような管板34の前面の空間が狭い構造の熱交
換器には適用できず、応用範囲が限られたものとなっ
た。
A method of attaching a flaw detection probe to the tip of a metal rod having high rigidity and inserting the flaw detection probe into the thin tube is a heat exchanger having a structure in which the space in front of the tube sheet 34 is narrow as shown in FIG. Was not applicable and the range of application was limited.

【0027】本発明によれば、探傷プローブ10を細管
の内面に挿入する挿入棒50をフレキシブルなチューブ
とし、その内面に信号ケーブルと給水チューブを収納し
て、これを一体として回転させることにより、探傷プロ
ーブの回転走査と挿入性を維持しながら狭隘部に対応し
た屈曲性をも確保しており、従来試験不可能とされてい
た多くの熱交換器に有効な試験手段を提供することがで
きた。
According to the present invention, the insertion rod 50 for inserting the flaw detection probe 10 into the inner surface of the thin tube is a flexible tube, the signal cable and the water supply tube are housed in the inner tube, and the tube is rotated as a unit. While maintaining the rotational scanning and insertability of the flaw detection probe, it also ensures the flexibility for narrow spaces, and can provide an effective test means for many heat exchangers that were previously impossible to test. It was

【0028】本発明では、さらにこの手法を有効ならし
めるために、その挿入棒を駆動する装置も提案してお
り、図2に示すような構造で探傷プローブの回転走査と
軸方向の送り走査を確実に行うことができる。この装置
は狭隘な細管の外に機構部を設置できるため種々の構造
の熱交換器に適用できるのが特徴で、図5にも示したよ
うに、管板面に直接取り付けて使用することができる
が、水室の外側に設置して使用することもできる。
In order to make this method effective, the present invention further proposes a device for driving the insertion rod, which has a structure as shown in FIG. 2 for performing rotational scanning of the flaw detection probe and axial feed scanning. It can be done reliably. This device has a feature that it can be applied to heat exchangers of various structures because the mechanism can be installed outside the narrow narrow tube, and as shown in Fig. 5, it can be used by directly attaching it to the tube plate surface. However, it can also be installed outside the water chamber for use.

【0029】[0029]

【発明の効果】本発明のように内挿型超音波探傷プロー
ブとプローブ駆動装置を構成することで、超音波探傷試
験装置を小型化することができ、従来適用することが困
難であった熱交換器の細管の超音波探傷試験を容易に実
施することができる。
EFFECTS OF THE INVENTION By constructing the insertion type ultrasonic flaw detection probe and the probe driving apparatus as in the present invention, it is possible to downsize the ultrasonic flaw detection test apparatus, and heat which has been difficult to apply conventionally. The ultrasonic flaw detection test of the thin tube of the exchanger can be easily carried out.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による内挿型超音波探傷プロ
ーブの側面図。
FIG. 1 is a side view of an insertion type ultrasonic flaw detection probe according to an embodiment of the present invention.

【図2】プローブ駆動装置の断面図。FIG. 2 is a sectional view of a probe driving device.

【図3】細管超音波探傷試験装置の全体構成図。FIG. 3 is an overall configuration diagram of a capillary ultrasonic testing device.

【図4】スプライン軸の断面図。FIG. 4 is a sectional view of a spline shaft.

【図5】熱交換器に本発明を適用した場合の構成図。FIG. 5 is a configuration diagram when the present invention is applied to a heat exchanger.

【符号の説明】[Explanation of symbols]

10…探傷プローブ、11…超音波探触子、12…信号
ケーブル、13…ベアリング、20…プローブ駆動装
置、30…熱交換器、31…伝熱管、41…超音波探傷
器、50…挿入棒、60…調芯装置、61,63…コイ
ルバネ、62…ガイドローラ、70…接触媒質、71…
給水チューブ、72…水シール、201…スプライン
軸、202…挿入棒締め付けねじ、203…スプライン
ハブ、204…歯車、205…バネ、206…半円雌ね
じ、207…モータ。
10 ... flaw detection probe, 11 ... ultrasonic probe, 12 ... signal cable, 13 ... bearing, 20 ... probe drive device, 30 ... heat exchanger, 31 ... heat transfer tube, 41 ... ultrasonic flaw detector, 50 ... insertion rod , 60 ... Aligning device, 61, 63 ... Coil spring, 62 ... Guide roller, 70 ... Contact medium, 71 ...
Water supply tube, 72 ... Water seal, 201 ... Spline shaft, 202 ... Insert rod tightening screw, 203 ... Spline hub, 204 ... Gear, 205 ... Spring, 206 ... Semicircle internal thread, 207 ... Motor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白石 寧顕 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 吉田 洋司 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuaki Shiraishi 3-1-1, Sachimachi, Hitachi, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor, Youji Yoshida 3-chome, Hitachi, Hitachi, Ibaraki 2-1 Hitachi Engineering Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】細管内部に、超音波探触子を有する探傷プ
ローブを挿入して細管内面を探傷する超音波探傷試験装
置において、(a)一方の端部が前記探傷プローブに連
結され、前記超音波探触子から得られる探傷信号を伝送
する信号ケーブルと、前記超音波探触子の近傍に接触媒
質を供給するチューブとを内挿し、かつ屈曲自在に形成
された挿入棒と、(b)前記挿入棒の他方の端部を連結
して支持する支持部材と、(c)前記支持部材を前記細
管の周方向に回転駆動させる回転駆動手段と、(d)前
記回転駆動手段による前記支持部材の回転動作に協同し
て、該支持部材を前記細管の軸方向に進退させる進退手
段、とを設けたことを特徴とする超音波探傷試験装置。
1. An ultrasonic flaw-detection test apparatus for flaw-detecting the inner surface of a thin tube by inserting a flaw-detection probe having an ultrasonic probe inside a thin tube, wherein (a) one end is connected to the flaw-finding probe, A signal cable for transmitting a flaw detection signal obtained from the ultrasonic probe, and a tube for supplying a contact medium in the vicinity of the ultrasonic probe, and an insertion rod formed to be bendable, (b) ) A supporting member that connects and supports the other end of the insertion rod, (c) a rotation driving unit that rotationally drives the supporting member in the circumferential direction of the capillary, and (d) the support by the rotation driving unit. An ultrasonic flaw detection test apparatus comprising: an advancing / retreating means for advancing / retreating the support member in the axial direction of the thin tube in cooperation with the rotational movement of the member.
【請求項2】請求項1に記載の超音波探傷試験装置にお
いて、前記探傷プローブの軸方向先端部に、前記細管の
半径方向及び軸方向に伸縮可能に形成され、かつ前記細
管内面の複数箇所と接触して前記探傷プローブを回転可
能に支持する探傷プローブ支持手段を設けたことを特徴
とする超音波探傷試験装置。
2. The ultrasonic flaw detection test apparatus according to claim 1, wherein an axial tip end portion of the flaw detection probe is formed so as to be expandable and contractible in a radial direction and an axial direction of the thin tube, and at a plurality of positions on an inner surface of the thin tube. An ultrasonic flaw detection test apparatus comprising: flaw detection probe support means for rotatably supporting the flaw detection probe in contact with the flaw detection probe.
【請求項3】請求項1に記載の超音波探傷試験装置にお
いて、前記進退手段は、前記支持部材の外周部に形成さ
れたねじ部と、該ねじ部に係合して前記支持部材を支持
する雌ねじ部材とからなることを特徴とする超音波探傷
試験装置。
3. The ultrasonic flaw detection test apparatus according to claim 1, wherein the advancing / retreating means supports a threaded portion formed on an outer peripheral portion of the support member and the threaded portion to support the support member. An ultrasonic flaw detection test apparatus, comprising:
【請求項4】請求項2に記載の超音波探傷試験装置にお
いて、前記探傷プローブ支持手段は、少なくとも1つ以
上の屈曲部を有するパンタグラフ部を前記細管の周方向
に複数個配置して形成された調芯装置を、前記細管の軸
方向にバネ部材を介して複数個連結して形成され、かつ
前記屈曲部に、前記細管内面と接触する車輪手段を設け
たことを特徴とする超音波探傷試験装置。
4. The ultrasonic flaw detector test apparatus according to claim 2, wherein the flaw detection probe support means is formed by arranging a plurality of pantograph portions having at least one bent portion in a circumferential direction of the thin tube. Ultrasonic flaw detection, characterized in that a plurality of aligning devices are connected in the axial direction of the thin tube via a spring member, and wheel means for contacting the inner surface of the thin tube is provided at the bent portion. Test equipment.
【請求項5】請求項1に記載の超音波探傷試験装置にお
いて、前記支持部材の周方向及び軸方向の移動量に基づ
いて、前記超音波探触子の位置を検出する位置検出手段
を設けたことを特徴とする超音波探傷試験装置。
5. The ultrasonic flaw detector test apparatus according to claim 1, further comprising position detecting means for detecting the position of said ultrasonic probe based on the amount of movement of said support member in the circumferential and axial directions. Ultrasonic flaw testing equipment characterized in that
JP6219800A 1994-09-14 1994-09-14 Ultrasonic testing device Pending JPH0886774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6219800A JPH0886774A (en) 1994-09-14 1994-09-14 Ultrasonic testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6219800A JPH0886774A (en) 1994-09-14 1994-09-14 Ultrasonic testing device

Publications (1)

Publication Number Publication Date
JPH0886774A true JPH0886774A (en) 1996-04-02

Family

ID=16741239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6219800A Pending JPH0886774A (en) 1994-09-14 1994-09-14 Ultrasonic testing device

Country Status (1)

Country Link
JP (1) JPH0886774A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027506A (en) * 2009-07-23 2011-02-10 Shin Nippon Hihakai Kensa Kk Piping thickness reduction measuring apparatus and piping thickness reduction measuring method using the same
KR101454339B1 (en) * 2013-05-02 2014-10-23 삼성중공업 주식회사 Cable tray
CN107677787A (en) * 2017-09-15 2018-02-09 江苏武进不锈股份有限公司 Steel pipe inner wall failure detector
CN111398430A (en) * 2020-04-09 2020-07-10 吴本节 Device for assisting ultrasonic thickness gauge probe in thickness measurement
CN113484414A (en) * 2021-07-01 2021-10-08 上海市市政公路工程检测有限公司 Method for surveying gaps of inner wall of closed body
CN117288914A (en) * 2023-11-24 2023-12-26 广州多浦乐电子科技股份有限公司 Obstacle surmounting detection device for inner wall of pipeline

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027506A (en) * 2009-07-23 2011-02-10 Shin Nippon Hihakai Kensa Kk Piping thickness reduction measuring apparatus and piping thickness reduction measuring method using the same
KR101454339B1 (en) * 2013-05-02 2014-10-23 삼성중공업 주식회사 Cable tray
CN107677787A (en) * 2017-09-15 2018-02-09 江苏武进不锈股份有限公司 Steel pipe inner wall failure detector
CN111398430A (en) * 2020-04-09 2020-07-10 吴本节 Device for assisting ultrasonic thickness gauge probe in thickness measurement
CN113484414A (en) * 2021-07-01 2021-10-08 上海市市政公路工程检测有限公司 Method for surveying gaps of inner wall of closed body
CN117288914A (en) * 2023-11-24 2023-12-26 广州多浦乐电子科技股份有限公司 Obstacle surmounting detection device for inner wall of pipeline
CN117288914B (en) * 2023-11-24 2024-01-30 广州多浦乐电子科技股份有限公司 Obstacle surmounting detection device for inner wall of pipeline

Similar Documents

Publication Publication Date Title
JP3186810B2 (en) Apparatus for ultrasonic nondestructive inspection of elongated components having a substantially constant cross section
US4856337A (en) Apparatus and method for providing a combined ultrasonic and eddy current inspection of a tube
EP1863153B1 (en) Tape fed miniature air gap inspection crawler
US4955235A (en) Apparatus and method for providing a combined ultrasonic and eddy current inspection of a metallic body
JPH0280949A (en) Nondestructive ultrasonic test apparatus of circular welding section of inside of tube of steam generator
JPH0886774A (en) Ultrasonic testing device
CN104090027A (en) Device for automatically detecting fillet weld of heat exchanger tube plate through ultrasonic wave
US5760306A (en) Probe head orientation indicator
JPS5941798A (en) Device for inspecting tube of heat exchanger
JPH0129261B2 (en)
WO1992021965A1 (en) A method and an apparatus for the dectection of corrosion in pipes
JPS6251422B2 (en)
JPH01113650A (en) Insertion-type ultrasonic flaw detector
KR101885756B1 (en) Ultrasonic sensor module structure of ultrasonic inspection device for performing non-destructive test
JP4000032B2 (en) Furnace bottom working device and working method
JPS5912609Y2 (en) Ultrasonic flaw detection equipment
US20220236233A1 (en) Ultrasonic phased array detection device
JP3337373B2 (en) Inspection probe device
JPH0798303A (en) Ultrasonic automatic crack detector
JPH0625755B2 (en) Ultrasonic flaw detector in branch pipe
JPH0667096A (en) Endoscope device
JP2005201664A (en) Inspection device of tube bundle
JPH0438287Y2 (en)
JPH1062093A (en) Eddy-current inspection probe
JPS6245167Y2 (en)