JPH0886763A - Catalyst adsorbent species measuring device - Google Patents
Catalyst adsorbent species measuring deviceInfo
- Publication number
- JPH0886763A JPH0886763A JP24884794A JP24884794A JPH0886763A JP H0886763 A JPH0886763 A JP H0886763A JP 24884794 A JP24884794 A JP 24884794A JP 24884794 A JP24884794 A JP 24884794A JP H0886763 A JPH0886763 A JP H0886763A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- temperature
- gas
- measured
- interferometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、触媒表面に吸着して
いる化学種の同定を行う触媒吸着種測定装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst adsorption species measuring device for identifying chemical species adsorbed on a catalyst surface.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】触媒
表面に吸着している化学種の同定には、従来、拡散反射
法が用いられている。この拡散反射法では、測定光に赤
外光を用い、試料として、例えば、赤外光に透明なKB
rなどの粉末に触媒粉を10wt%程度混合して平坦に
した混合粉末試料を用い、この試料表面に赤外光を照射
し、拡散反射(散乱)してきた光(触媒表面に吸着した
化学種で一部吸収されている光)のスペクトルから吸着
種の同定を行うけれども、以下に示す問題点がある。 (1)試料は粉末試料に限られ、ビーズ状またはハニカ
ム状等の試料を用いることができない。 (2)粉末試料であるため多量のガスを流せない。 (3)触媒反応において重要な温度をガスを流した状態
で測ると、試料が粉末であるため冷えやすい。 (4)また、粉末試料の中に温度センサを設置するの
で、触媒表面の温度を得ようとしても正確に測れない。 (5)検出器としてMCT(マーキュリーカドミウムテ
ルル混晶)を用いているので、触媒表面に付着、吸着し
ている化学種を触媒温度を室温より上げて測定する際、
試料温度を上げると検出器が飽和する。これは、拡散反
射法では、光強度として直流成分上に交流成分が乗りそ
の振幅が測定され、そして、試料の温度が上がると、直
流成分が増加するためである。2. Description of the Related Art The diffuse reflection method has hitherto been used to identify the chemical species adsorbed on the surface of a catalyst. In this diffuse reflection method, infrared light is used as the measurement light, and as a sample, for example, KB transparent to infrared light is used.
Using a mixed powder sample in which catalyst powder is mixed with about 10 wt% of powder such as r and flattened, the sample surface is irradiated with infrared light and diffusely reflected (scattered) (chemical species adsorbed on the catalyst surface Although the adsorbed species are identified from the spectrum of (light partially absorbed in), there are the following problems. (1) The sample is limited to a powder sample, and a bead-shaped or honeycomb-shaped sample cannot be used. (2) Since it is a powder sample, a large amount of gas cannot flow. (3) When the temperature that is important in the catalytic reaction is measured with a gas flowing, the sample is a powder, so it is easy to cool. (4) Further, since the temperature sensor is installed in the powder sample, the temperature of the catalyst surface cannot be accurately measured even if it is tried to obtain it. (5) Since MCT (Mercury Cadmium Tellurium mixed crystal) is used as a detector, when measuring the chemical species attached and adsorbed on the catalyst surface by raising the catalyst temperature above room temperature,
Raising the sample temperature saturates the detector. This is because in the diffuse reflection method, an AC component as a light intensity is placed on a DC component and its amplitude is measured, and when the temperature of the sample rises, the DC component increases.
【0003】この発明は、上記問題に鑑みてなしたもの
で、その目的は、多量のガスを流した状態でも、また、
触媒温度を室温より上げて測定しても触媒表面の温度を
正確に測ることができる触媒吸着種測定装置を提供する
ことにある。The present invention has been made in view of the above problems, and an object of the invention is to make a large amount of gas flow, and
An object of the present invention is to provide a catalyst adsorbed species measuring device that can accurately measure the temperature of the catalyst surface even when the catalyst temperature is raised above room temperature for measurement.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するため
に、この発明の触媒吸着種測定装置は、三次元X,Y,
Z方向に移動可能なステージと、このステージ上に設置
され、ガス入口、ガス出口および窓部を備え、かつ触媒
を収容した触媒槽と、この触媒槽内を加熱するためのヒ
ータと、前記窓部の上方において、下から順に設けた集
光光学系とマスクと分光器または干渉計と、前記分光器
または干渉計からの光を検出する検出器とよりなり、触
媒表面からの赤外光の輻射スペクトルを測定して触媒吸
着種の同定および温度測定を行うことを特徴とする。In order to achieve the above object, a catalyst adsorbing species measuring device of the present invention is provided with a three-dimensional X, Y,
A stage movable in the Z direction, a catalyst tank installed on the stage, having a gas inlet, a gas outlet, and a window and containing a catalyst, a heater for heating the inside of the catalyst tank, and the window. In the upper part of the section, a condensing optical system, a mask, a spectroscope or an interferometer, and a detector for detecting light from the spectroscope or the interferometer, which are provided in order from the bottom, are provided. It is characterized in that the radiation spectrum is measured to identify the catalyst adsorbed species and measure the temperature.
【0005】[0005]
【作用】上記構成により、触媒表面に付着、吸着してい
る化学種を輻射測定により測定でき、その化学種の同定
と触媒表面の温度測定を行える。With the above structure, the chemical species attached to or adsorbed on the catalyst surface can be measured by radiation measurement, and the chemical species can be identified and the temperature on the catalyst surface can be measured.
【0006】すなわち、触媒表面からの赤外光の輻射ス
ペクトルに基づいて化学種を同定する。また、この輻射
スペクトルから触媒表面の温度を測るので、ガスを流し
たままで正確に触媒表面の温度が測れる。That is, the chemical species are identified based on the radiation spectrum of infrared light from the catalyst surface. Further, since the temperature of the catalyst surface is measured from this radiation spectrum, the temperature of the catalyst surface can be accurately measured with the gas flowing.
【0007】[0007]
【実施例】以下、この発明の実施例を図面に基づいて説
明する。なお、それによってこの発明は限定を受けるも
のではない。図1は、集光光学系として顕微光学系を備
え、触媒の表面に付着、吸着した化学種の輻射スペクト
ルを測定してその化学種の同定、定量と反応過程の解析
ならびに触媒の表面の温度測定を行うように構成された
この発明の第1実施例を示す。図1において、触媒吸着
種測定装置は、三次元X,Y,Z方向に移動可能なステ
ージ1と、このステージ1上に設置され、例えば、C
O,NOX ,HCガスを含むガスGの入口2、ガスGの
出口3および窓部4を備え、かつ2〜4mmの大きさの
アルミナに触媒(例えば、Pt,Rh等)をコーティン
グしたもの5および前記アルミナだけのビーズ5’を収
容した触媒槽6と、この触媒槽6内を加熱するためのヒ
ータ7と、窓部4の上方において、下から順に設けた顕
微光学系8とマスク9と分光器(または干渉計)10
と、分光器(または干渉計)10からの光を検出する検
出器11とよりなる。Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited thereby. Fig. 1 is equipped with a microscopic optical system as a condensing optical system, and the radiation spectrum of the chemical species adhering to and adsorbing on the surface of the catalyst is measured to identify the chemical species, quantify them, analyze the reaction process, and measure the temperature of the catalyst surface. 1 illustrates a first embodiment of the present invention configured to make a measurement. In FIG. 1, a catalyst adsorption species measuring device is installed on the stage 1 which is movable in three-dimensional X, Y, and Z directions, and is, for example, C
Alumina having an inlet 2 for a gas G containing O, NO x , HC gas, an outlet 3 for the gas G, and a window 4 and having a size of 2 to 4 mm coated with a catalyst (for example, Pt, Rh, etc.) 5, a catalyst tank 6 accommodating the beads 5'only made of alumina, a heater 7 for heating the inside of the catalyst tank 6, and a microscope optical system 8 and a mask 9 provided above the window 4 in order from the bottom. And spectroscope (or interferometer) 10
And a detector 11 for detecting light from the spectroscope (or interferometer) 10.
【0008】以下、測定方法について説明する。輻射ス
ペクトルにより化学種の同定、定量を行い、かつ触媒表
面の温度測定を行うにあたり、まず、ステージ1上に設
置された触媒槽6の入口2からガスGを流すことにより
触媒の表面に化学種を吸着させる。The measuring method will be described below. In identifying and quantifying the chemical species by the radiation spectrum and measuring the temperature of the catalyst surface, first, the gas G is caused to flow from the inlet 2 of the catalyst tank 6 installed on the stage 1 to the surface of the catalyst. Adsorb.
【0009】この際、ヒータ7を用いて触媒槽6内を加
熱し、触媒表面から発生する輻射スペクトルEにより化
学種の同定、定量を行うことができる。また、触媒が粉
末でなくて2〜4mmの大きさのビーズ状のアルミナ表
面にコーティングされているため多量のガスGを流すこ
とができる。At this time, the inside of the catalyst tank 6 is heated using the heater 7, and the chemical species can be identified and quantified by the radiation spectrum E generated from the catalyst surface. In addition, since the catalyst is not a powder but is coated on the surface of a beaded alumina having a size of 2 to 4 mm, a large amount of gas G can be flowed.
【0010】触媒表面の温度を求めるには、まず、ガス
Gを流さない状態(安定した状態)で触媒槽6内に設け
られた温度計12で温度を計っておき、その温度での輻
射スペクトルから赤外光量を求めておく。次に、温度を
変えて同様の作業を行い、温度測定用の検量線を作成す
る。In order to obtain the temperature of the catalyst surface, first, the temperature is measured by the thermometer 12 provided in the catalyst tank 6 in a state where gas G does not flow (stable state), and the radiation spectrum at that temperature is measured. Calculate the amount of infrared light from. Next, the same operation is performed while changing the temperature, and a calibration curve for temperature measurement is created.
【0011】その後、ガスGを流した実測定での触媒表
面の温度を得る。すなわち、実測定では、加熱により発
生する輻射スペクトルから得られる赤外光量と前記検量
線から、触媒表面の温度を測定する。After that, the temperature of the catalyst surface in the actual measurement when the gas G is flown is obtained. That is, in the actual measurement, the temperature of the catalyst surface is measured from the infrared light amount obtained from the radiation spectrum generated by heating and the calibration curve.
【0012】また、化学種の輻射スペクトルを測定して
その化学種の同定と反応過程の解析を行うことができ
る。Further, the radiation spectrum of the chemical species can be measured to identify the chemical species and analyze the reaction process.
【0013】また、この実施例では、顕微光学系8の焦
点面にマスク9を置き、測定部位以外からの輻射光Eを
カットできるので、触媒表面からの輻射光Eだけを分光
器(または干渉計)10に確実に取り込むことができ
る。Further, in this embodiment, since the mask 9 is placed on the focal plane of the microscopic optical system 8 and the radiant light E from other than the measurement site can be cut, only the radiant light E from the catalyst surface is spectroscopically (or interfered). In total, it can be reliably incorporated into 10.
【0014】更に、この実施例では、X−Y−Zステー
ジ1を用いているので、アルミナだけのビーズ5’また
は触媒金属の付いていない所をリファレンスにすること
ができる。そして、予めそのリファレンスの位置をコン
ピュータにメモリしておけば温度を変えて測定すると
き、自動的にリファレンスの位置に試料を移動できる。
図1には、X−Y−Zステージ1をX方向、Y方向、Z
方向のそれぞれに移動させるモータMX ,MY ,M
Z と、これらモータMX ,MY ,MZ を駆動制御するC
PU13が示されている。Further, in this embodiment, since the XYZ stage 1 is used, it is possible to use the beads 5'only made of alumina or the place without the catalyst metal as a reference. If the reference position is stored in the computer in advance, the sample can be automatically moved to the reference position when the measurement is performed while changing the temperature.
In FIG. 1, the XYZ stage 1 is shown in the X direction, the Y direction, and the Z direction.
Motors M X , M Y , M to move in each direction
Z and C for driving and controlling these motors M X , M Y , M Z
PU 13 is shown.
【0015】このように本実施例では、室温より上げら
れた触媒の表面から輻射スペクトルEを測定して、触媒
表面に吸着している化学種の同定と定量を行い、更に、
輻射スペクトルEから触媒表面の温度を測定するため、
以下に示す種々の利点を有する。すなわち、 a.触媒の形状が粉末である必要がない。したがって、
粉末でない場合は多量のガスが流せる。 b.輻射スペクトルから触媒表面の温度を測るので、ガ
スを流したままで正確に温度が測れる。 c.輻射測定なので検出器が飽和し難い。これは、従来
の拡散反射法では、光強度として直流成分上に交流成分
が乗りその振幅が測定され、そして、試料の温度が上が
ると、直流成分のみが増加するため、検出器が飽和し易
かったのに対して、この実施例の輻射測定では、試料が
光源となるため、試料の温度が上がると、直流成分、交
流成分共増加するからである。 d.局所測定ができる。 e.マスキングにより触媒表面からの輻射光だけを測定
できる。As described above, in the present embodiment, the radiation spectrum E is measured from the surface of the catalyst which has been raised from room temperature to identify and quantify the chemical species adsorbed on the catalyst surface.
In order to measure the temperature of the catalyst surface from the radiation spectrum E,
It has various advantages described below. That is, a. The shape of the catalyst need not be powder. Therefore,
If not a powder, a large amount of gas can flow. b. Since the temperature of the catalyst surface is measured from the radiation spectrum, the temperature can be measured accurately with the gas flowing. c. Since it is a radiation measurement, it is difficult for the detector to saturate. This is because in the conventional diffuse reflection method, the AC component is measured as its light intensity on the DC component, and its amplitude is measured, and when the temperature of the sample rises, only the DC component increases, so the detector is easily saturated. On the other hand, in the radiation measurement of this embodiment, since the sample serves as the light source, both the DC component and the AC component increase when the temperature of the sample rises. d. Local measurement is possible. e. Only radiant light from the catalyst surface can be measured by masking.
【0016】図2は、集光光学系として顕微光学系を備
え、ハニカム状の触媒担体に担持された触媒の表面に付
着、吸着した化学種の輻射スペクトルを測定してその化
学種の同定と反応過程の解析ならびに触媒表面の温度測
定を行うように構成されたこの発明の第2実施例を示
す。図2、図3において、例えば、アルミナよりなる触
媒担体20をハニカム形状とし、その小径の孔21の内
側にコートされた触媒の表面からの輻射光Eは、小径の
孔21内から外へ出る。これを顕微光学系8で集光して
輻射スペクトルを得る。[0016] Fig. 2 is provided with a microscopic optical system as a condensing optical system, and the radiation spectrum of the chemical species adhered and adsorbed on the surface of the catalyst supported on the honeycomb-shaped catalyst carrier is measured to identify the chemical species. 2 shows a second embodiment of the present invention configured to perform reaction process analysis and temperature measurement of the catalyst surface. 2 and 3, the catalyst carrier 20 made of alumina, for example, has a honeycomb shape, and the radiant light E from the surface of the catalyst coated inside the small-diameter hole 21 goes out from inside the small-diameter hole 21. . This is condensed by the microscopic optical system 8 to obtain a radiation spectrum.
【0017】図4は集光光学系として望遠鏡型の光学系
18を用いて、広い範囲からの輻射スペクトルを得るよ
うにしたこの発明の第3実施例を示す。この実施例でも
光学系18の焦点面にマスク19を入れると、触媒表面
以外からの輻射光をカットできる。FIG. 4 shows a third embodiment of the present invention in which a telescope type optical system 18 is used as a focusing optical system to obtain a radiation spectrum from a wide range. Also in this embodiment, if the mask 19 is placed on the focal plane of the optical system 18, the radiant light from other than the catalyst surface can be cut.
【0018】図5は光学系8とマスク9との間に、拡散
反射光40を検出器41へ導く鏡22を設置し、上記上
記第1,2,3実施例で用いた検出器11の代わりに光
源31を用いて拡散反射法を行う場合を示す。このよう
にすることにより、光源31からの光32を分光器10
のチョッパー(あるいは干渉計)で変調した赤外光Lを
試料に照射し、従来の拡散反射法による装置とすること
ができる。In FIG. 5, a mirror 22 for guiding the diffuse reflected light 40 to a detector 41 is installed between the optical system 8 and the mask 9, and the detector 11 used in the above-mentioned first, second, and third embodiments. Instead, the case where the diffuse reflection method is performed using the light source 31 is shown. By doing this, the light 32 from the light source 31 is transmitted to the spectroscope 10
It is possible to irradiate the sample with the infrared light L modulated by the chopper (or interferometer) of (1) to obtain a device by the conventional diffuse reflection method.
【0019】[0019]
【発明の効果】以上のようにこの発明では、三次元X,
Y,Z方向に移動可能なステージと、このステージ上に
設置され、ガス入口、ガス出口および窓部を備え、かつ
触媒を収容した触媒槽と、この触媒槽内を加熱するため
のヒータと、前記窓部の上方において、下から順に設け
た集光光学系とマスクと分光器または干渉計と、前記分
光器または干渉計からの光を検出する検出器とから構成
したので、触媒表面に付着、吸着している化学種を輻射
測定により測定でき、その化学種の同定と触媒表面の温
度測定を行える。As described above, according to the present invention, the three-dimensional X,
A stage movable in the Y and Z directions, a catalyst tank installed on the stage, having a gas inlet, a gas outlet, and a window, and containing a catalyst; and a heater for heating the inside of the catalyst tank, Since it is composed of a condensing optical system, a mask, a spectroscope or an interferometer, and a detector for detecting the light from the spectroscope or the interferometer, which are provided in order from the bottom above the window portion, they are attached to the catalyst surface. The adsorbed chemical species can be measured by radiation measurement, and the chemical species can be identified and the temperature of the catalyst surface can be measured.
【0020】すなわち、触媒表面からの赤外光の輻射ス
ペクトルに基づいて化学種を同定する。また、この輻射
スペクトルから触媒表面の温度を測るので、ガスを流し
たままで正確に触媒表面の温度が測れる。That is, the chemical species are identified based on the radiation spectrum of infrared light from the catalyst surface. Further, since the temperature of the catalyst surface is measured from this radiation spectrum, the temperature of the catalyst surface can be accurately measured with the gas flowing.
【0021】また、この発明では、触媒が粉末である必
要がなく、多種多様な形状の触媒表面に付着、吸着した
化学種の同定と反応過程の解析ならびに触媒表面の温度
測定を行える。Further, in the present invention, the catalyst does not have to be a powder, and it is possible to identify the chemical species attached to and adsorbed on the catalyst surface of various shapes, analyze the reaction process, and measure the temperature of the catalyst surface.
【0022】この発明では、例えば、ビーズ状やハニカ
ム状の触媒担体を用いることができる。そして、その場
合には、多量のガスを流すことができ、しかも多量のガ
スを流したままで正確に触媒表面の温度が測れる。In the present invention, for example, a bead-shaped or honeycomb-shaped catalyst carrier can be used. In that case, a large amount of gas can be flowed, and the temperature of the catalyst surface can be accurately measured while the large amount of gas is still flowing.
【0023】また、化学種を触媒温度を室温より上げて
測定する際、従来では温度を上げると検出器が飽和して
いたのに対し、この発明では、温度を上げても従来のよ
うに検出器が飽和することはない。Further, in the case of measuring a chemical species by raising the catalyst temperature above room temperature, the detector was saturated when the temperature was raised in the past, but in the present invention, even if the temperature is raised, it is detected as in the conventional case. The vessel never saturates.
【0024】また、マスクを設置するので、測定部位以
外からの輻射光を取り除くことができ、正確な測定を行
える。さらに、局所測定が可能である。Further, since the mask is installed, the radiant light from other than the measurement site can be removed, and accurate measurement can be performed. Furthermore, local measurements are possible.
【0025】そして、試料は三次元ステージに載せられ
ているので、自動的にリファレンスの位置に試料を移動
できる。Since the sample is placed on the three-dimensional stage, the sample can be automatically moved to the reference position.
【図1】この発明の第1実施例を示す構成説明図であ
る。FIG. 1 is a structural explanatory view showing a first embodiment of the present invention.
【図2】この発明の第2実施例を説明するための図であ
る。FIG. 2 is a diagram for explaining a second embodiment of the present invention.
【図3】上記第2実施例で用いられる触媒担体を示す斜
視図である。FIG. 3 is a perspective view showing a catalyst carrier used in the second embodiment.
【図4】この発明の第3実施例を示す構成説明図であ
る。FIG. 4 is a structural explanatory view showing a third embodiment of the present invention.
【図5】拡散反射法による装置に転用した場合を示す構
成説明図である。FIG. 5 is a structural explanatory view showing a case where the device is diverted to a device by a diffuse reflection method.
1…X−Y−Zステージ、2…ガスの入口、3…ガスの
出口、4…窓部、5…アルミナに触媒をコーティングし
たもの、5’…アルミナだけのビーズ、6…触媒槽、7
…ヒータ、8…顕微光学系、9,19…マスク、10…
分光器(または干渉計)、11…検出器、G…ガス、E
…輻射光。1 ... XYZ stage, 2 ... Gas inlet, 3 ... Gas outlet, 4 ... Window part, 5 ... Alumina coated with catalyst, 5 '... Alumina only beads, 6 ... Catalyst tank, 7
... Heater, 8 ... Microscopic optical system, 9, 19 ... Mask, 10 ...
Spectrometer (or interferometer), 11 ... Detector, G ... Gas, E
... radiant light.
Claims (1)
ージと、このステージ上に設置され、ガス入口、ガス出
口および窓部を備え、かつ触媒を収容した触媒槽と、こ
の触媒槽内を加熱するためのヒータと、前記窓部の上方
において、下から順に設けた集光光学系とマスクと分光
器または干渉計と、前記分光器または干渉計からの光を
検出する検出器とよりなり、触媒表面からの赤外光の輻
射スペクトルを測定して触媒吸着種の同定および温度測
定を行うことを特徴とする触媒吸着種測定装置。1. A stage which is movable in three-dimensional X, Y and Z directions, a catalyst tank which is installed on this stage and which has a gas inlet, a gas outlet and a window portion and which contains a catalyst, and this catalyst tank. A heater for heating the inside, a condensing optical system, a mask, a spectroscope or an interferometer, which is provided in order from the bottom above the window portion, and a detector for detecting light from the spectroscope or the interferometer. An apparatus for measuring a catalyst adsorbed species, comprising: measuring the emission spectrum of infrared light from the surface of the catalyst to identify the catalyst adsorbed species and measure the temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6248847A JP3035169B2 (en) | 1994-09-16 | 1994-09-16 | Catalyst adsorption species measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6248847A JP3035169B2 (en) | 1994-09-16 | 1994-09-16 | Catalyst adsorption species measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0886763A true JPH0886763A (en) | 1996-04-02 |
JP3035169B2 JP3035169B2 (en) | 2000-04-17 |
Family
ID=17184312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6248847A Expired - Fee Related JP3035169B2 (en) | 1994-09-16 | 1994-09-16 | Catalyst adsorption species measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3035169B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0883806A1 (en) * | 1996-02-28 | 1998-12-16 | Technology Licensing Co. L.L.C. | Catalyst testing process and apparatus |
US5911953A (en) * | 1996-06-14 | 1999-06-15 | Nippon Soken, Inc. | Apparatus for detecting and analyzing adsorbates |
JP2010216839A (en) * | 2009-03-13 | 2010-09-30 | Toyota Central R&D Labs Inc | Method of detecting existence of chemiluminescence deriving from solid surface reaction, method of identifying chemical substance species deriving from solid surface reaction, and device used in these methods for detecting chemiluminescence deriving from solid surface reaction |
CN111186663A (en) * | 2020-02-17 | 2020-05-22 | 上海绿汤科技有限公司 | Intelligent garbage classification equipment |
-
1994
- 1994-09-16 JP JP6248847A patent/JP3035169B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0883806A1 (en) * | 1996-02-28 | 1998-12-16 | Technology Licensing Co. L.L.C. | Catalyst testing process and apparatus |
EP0883806A4 (en) * | 1996-02-28 | 2001-09-12 | Technology Licensing Co L L C | Catalyst testing process and apparatus |
US6333196B1 (en) | 1996-02-28 | 2001-12-25 | University Of Houston | Catalyst testing process and apparatus |
US5911953A (en) * | 1996-06-14 | 1999-06-15 | Nippon Soken, Inc. | Apparatus for detecting and analyzing adsorbates |
JP2010216839A (en) * | 2009-03-13 | 2010-09-30 | Toyota Central R&D Labs Inc | Method of detecting existence of chemiluminescence deriving from solid surface reaction, method of identifying chemical substance species deriving from solid surface reaction, and device used in these methods for detecting chemiluminescence deriving from solid surface reaction |
CN111186663A (en) * | 2020-02-17 | 2020-05-22 | 上海绿汤科技有限公司 | Intelligent garbage classification equipment |
Also Published As
Publication number | Publication date |
---|---|
JP3035169B2 (en) | 2000-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3897703B2 (en) | Sensor device and inspection method using the same | |
FI76432C (en) | Method and apparatus for determining elements in solution with a light conductor | |
JP6134719B2 (en) | System and method for self-contrast detection and imaging of a sample array | |
JP5920996B2 (en) | System and method for detecting and imaging a two-dimensional sample array | |
GB2273772A (en) | Detection of macromolecules utilising light diffraction | |
US8302461B2 (en) | Gas detector having an acoustic measuring cell and selectively adsorbing surface | |
JPH01502930A (en) | Improved analytical techniques and equipment | |
JP2003121349A (en) | Surface plasmon resonance sensor chip as well as method and apparatus for analysing sample by using the same | |
KR101710090B1 (en) | Portable fluorescence measurement device based upon uv-led light source and fluorescence measurement method using uv-led light source | |
JP3035169B2 (en) | Catalyst adsorption species measurement device | |
US11035792B2 (en) | Nanohole array based sensors with various coating and temperature control | |
JPH09113450A (en) | Adjusting method for detection gas concentration region in gas-concentration detection method | |
JP5022490B2 (en) | Measuring apparatus and method for determining optical property values for detecting photolytic and electrochemical decomposition reactions | |
JPWO2013128707A1 (en) | Measuring device for measuring the characteristics of the object to be measured | |
JP2010507077A (en) | Method for quantifying surface photocatalytic activity and use thereof | |
JP4054718B2 (en) | Sensor device | |
JP2012215467A (en) | Biological substance analyzer and biological substance analysis method | |
JP2005049109A (en) | Chemical analysis equipment | |
JP2001343283A (en) | Ultraviolet and visible ray detecting device | |
US5644116A (en) | Carbon monoxide sensor and method of detecting carbon monoxide | |
JP2013024746A (en) | Automatic analyzer | |
JPH0933513A (en) | Heater | |
JP2003215028A (en) | Method and apparatus for detecting chemical substance | |
JPH0810626A (en) | Evaluation of monolithic catalyst | |
JP5539254B2 (en) | Biological material analysis apparatus and biological material analysis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000208 |
|
LAPS | Cancellation because of no payment of annual fees |