JPH0886246A - Two-liquid type propulsion unit - Google Patents

Two-liquid type propulsion unit

Info

Publication number
JPH0886246A
JPH0886246A JP22164494A JP22164494A JPH0886246A JP H0886246 A JPH0886246 A JP H0886246A JP 22164494 A JP22164494 A JP 22164494A JP 22164494 A JP22164494 A JP 22164494A JP H0886246 A JPH0886246 A JP H0886246A
Authority
JP
Japan
Prior art keywords
fuel
oxidant
flow rate
signal
mixing ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22164494A
Other languages
Japanese (ja)
Inventor
Shigeyasu Iihara
重保 飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP22164494A priority Critical patent/JPH0886246A/en
Publication of JPH0886246A publication Critical patent/JPH0886246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE: To ensure constantly optimum engine performance by individually controlling fuel and oxidant metering valves, based on an actual mixture ration, based on a computing result obtained as a result of flow rates of fuel and an oxidant being computed from the temperatures, pressures, and volume flow rates of fuel, the temperature of an oxidant, a pressure, and a volume flow rate, and a target mixture ratio. CONSTITUTION: When fuel 3 is fed, a fuel feed amount computer 18 computes the weight and a flow rate of fuel 3 by means of output signals respectively detected by temperature, pressure, and volume flow rate detectors 14, 15, and 16, and a fuel weight signal MF is outputted. Meanwhile, when an oxidant 4 is fed, a weight and a flow rate of the oxidant 4 are computed by an oxidant feed amount computer 23 by means of output signals detected by temperature, pressure, and volume flow rate detectors 19, 20, and 21 to output an oxidant weight signal M0 . An actual mixture ratio signal MR1 is computed by an actual mixture computer 24, an actual mixture ratio signal MR1 is outputted and meanwhile, a preset target mixture ratio signal MR0 is outputted by a target mixture ratio setter 25. A mixture ratio regulator 26 to receive the output signal outputs opening regulation signals SF and SO for fuel and oxidant metering valves 17 and 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二液式推進装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-liquid type propulsion device.

【0002】[0002]

【従来の技術】ロケットなどに適用する二液式推進装置
では、主燃焼室の内部において水素等の燃料と酸素等の
酸化剤とを混合させ、その混合ガスを燃焼させることに
よって推力を発生させている。
2. Description of the Related Art In a two-liquid type propulsion device applied to a rocket or the like, thrust is generated by mixing a fuel such as hydrogen and an oxidizer such as oxygen inside a main combustion chamber and burning the mixed gas. ing.

【0003】図2は従来の二液式推進装置の一例を示す
もので、1は燃料タンク、2は酸化剤タンクであり、燃
料タンク1の内部に貯留されている燃料3及び酸化剤タ
ンク2の内部に貯留されている酸化剤4は、図示されて
いない蓄圧タンクにより押圧ガス供給管路5,6を介し
て付勢されるガス圧によって、それぞれ、燃料タンク1
及び酸化剤タンク2から外部へ押し出されるようになっ
ている。
FIG. 2 shows an example of a conventional two-component type propulsion device. Reference numeral 1 is a fuel tank, 2 is an oxidizer tank, and a fuel 3 and an oxidizer tank 2 stored inside the fuel tank 1. The oxidant 4 stored in the fuel tank 1 is respectively stored in the fuel tank 1 by the gas pressure urged via the pressure gas supply pipelines 5 and 6 by a pressure storage tank (not shown).
And, it is adapted to be pushed out from the oxidant tank 2.

【0004】前記の燃料タンク1から押し出される燃料
3は、燃料供給管路7を経て二液式エンジン11に供給
されるように、また、酸化剤タンク2から押し出される
酸化剤4は、酸化剤供給管路8を経て二液式エンジン1
1に供給されるように構成されている。
The fuel 3 extruded from the fuel tank 1 is supplied to the two-component engine 11 via the fuel supply line 7, and the oxidant 4 extruded from the oxidant tank 2 is the oxidant. Two-component engine 1 via supply line 8
1 is configured to be supplied.

【0005】燃料供給管路7には燃料遮断弁9が設けら
れ、また、酸化剤供給管路8には酸化剤遮断弁10が設
けられており、これら燃料遮断弁9及び酸化剤遮断弁1
0を開閉することによって、二液式エンジンに対する燃
料及び酸化剤の供給、あるいは供給停止が行なわれてい
る。
A fuel cutoff valve 9 is provided in the fuel supply line 7, and an oxidant cutoff valve 10 is provided in the oxidant supply line 8. The fuel cutoff valve 9 and the oxidant cutoff valve 1 are provided.
By opening and closing 0, the fuel and the oxidant are supplied to the two-component engine, or the supply is stopped.

【0006】更に、燃料タンク1へ通じる前記の押圧ガ
ス供給管路5には、燃料3に対するガス圧を調整するた
めの調量オリフィス12が設けられ、また、燃料供給管
路7には、その内部を流通する燃料3の流量を調整する
ための調量オリフィス13が設けられている。
Further, the pressure gas supply line 5 leading to the fuel tank 1 is provided with a metering orifice 12 for adjusting the gas pressure with respect to the fuel 3, and the fuel supply line 7 is provided with a metering orifice 12. A metering orifice 13 for adjusting the flow rate of the fuel 3 flowing inside is provided.

【0007】上述したような構成を有する二液式推進装
置では、図3に示すように、燃料3と酸化剤4との混合
比[M]を適切な割合として、エンジン性能[A]が最
大値を呈するようにすることが望ましい。
In the two-component type propulsion device having the above-described structure, as shown in FIG. 3, the engine performance [A] is maximized when the mixing ratio [M] of the fuel 3 and the oxidizer 4 is set to an appropriate ratio. It is desirable to have a value.

【0008】ところが、前述の燃料3と酸化剤4との混
合比は、同一種類の二液式エンジン11であっても、燃
料タンク1から二液式エンジン11に至る燃料供給管路
7の長さや屈曲箇所の数、及び酸化剤タンク2から二液
式エンジン11に至る酸化剤供給管路8の長さや屈曲箇
所の数が異なることによって、流量抵抗などが変化して
しまう。
However, the mixing ratio of the fuel 3 and the oxidizer 4 is such that the length of the fuel supply pipe 7 extending from the fuel tank 1 to the two-component engine 11 is the same even in the two-component engine 11 of the same type. The flow resistance and the like change due to the difference in the number of the bent portions, the length of the oxidant supply pipe 8 extending from the oxidant tank 2 to the two-component engine 11, and the number of the bent portions.

【0009】そこで、燃料供給管路7、酸化剤供給管路
8に変更が生じた場合には、その都度、二液式推進装置
に対するシステム試験を行い、最適のエンジン性能(燃
量)が得られる調量オリフィス13の設定値を求めるよ
うにしている。
Therefore, when the fuel supply line 7 and the oxidant supply line 8 are changed, a system test is performed on the two-component type propulsion device each time, and the optimum engine performance (fuel amount) is obtained. The set value of the metering orifice 13 is determined.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、燃料供
給管路7、酸化剤供給管路8を変更するたびに、二液式
推進装置に対するシステム試験を行うことは、技術的に
煩雑であり、経済的にも得策ではないという問題があ
る。
However, it is technically complicated and economical to perform a system test on the two-component type propulsion device every time the fuel supply line 7 and the oxidant supply line 8 are changed. There is a problem that it is not a good idea.

【0011】本発明は、前述の実情に鑑み、供給管路に
流量のチェック機能を付加することにより、システム試
験を実施することなく最適のエンジン性能(燃量)が得
られる二液式推進装置を提供することを目的としてなし
たものである。
In view of the above-mentioned circumstances, the present invention is a two-component type propulsion device which can obtain optimum engine performance (fuel amount) without performing a system test by adding a flow rate check function to the supply pipeline. The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の二液式推進装置においては、燃料3を貯留
する燃料タンク1と、酸化剤4を貯留する酸化剤タンク
2と、燃料タンク1より流出する燃料3を二液式エンジ
ン11に供給する燃料供給管路7と、酸化剤タンク2よ
り流出する酸化剤4を二液式エンジン11に供給する酸
化剤供給管路8とを有する二液式推進装置において、燃
料供給管路7に設けた燃料調量弁17と、酸化剤供給管
路8に設けた酸化剤調量弁22と、燃料供給管路7を流
通する燃料3の温度を検出する燃料温度検出器14と、
燃料供給管路7を流通する燃料3の圧力を検出する燃料
圧力検出器15と、燃料供給管路7を流通する燃料3の
体積流量を検出する燃料流量検出器16と、燃料温度検
出器14より出力される温度検出信号TLFと燃料圧力検
出器15より出力される圧力検出信号PLFと燃料流量検
出器16より出力される流量検出信号NLFとに基づき燃
料供給管路7から二液式エンジン11に供給される燃料
3の重量流量を求め且つ燃料重量信号MFを出力する燃
料供給量演算器18と、酸化剤供給管路8を流通する酸
化剤4の温度を検出する酸化剤温度検出器19と、酸化
剤供給管路8を流通する酸化剤4の圧力を検出する酸化
剤圧力検出器20と、酸化剤供給管路8を流通する酸化
剤4の体積流量を検出する酸化剤流量検出器21と、酸
化剤温度検出器19より出力される温度検出信号TLOと
酸化剤圧力検出器20より出力される圧力検出信号PLO
と酸化剤流量検出器21より出力される流量検出信号N
LOとに基づき酸化剤供給管路8から二液式エンジン11
に供給される酸化剤4の重量流量を求め且つ酸化剤重量
信号M0を出力する酸化剤供給量演算器23と、燃料供
給量演算器18より出力される燃料重量信号MFと酸化
剤供給量演算器23より出力される酸化剤重量信号M0
とに基づき燃料3と酸化剤4との実混合比を求め且つ実
混合比信号MR1を出力する実混合比演算器24と、予
め入力された燃料3と酸化剤4との目標混合比に基づき
目標混合比信号MR0を出力する目標混合比設定器25
と、実混合比演算器24より出力される実混合比信号M
R1と目標混合比設定器25より出力される目標混合比
信号MR0とに基づき前記の燃料調量弁17の開度を調
整する開度調整信号SF及び酸化剤調量弁22の開度を
調整する開度調整信号SOを出力する混合比調整器26
とを備えている。
In order to achieve the above object, in a two-liquid type propulsion apparatus of the present invention, a fuel tank 1 for storing a fuel 3, an oxidant tank 2 for storing an oxidant 4, A fuel supply line 7 for supplying the fuel 3 flowing out of the fuel tank 1 to the two-liquid engine 11, and an oxidant supply line 8 for supplying the oxidant 4 flowing out of the oxidant tank 2 to the two-liquid engine 11. In the two-component propulsion device having a fuel supply valve 7, a fuel metering valve 17 provided in the fuel supply line 7, an oxidant metering valve 22 provided in the oxidant supply line 8, and a fuel flowing through the fuel supply line 7. A fuel temperature detector 14 for detecting the temperature of 3;
A fuel pressure detector 15 for detecting the pressure of the fuel 3 flowing through the fuel supply line 7, a fuel flow rate detector 16 for detecting the volume flow rate of the fuel 3 flowing through the fuel supply line 7, and a fuel temperature detector 14 The temperature detection signal TLF output from the fuel pressure detector 15, the pressure detection signal PLF output from the fuel pressure detector 15, and the flow rate detection signal NLF output from the fuel flow rate detector 16 from the fuel supply line 7 to the two-component engine 11 A fuel supply amount calculator 18 for obtaining the weight flow rate of the fuel 3 to be supplied to the fuel cell and outputting a fuel weight signal MF, and an oxidant temperature detector 19 for detecting the temperature of the oxidant 4 flowing through the oxidant supply conduit 8. An oxidant pressure detector 20 for detecting the pressure of the oxidant 4 flowing through the oxidant supply pipeline 8; and an oxidant flow rate detector for detecting the volume flow rate of the oxidant 4 flowing through the oxidant supply pipeline 8. 21 and oxidizer temperature detector 19 Pressure detection signal PLO to the temperature detection signal TLO output is outputted from the oxidizer pressure sensor 20 Ri
And the flow rate detection signal N output from the oxidant flow rate detector 21
Based on LO and oxidant supply line 8 to two-component engine 11
To calculate the weight flow rate of the oxidant 4 to be supplied to the oxidant 4 and to output the oxidant weight signal M0, and the fuel weight signal MF output from the fuel supply amount calculator 18 and the oxidant supply amount calculation Oxidizer weight signal M0 output from the device 23
Based on the actual mixture ratio calculator 24 for obtaining the actual mixture ratio of the fuel 3 and the oxidizer 4 and outputting the actual mixture ratio signal MR1, and based on the target mixture ratio of the fuel 3 and the oxidizer 4 inputted in advance. Target mixture ratio setter 25 for outputting target mixture ratio signal MR0
And the actual mixing ratio signal M output from the actual mixing ratio calculator 24.
Based on R1 and the target mixing ratio signal MR0 output from the target mixing ratio setter 25, the opening adjusting signal SF for adjusting the opening of the fuel adjusting valve 17 and the opening of the oxidizer adjusting valve 22 are adjusted. Mixing ratio adjuster 26 that outputs an opening adjustment signal SO
It has and.

【0013】[0013]

【作用】本発明の二液式推進装置では、燃料温度検出器
14が燃料供給管路7を流通する燃料3の温度を検出し
て温度検出信号TLFを出力し、燃料圧力検出器15が燃
料供給管路7を流通する燃料3の圧力を検出して圧力検
出信号PLFを出力し、燃料流量検出器16が燃料供給管
路7を流通する燃料3の体積流量を検出して流量検出信
号NLFを出力し、燃料供給量演算器18が前記の温度検
出信号TLFと圧力検出信号PLFと流量検出信号NLFとに
基づき燃料供給管路7から二液式エンジン11に供給さ
れる燃料3の重量流量を演算して燃料重量信号MFを出
力する。
In the two-liquid type propulsion device of the present invention, the fuel temperature detector 14 detects the temperature of the fuel 3 flowing through the fuel supply line 7 and outputs the temperature detection signal TLF, and the fuel pressure detector 15 outputs the fuel. The pressure of the fuel 3 flowing through the supply pipeline 7 is detected and a pressure detection signal PLF is output, and the fuel flow rate detector 16 detects the volume flow rate of the fuel 3 flowing through the fuel supply pipeline 7 to detect the flow rate detection signal NLF. The fuel supply amount calculator 18 outputs the weight flow rate of the fuel 3 supplied from the fuel supply line 7 to the two-component engine 11 based on the temperature detection signal TLF, the pressure detection signal PLF, and the flow rate detection signal NLF. To output the fuel weight signal MF.

【0014】また、酸化剤温度検出器19が酸化剤供給
管路8を流通する酸化剤4の温度を検出して温度検出信
号TLOを出力し、酸化剤圧力検出器20が酸化剤供給管
路8を流通する酸化剤4の圧力を検出して圧力検出信号
PLOを出力し、酸化剤流量検出器21が酸化剤供給管路
8を流通する酸化剤4の体積流量を検出して流量検出信
号NLOを出力し、酸化剤供給量演算器23が前記の温度
検出信号TLOと圧力検出信号PLOと流量検出信号NLOと
に基づき酸化剤供給管路8から二液式エンジン11に供
給される酸化剤4の重量流量を演算して酸化剤重量信号
M0を出力する。
Further, the oxidant temperature detector 19 detects the temperature of the oxidant 4 flowing through the oxidant supply line 8 and outputs a temperature detection signal TLO, and the oxidant pressure detector 20 outputs the oxidant pressure line 20. 8 detects the pressure of the oxidant 4 flowing through it and outputs a pressure detection signal PLO, and the oxidant flow rate detector 21 detects the volume flow rate of the oxidant 4 flowing through the oxidant supply conduit 8 and detects the flow rate detection signal. NLO is output, and the oxidizer supply amount calculator 23 supplies the oxidizer from the oxidizer supply pipe 8 to the two-component engine 11 based on the temperature detection signal TLO, the pressure detection signal PLO, and the flow rate detection signal NLO. The weight flow rate of No. 4 is calculated and the oxidizer weight signal M0 is output.

【0015】更に、実混合比演算器24が前記の燃料重
量信号MFと酸化剤重量信号M0とに基づき燃料3と酸
化剤4との実混合比を演算して実混合比信号MR1を出
力し、目標混合比設定器25が予め入力された燃料3と
酸化剤4との目標混合比に基づき目標混合比信号MR0
を出力し、混合比調整器26が前記の実混合比信号MR
1と目標混合比信号MR0とに基づき、燃料調量弁17
の開度を調整する開度調整信号SFと酸化剤調量弁22
の開度を調整する開度調整信号SOとを出力する。
Further, the actual mixture ratio calculator 24 calculates the actual mixture ratio of the fuel 3 and the oxidant 4 based on the fuel weight signal MF and the oxidant weight signal M0, and outputs the actual mixture ratio signal MR1. , The target mixture ratio setter 25 sets the target mixture ratio signal MR0 based on the target mixture ratio of the fuel 3 and the oxidant 4 which is input in advance.
And the mixing ratio adjuster 26 outputs the actual mixing ratio signal MR.
1 and the target mixture ratio signal MR0, the fuel metering valve 17
Opening adjustment signal SF for adjusting the opening of the
And an opening degree adjustment signal SO for adjusting the opening degree of.

【0016】前記の各開度調整信号SF,SOが出力さ
れると、該各開度調整信号SF,SOによって燃料供給
管路7に設けた燃料調量弁17の開度と酸化剤供給管路
8に設けた酸化剤調量弁22の開度とが設定され、二液
式エンジン11へ供給される燃料3と酸化剤4の各量
を、常時、目標混合比に合致する量に調量する。
When the opening adjustment signals SF and SO are output, the opening of the fuel metering valve 17 provided in the fuel supply pipe 7 and the oxidant supply pipe are controlled by the opening adjustment signals SF and SO. The opening degree of the oxidizer metering valve 22 provided in the passage 8 is set, and the amounts of the fuel 3 and the oxidizer 4 supplied to the two-component engine 11 are constantly adjusted to the amounts that match the target mixing ratio. Measure.

【0017】[0017]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は本発明の二液式推進装置の概略を表
すブロック図であり、図中、図2と同じものには同じ符
号を付して説明を省略する。
FIG. 1 is a block diagram showing the outline of a two-liquid type propulsion device of the present invention. In the figure, the same parts as those in FIG.

【0019】本実施例では、燃料供給管路7に設けられ
た燃料遮断弁9の下流側に、燃料供給管路7を流通する
燃料3の温度を検出して温度検出信号TLFを出力する燃
料温度検出器14と、燃料供給管路7を流通する燃料3
の圧力を検出して圧力検出信号PLFを出力する燃料圧力
検出器15とを接続し、更に、その下流側に、燃料供給
管路7を流通する燃料3の体積流量を検出して流量検出
信号NLFを出力する燃料流量検出器16を設け、燃料調
量弁17を設ける。
In this embodiment, the fuel for detecting the temperature of the fuel 3 flowing through the fuel supply line 7 and outputting the temperature detection signal TLF is provided downstream of the fuel cutoff valve 9 provided in the fuel supply line 7. The temperature detector 14 and the fuel 3 flowing through the fuel supply line 7.
Is connected to a fuel pressure detector 15 that detects the pressure of the fuel 3 and outputs a pressure detection signal PLF. Further, the volume flow rate of the fuel 3 flowing through the fuel supply pipe 7 is detected downstream thereof to detect the flow rate detection signal. A fuel flow rate detector 16 that outputs NLF is provided, and a fuel metering valve 17 is provided.

【0020】そして、前記の温度検出信号TLFと圧力検
出信号PLFと流量検出信号NLFとに基づき燃料タンク1
から燃料供給管路7を通して二液式エンジン11に供給
される燃料3の重量流量を求めて燃料重量信号MFを出
力する燃料供給量演算器18を設け、該燃料供給量演算
器18を前記の燃料温度検出器14と燃料圧力検出器1
5と燃料流量検出器16とに接続する。
Then, based on the temperature detection signal TLF, the pressure detection signal PLF, and the flow rate detection signal NLF, the fuel tank 1
Is provided with a fuel supply amount calculator 18 for determining the weight flow rate of the fuel 3 supplied to the two-component engine 11 from the fuel supply pipe 7 and outputting a fuel weight signal MF. Fuel temperature detector 14 and fuel pressure detector 1
5 and the fuel flow rate detector 16 are connected.

【0021】また、酸化剤供給管路8に設けられた酸化
剤遮断弁10の下流側に、酸化剤供給管路8を流通する
酸化剤4の温度を検出して温度検出信号TLOを出力する
酸化剤温度検出器19と、酸化剤供給管路8を流通する
酸化剤4の圧力を検出して圧力検出信号PLOを出力する
酸化剤圧力検出器20とを接続し、更に、その下流側
に、酸化剤供給管路8を流通する酸化剤4の体積流量を
検出して流量検出信号NLOを出力する酸化剤流量検出器
21を設け、酸化剤調量弁22を設ける。
Further, the temperature of the oxidant 4 flowing through the oxidant supply pipe 8 is detected downstream of the oxidant cutoff valve 10 provided in the oxidant supply pipe 8, and a temperature detection signal TLO is output. The oxidant temperature detector 19 and the oxidant pressure detector 20 which detects the pressure of the oxidant 4 flowing through the oxidant supply pipe 8 and outputs a pressure detection signal PLO are connected, and further downstream thereof. An oxidant flow rate detector 21 for detecting the volume flow rate of the oxidant 4 flowing through the oxidant supply pipeline 8 and outputting a flow rate detection signal NLO is provided, and an oxidant metering valve 22 is provided.

【0022】そして、前記の温度検出信号TLOと圧力検
出信号PLOと流量検出信号NLOとに基づき酸化剤タンク
2から酸化剤供給管路8を通して二液式エンジン11に
供給される酸化剤4の重量流量を求めて酸化剤重量信号
M0を出力する酸化剤供給量演算器23を設け、該酸化
剤供給量演算器23を前記の酸化剤温度検出器19と酸
化剤圧力検出器20と酸化剤流量検出器21とに接続す
る。
Based on the temperature detection signal TLO, the pressure detection signal PLO and the flow rate detection signal NLO, the weight of the oxidizer 4 supplied from the oxidizer tank 2 to the two-component engine 11 through the oxidizer supply line 8. An oxidant supply amount calculator 23 for determining a flow rate and outputting an oxidant weight signal M0 is provided, and the oxidant supply amount calculator 23 is used for the oxidant temperature detector 19, the oxidant pressure detector 20, and the oxidant flow rate. It is connected to the detector 21.

【0023】更に、前記の燃料重量信号MFと酸化剤重
量信号M0とに基づき燃料3と酸化剤4との実混合比を
求めて実混合比信号MR1を出力する実混合比演算器2
4を設け、該実混合比演算器24を前記の燃料供給量演
算器18と酸化剤供給量演算器23とに接続する。
Further, the actual mixing ratio calculator 2 which obtains the actual mixing ratio of the fuel 3 and the oxidizer 4 based on the fuel weight signal MF and the oxidant weight signal M0 and outputs the actual mixing ratio signal MR1.
4, the actual mixing ratio calculator 24 is connected to the fuel supply amount calculator 18 and the oxidant supply amount calculator 23.

【0024】また更に、予め入力された燃料3と酸化剤
4との目標混合比に基づき目標混合比信号MR0を出力
する目標混合比設定器25を設け、前記の目標混合比信
号MR0と実混合比信号MR1とに基づき、前記の燃料
調量弁17の開度を調整する開度調整信号SFと酸化剤
調量弁22の開度を調整する開度調整信号SOとを出力
する混合比調整器26を設け、該混合比調整器26を前
記の実混合比演算器24と目標混合比設定器25とに接
続する。
Furthermore, a target mixing ratio setter 25 for outputting a target mixing ratio signal MR0 based on the target mixing ratio of the fuel 3 and the oxidizer 4 inputted in advance is provided, and the target mixing ratio signal MR0 and the actual mixing ratio MR0 are mixed. Mixing ratio adjustment for outputting an opening adjustment signal SF for adjusting the opening of the fuel adjustment valve 17 and an opening adjustment signal SO for adjusting the opening of the oxidizer adjustment valve 22 based on the ratio signal MR1. A mixing device 26 is provided, and the mixing ratio adjusting device 26 is connected to the actual mixing ratio calculator 24 and the target mixing ratio setting device 25.

【0025】次に作動について説明する。Next, the operation will be described.

【0026】燃料タンク1から燃料供給管路7を通って
二液式エンジン11へ燃料3が供給されると、燃料温度
検出器14が燃料供給管路7を流通する前記燃料3の温
度を検出して温度検出信号TLFを出力し、燃料圧力検出
器15が燃料供給管路7を流通する前記燃料3の圧力を
検出して圧力検出信号PLFを出力し、燃料流量検出器1
6が燃料供給管路7を流通する前記燃料3の体積流量を
検出して流量検出信号NLFを出力する。
When the fuel 3 is supplied from the fuel tank 1 through the fuel supply line 7 to the two-component engine 11, the fuel temperature detector 14 detects the temperature of the fuel 3 flowing through the fuel supply line 7. Then, the fuel pressure detector 15 outputs the temperature detection signal TLF, the fuel pressure detector 15 detects the pressure of the fuel 3 flowing through the fuel supply line 7, and outputs the pressure detection signal PLF.
6 detects the volume flow rate of the fuel 3 flowing through the fuel supply line 7 and outputs a flow rate detection signal NLF.

【0027】このとき、燃料供給量演算器18は、前記
の温度検出信号TLFと圧力検出信号PLFと流量検出信号
NLFとに基づき、燃料タンク1から燃料供給管路7を経
て二液式エンジン11に供給される前記の燃料3の重量
流量を演算して燃料重量信号MFを出力する。
At this time, the fuel supply amount calculator 18 is based on the temperature detection signal TLF, the pressure detection signal PLF, and the flow rate detection signal NLF, and then the two-liquid engine 11 from the fuel tank 1 through the fuel supply line 7. And calculates the weight flow rate of the fuel 3 supplied to the fuel cell and outputs a fuel weight signal MF.

【0028】また、酸化剤タンク2から酸化剤供給管路
8を通って二液式エンジン11へ酸化剤4が供給される
と、酸化剤温度検出器19が酸化剤供給管路8を流通す
る前記酸化剤4の温度を検出して温度検出信号TLOを出
力し、酸化剤圧力検出器20が酸化剤供給管路8を流通
する前記酸化剤4の圧力を検出して圧力検出信号PLOを
出力し、酸化剤流量検出器21が酸化剤供給管路8を流
通する前記酸化剤4の体積流量を検出して流量検出信号
NLOを出力する。
When the oxidizer 4 is supplied from the oxidizer tank 2 to the two-component engine 11 through the oxidizer supply pipe 8, the oxidizer temperature detector 19 flows through the oxidizer supply pipe 8. The temperature of the oxidant 4 is detected and a temperature detection signal TLO is output, and the oxidant pressure detector 20 detects the pressure of the oxidant 4 flowing through the oxidant supply pipe 8 and outputs a pressure detection signal PLO. Then, the oxidant flow rate detector 21 detects the volumetric flow rate of the oxidant 4 flowing through the oxidant supply pipeline 8 and outputs a flow rate detection signal NLO.

【0029】このとき、酸化剤供給量演算器23は、前
記の温度検出信号TLOと圧力検出信号PLOと流量検出信
号NLOとに基づき、酸化剤タンク2から酸化剤供給管路
8を経て二液式エンジン11に供給される前記酸化剤4
の重量流量を演算して酸化剤重量信号M0を出力する。
At this time, the oxidant supply amount calculator 23 uses the temperature detection signal TLO, the pressure detection signal PLO, and the flow rate detection signal NLO to supply the two liquids from the oxidant tank 2 through the oxidant supply pipe line 8. The oxidant 4 supplied to the expression engine 11
To calculate the weight flow rate of the oxidant and output an oxidant weight signal M0.

【0030】更に、実混合比演算器24が前記の燃料重
量信号MFと酸化剤重量信号M0とに基づき、燃料3と
酸化剤4との実混合比を演算して実混合比信号MR1を
出力し、目標混合比設定器25が予め入力された燃料3
と酸化剤4との目標混合比に基づき目標混合比信号MR
0を出力する。
Further, the actual mixture ratio calculator 24 calculates the actual mixture ratio of the fuel 3 and the oxidant 4 based on the fuel weight signal MF and the oxidant weight signal M0, and outputs the actual mixture ratio signal MR1. Then, the target mixture ratio setter 25 inputs the fuel 3
Target mixing ratio signal MR based on the target mixing ratio of
Outputs 0.

【0031】一方、混合比調整器26は、前記の実混合
比信号MR1と目標混合比信号MR0とに基づき、燃料
調量弁17の開度を調整する開度調整信号SFと酸化剤
調量弁22の開度を調整する開度調整信号SOとを出力
する。
On the other hand, the mixture ratio adjuster 26, based on the actual mixture ratio signal MR1 and the target mixture ratio signal MR0, adjusts the opening amount adjustment signal SF for adjusting the opening amount of the fuel adjustment valve 17 and the oxidizer adjustment amount. An opening degree adjustment signal SO for adjusting the opening degree of the valve 22 is output.

【0032】更に、前記の各開度調整信号SF,SOに
基づいて燃料供給管路7に設けた燃料調量弁17の開度
と、酸化剤供給管路8に設けた酸化剤調量弁22の開度
とが設定される結果、常時、目標混合比に合致する量の
燃料3と酸化剤4とが二液式エンジン11へ供給され
る。
Further, the opening of the fuel metering valve 17 provided in the fuel supply line 7 and the oxidant metering valve provided in the oxidant supply line 8 based on the above-mentioned opening adjustment signals SF and SO. As a result of the setting of the opening degree of 22, the fuel 3 and the oxidant 4 in the amounts that match the target mixture ratio are always supplied to the two-component engine 11.

【0033】本実施例においては、二液式エンジン11
へ供給される燃料3の温度と圧力と体積流量とに基づき
燃料3の重量流量を演算し、また、二液式エンジン11
へ供給される酸化剤4の温度と圧力と体積流量とに基づ
き酸化剤4の重量流量を演算し、更に、前記の燃料3と
酸化剤4の各重量流量に基づき燃料3と酸化剤4との実
混合比を演算し、予め設定した目標混合比と前記の実混
合比とに基づき、燃料供給管路7に設けた燃料調量弁1
7の開度と酸化剤供給管路8に設けた酸化剤調量弁22
の開度とをそれぞれ個別に調整し得るので、常時、目標
混合比に合致する量の燃料3と酸化剤4とを二液式エン
ジン11へ供給することができ、燃料供給管路7、酸化
剤供給管路8に変更が生じた場合にもシステム試験を実
施する必要がなく、常に最適なエンジン性能(燃量)を
得ることができる。
In this embodiment, the two-component engine 11 is used.
The weight flow rate of the fuel 3 is calculated based on the temperature, pressure and volume flow rate of the fuel 3 supplied to the two-component engine 11
The weight flow rate of the oxidant 4 is calculated on the basis of the temperature, pressure and volume flow rate of the oxidant 4 supplied to the Of the fuel metering valve 1 provided in the fuel supply line 7 based on the preset target mixing ratio and the actual mixing ratio.
7 and the oxidant metering valve 22 provided in the oxidant supply line 8
Of the fuel 3 and the oxidizer 4 can be always supplied to the two-component engine 11 in an amount that matches the target mixing ratio, and the fuel supply pipe 7 and the oxidation can be adjusted. It is not necessary to perform the system test even when the agent supply pipe line 8 is changed, and the optimum engine performance (fuel amount) can always be obtained.

【0034】なお、本発明は前述の実施例にのみ限定さ
れるものではなく、本発明の要旨を逸脱しない範囲内に
おいて種々変更を加え得ることは勿論である。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0035】[0035]

【発明の効果】本発明の二液式推進装置によれば、燃料
供給管路7、酸化剤供給管路8に変更が生じた場合にシ
ステム試験を実施しなくとも、二液式エンジン11に供
給される燃料3と酸化剤4との混合比が適切な状態にな
るので、常に最適のエンジン性能(燃量)を得ることが
でき、経済的にも得策であるという優れた効果を奏し得
る。
According to the two-component type propulsion device of the present invention, the two-component type engine 11 can be installed in the two-component type engine 11 without performing the system test when the fuel supply line 7 and the oxidant supply line 8 are changed. Since the mixing ratio of the supplied fuel 3 and the supplied oxidant 4 is in an appropriate state, the optimum engine performance (fuel amount) can always be obtained, and it is possible to exert an excellent effect that it is economically advantageous. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二液式推進装置の一実施例の概略を表
す模式図である。
FIG. 1 is a schematic view showing an outline of an embodiment of a two-liquid type propulsion device of the present invention.

【図2】従来の二液式推進装置の一例の概略を表す模式
図である。
FIG. 2 is a schematic diagram showing an outline of an example of a conventional two-liquid type propulsion device.

【図3】図2に関連するエンジン性能線図である。FIG. 3 is an engine performance diagram related to FIG.

【符号の説明】[Explanation of symbols]

1 燃料タンク 2 酸化剤タンク 3 燃料 4 酸化剤 7 燃料供給管路 8 酸化剤供給管路 14 燃料温度検出器 15 燃料圧力検出器 16 燃料流量検出器 17 燃料調量弁 18 燃料供給量演算器 19 酸化剤温度検出器 20 酸化剤圧力検出器 21 酸化剤流量検出器 22 酸化剤調量弁 23 酸化剤供給量演算器 24 実混合比演算器 25 目標混合比設定器 26 混合比調整器 TLF 温度検出信号 PLF 圧力検出信号 NLF 流量検出信号 TLO 温度検出信号 PLO 圧力検出信号 NLO 流量検出信号 MF 燃料重量信号 M0 酸化剤重量信号 MR1 実混合比信号 MR0 目標混合比信号 SF 開度調整信号 SO 開度調整信号 1 Fuel Tank 2 Oxidizer Tank 3 Fuel 4 Oxidizer 7 Fuel Supply Pipeline 8 Oxidizer Supply Pipeline 14 Fuel Temperature Detector 15 Fuel Pressure Detector 16 Fuel Flow Rate Detector 17 Fuel Metering Valve 18 Fuel Supply Amount Calculator 19 Oxidizing agent temperature detector 20 Oxidizing agent pressure detector 21 Oxidizing agent flow rate detector 22 Oxidizing agent metering valve 23 Oxidizing agent supply amount calculator 24 Actual mixing ratio calculator 25 Target mixing ratio setter 26 Mixing ratio adjuster TLF Temperature detection Signal PLF Pressure detection signal NLF Flow rate detection signal TLO Temperature detection signal PLO Pressure detection signal NLO Flow rate detection signal MF Fuel weight signal M0 Oxidizer weight signal MR1 Actual mixing ratio signal MR0 Target mixing ratio signal SF Opening adjustment signal SO Opening adjustment signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料(3)を貯留する燃料タンク(1)
と、酸化剤(4)を貯留する酸化剤タンク(2)と、燃
料タンク(1)より流出する燃料(3)を二液式エンジ
ン(11)に供給する燃料供給管路(7)と、酸化剤タ
ンク(2)より流出する酸化剤(4)を二液式エンジン
(11)に供給する酸化剤供給管路(8)とを有する二
液式推進装置において、燃料供給管路(7)に設けた燃
料調量弁(17)と、酸化剤供給管路(8)に設けた酸
化剤調量弁(22)と、燃料供給管路(7)を流通する
燃料(3)の温度を検出する燃料温度検出器(14)
と、燃料供給管路(7)を流通する燃料(3)の圧力を
検出する燃料圧力検出器(15)と、燃料供給管路
(7)を流通する燃料(3)の体積流量を検出する燃料
流量検出器(16)と、燃料温度検出器(14)より出
力される温度検出信号(TLF)と燃料圧力検出器(1
5)より出力される圧力検出信号(PLF)と燃料流量検
出器(16)より出力される流量検出信号(NLF)とに
基づき燃料供給管路(7)から二液式エンジン(11)
に供給される燃料(3)の重量流量を求め且つ燃料重量
信号(MF)を出力する燃料供給量演算器(18)と、
酸化剤供給管路(8)を流通する酸化剤(4)の温度を
検出する酸化剤温度検出器(19)と、酸化剤供給管路
(8)を流通する酸化剤(4)の圧力を検出する酸化剤
圧力検出器(20)と、酸化剤供給管路(8)を流通す
る酸化剤(4)の体積流量を検出する酸化剤流量検出器
(21)と、酸化剤温度検出器(19)より出力される
温度検出信号(TLO)と酸化剤圧力検出器(20)より
出力される圧力検出信号(PLO)と酸化剤流量検出器
(21)より出力される流量検出信号(NLO)とに基づ
き酸化剤供給管路(8)から二液式エンジン(11)に
供給される酸化剤(4)の重量流量を求め且つ酸化剤重
量信号(M0)を出力する酸化剤供給量演算器(23)
と、燃料供給量演算器(18)より出力される燃料重量
信号(MF)と酸化剤供給量演算器(23)より出力さ
れる酸化剤重量信号(M0)とに基づき燃料(3)と酸
化剤(4)との実混合比を求め且つ実混合比信号(MR
1)を出力する実混合比演算器(24)と、予め入力さ
れた燃料(3)と酸化剤(4)との目標混合比に基づき
目標混合比信号(MR0)を出力する目標混合比設定器
(25)と、実混合比演算器(24)より出力される実
混合比信号(MR1)と目標混合比設定器(25)より
出力される目標混合比信号(MR0)とに基づいて前記
の燃料調量弁(17)の開度を調整する開度調整信号
(SF)及び酸化剤調量弁(22)の開度を調整する開
度調整信号(SO)を出力する混合比調整器(26)と
を備えたことを特徴とする二液式推進装置。
1. A fuel tank (1) for storing a fuel (3)
An oxidant tank (2) for storing the oxidant (4), a fuel supply line (7) for supplying the fuel (3) flowing out of the fuel tank (1) to the two-component engine (11), In a two-component propulsion device having an oxidant supply pipe (8) for supplying an oxidant (4) flowing out of the oxidant tank (2) to a two-liquid engine (11), a fuel supply pipe (7) To adjust the temperature of the fuel (3) flowing through the fuel metering valve (17), the oxidant metering valve (22) provided in the oxidant supply conduit (8), and the fuel supply conduit (7). Fuel temperature detector to detect (14)
A fuel pressure detector (15) for detecting the pressure of the fuel (3) flowing through the fuel supply line (7), and a volume flow rate of the fuel (3) flowing through the fuel supply line (7). The fuel flow rate detector (16), the temperature detection signal (TLF) output from the fuel temperature detector (14), and the fuel pressure detector (1
5) Based on the pressure detection signal (PLF) output from the fuel flow rate detector (16) and the flow rate detection signal (NLF) output from the fuel flow rate detector (16), the two-component engine (11) is fed from the fuel supply line (7).
A fuel supply amount calculator (18) for obtaining a weight flow rate of fuel (3) supplied to the fuel cell and outputting a fuel weight signal (MF),
The oxidant temperature detector (19) for detecting the temperature of the oxidant (4) flowing through the oxidant supply pipeline (8) and the pressure of the oxidant (4) flowing through the oxidant supply pipeline (8) are detected. An oxidant pressure detector (20) for detecting, an oxidant flow rate detector (21) for detecting a volume flow rate of the oxidant (4) flowing through the oxidant supply pipe (8), and an oxidant temperature detector ( 19) temperature detection signal (TLO), oxidant pressure detector (20) pressure detection signal (PLO) and oxidant flow rate detector (21) flow rate detection signal (NLO) An oxidant supply amount calculator for determining the weight flow rate of the oxidant (4) supplied to the two-component engine (11) from the oxidant supply pipeline (8) and outputting the oxidant weight signal (M0) based on (23)
And fuel (3) based on the fuel weight signal (MF) output from the fuel supply amount calculator (18) and the oxidant weight signal (M0) output from the oxidant supply amount calculator (23). The actual mixing ratio with the agent (4) is calculated and the actual mixing ratio signal (MR
1) Outputting the actual mixing ratio calculator (24), and setting the target mixing ratio signal (MR0) based on the target mixing ratio of the fuel (3) and the oxidizer (4) input in advance. Based on the actual mixing ratio signal (MR1) output from the actual mixing ratio calculator (24) and the target mixing ratio signal (MR0) output from the target mixing ratio setting device (25). Mixing ratio adjuster that outputs an opening adjustment signal (SF) for adjusting the opening of the fuel adjustment valve (17) and an opening adjustment signal (SO) for adjusting the opening of the oxidizer adjustment valve (22) (26) A two-component type propulsion device comprising:
JP22164494A 1994-09-16 1994-09-16 Two-liquid type propulsion unit Pending JPH0886246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22164494A JPH0886246A (en) 1994-09-16 1994-09-16 Two-liquid type propulsion unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22164494A JPH0886246A (en) 1994-09-16 1994-09-16 Two-liquid type propulsion unit

Publications (1)

Publication Number Publication Date
JPH0886246A true JPH0886246A (en) 1996-04-02

Family

ID=16770017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22164494A Pending JPH0886246A (en) 1994-09-16 1994-09-16 Two-liquid type propulsion unit

Country Status (1)

Country Link
JP (1) JPH0886246A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478272A (en) * 2015-11-19 2016-04-13 武汉大学 No-pump high-pressure pulsed water jet generation device
WO2017021651A1 (en) * 2015-08-06 2017-02-09 Airbus Safran Launchers Method for controlling the pressure and a mixture ratio of a rocket engine, and corresponding device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017021651A1 (en) * 2015-08-06 2017-02-09 Airbus Safran Launchers Method for controlling the pressure and a mixture ratio of a rocket engine, and corresponding device
FR3039859A1 (en) * 2015-08-06 2017-02-10 Snecma METHOD FOR MONITORING THE PRESSURE AND A MIXING RATIO OF A FUSE ENGINE, AND CORRESPONDING DEVICE
CN105478272A (en) * 2015-11-19 2016-04-13 武汉大学 No-pump high-pressure pulsed water jet generation device
CN105478272B (en) * 2015-11-19 2017-09-29 武汉大学 Non-pump type high-voltage pulse water-jet flow generating apparatus

Similar Documents

Publication Publication Date Title
US6533574B1 (en) System for active regulation of the air/gas ratio of a burner including a differential pressure measuring system
KR101930304B1 (en) Flow meter
JP4564376B2 (en) LNG power generation plant and its operation method
JP4361620B2 (en) Gas container filling method
EP0543273A2 (en) Method and apparatus for measuring mass flow and energy content using a linear flow meter
US8151740B2 (en) System and method for controlling the calorie content of a fuel
EP3760926B1 (en) Device for regulating a mixing ratio of a gas mixture
EP2241810A1 (en) Flow rate control device
US4798531A (en) Process and apparatus for the control of the air and fuel supply to a plurality of burners
JP2007244946A (en) Mixed gas supply system
JPH0226057B2 (en)
EP0608514A2 (en) Volumetric flow corrector and method
US20200232962A1 (en) Method for estimating a combustion characteristic of a gas that may contain dihydrogen
JPH09155180A (en) Liquid mixing device
US5154513A (en) Method for determining the temperature of a flow of medium
US5115635A (en) Analytical flow meter backup
JPH0886246A (en) Two-liquid type propulsion unit
CN113597540A (en) Measuring system for measuring mass flow, density, temperature and/or flow velocity
JP3701065B2 (en) Heterogeneous fluid mixing device
CN112502856B (en) Liquid oxygen and oxygen double-path adjustable supply system
JP5187198B2 (en) Heat quantity adjustment method and apparatus
EP0608736B1 (en) Volumetric flow corrector having a densitometer
JPH11159756A (en) Water injection control device for oil fired dln combustor
JPS61159143A (en) Adjusting device for calorific value of natural gas
JP2004100824A (en) Gas charging device