JPH0884461A - Rotor of superconducting rotary electric machine and manufacture thereof - Google Patents

Rotor of superconducting rotary electric machine and manufacture thereof

Info

Publication number
JPH0884461A
JPH0884461A JP6216305A JP21630594A JPH0884461A JP H0884461 A JPH0884461 A JP H0884461A JP 6216305 A JP6216305 A JP 6216305A JP 21630594 A JP21630594 A JP 21630594A JP H0884461 A JPH0884461 A JP H0884461A
Authority
JP
Japan
Prior art keywords
damper
rotor
electric machine
room temperature
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6216305A
Other languages
Japanese (ja)
Inventor
Toshio Honda
登志男 本多
Nobuhisa Suzuki
信久 鈴木
Mayumi Yamamoto
真由美 山本
Sumiichi Shibuya
純市 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP6216305A priority Critical patent/JPH0884461A/en
Publication of JPH0884461A publication Critical patent/JPH0884461A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE: To obtain a rotor outer tube, excellent in jointing strength and ease of assembly, that achieves sound jointing even if the diameter or axial length of a normal temperature damper is excessively increased. CONSTITUTION: A rotor outer tube 21 of three-layer structure is obtained by placing an inside and an outside damper supports 21b, 21c inside and outside a normal-temperature damper 21a, respectively and integrating them into one piece. A rotor inner tube for housing a cooling medium is coaxially placed in the rotor outer tube 21. Torque tubes formed at both ends of the rotor inner tube are secured on the rotor outer tube 21 to form the rotor of a superconducting rotary electric machine. The normal-temperature damper 21a comprising the rotor outer tube 21 is composed of a plurality of damper members divided in the circumferential direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば液体ヘリウムから
なる冷却媒体により超電導回転電機の回転子およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor of a superconducting electric rotating machine and a method of manufacturing the same by using a cooling medium made of liquid helium.

【0002】[0002]

【従来の技術】従来、この種の代表的な超電導回転電
機、例えば超電導発電機の回転子として図15および図
16に示すような構成のものがある。即ち、図15およ
び図16に示す回転子は、両端部に端部軸2が取付けら
れた回転子外筒1と、この回転子外筒1の内部に同軸的
に設けられ、且つ内部に冷却媒体として液体ヘリウム3
が収容される回転子内筒4から構成されている。
2. Description of the Related Art Conventionally, there is a typical superconducting rotating electric machine of this type, for example, a rotor of a superconducting generator having a structure as shown in FIGS. That is, the rotor shown in FIG. 15 and FIG. 16 is provided with a rotor outer cylinder 1 having end shafts 2 attached to both ends thereof, a rotor outer cylinder 1 provided coaxially with the rotor outer cylinder 1, and cooling inside thereof. Liquid helium 3 as medium
Is formed from the rotor inner cylinder 4 in which

【0003】回転子内筒4の両端部には軸方向に伸びる
トルクチューブ5が取付けられ、その一方のトルクチュ
ーブ5の端部は回転子外筒1を介して端部軸2にボルト
等により強固に固定され、また他方のトルクチューブ5
の端部は回転子外筒1および回転子内筒4の熱収縮を吸
収する例えばダイヤフラム状の熱収縮吸収体6を介して
回転子外筒1と端部軸2の取付基端部との間に連結され
ている。
A torque tube 5 extending in the axial direction is attached to both ends of the rotor inner cylinder 4, and one end of the torque tube 5 is attached to an end shaft 2 via a rotor outer cylinder 1 by a bolt or the like. Firmly fixed and the other torque tube 5
Of the rotor outer cylinder 1 and the rotor inner cylinder 4 absorbs heat shrinkage of the rotor outer cylinder 1 and the rotor inner cylinder 4, for example, by a diaphragm-shaped heat shrinkage absorber 6 between the rotor outer cylinder 1 and the mounting base end of the end shaft 2. Are connected in between.

【0004】一方、回転子内筒4の外周面部に形成され
たコイル溝7には超電導コイル8が収納され、この超電
導コイル8は楔9、絶縁物10を用いて固定されてい
る。また、回転子内筒4から外方に出た超電導コイルエ
ンド部11については保持環12を用いて遠心力、電磁
力に十分に耐えるように強固に固定されている。また、
回転子内筒4内には一方の軸端部2内を通して中心回転
管13が挿入され、この中心回転管13より供給される
液体ヘリウム3により超電導コイル8が冷却される。
On the other hand, a superconducting coil 8 is housed in a coil groove 7 formed on the outer peripheral surface of the rotor inner cylinder 4, and the superconducting coil 8 is fixed by using a wedge 9 and an insulator 10. Further, the superconducting coil end portion 11 protruding outward from the rotor inner cylinder 4 is firmly fixed using a retaining ring 12 so as to sufficiently withstand centrifugal force and electromagnetic force. Also,
A central rotating tube 13 is inserted into the rotor inner cylinder 4 through one shaft end portion 2, and the superconducting coil 8 is cooled by the liquid helium 3 supplied from the central rotating tube 13.

【0005】さらに、液体ヘリウムの温度とほぼ同温状
態の回転子内筒4と常温状態における回転子外筒1の間
には常温領域から内部への熱侵入を防止するための輻射
シールド14が回転子内筒4の両端のトルクチューブ5
に形成された取付座15間に跨がって同軸的に配設さ
れ、その端部を取付座15上に固定している。
Further, a radiation shield 14 for preventing heat from entering from the normal temperature region to the inside is provided between the rotor inner cylinder 4 at a temperature substantially the same as the temperature of liquid helium and the rotor outer cylinder 1 at a normal temperature state. Torque tubes 5 at both ends of the rotor inner cylinder 4
Are coaxially arranged straddling the mounting seats 15 formed at 1, and the ends thereof are fixed on the mounting seats 15.

【0006】ところで、このような構成の超電導発電機
の回転子において、回転子外筒1は真空容器を兼ね、交
流磁界の浸透の防止および負荷変動時の回転子同様の防
止および負荷変動時の回転子同様の防止のための常温ダ
ンパー1aと、この常温ダンパー1aを外径側と内径側
から高強度部材の外側ダンパーサポート1c、内側ダン
パーサボート1bで挟んだ三層構造から成立っている。
運転中の遠心力と電磁力が同時に作用すると三層構造の
回転子外筒1に変形が生じ、層間が剥離するという問題
が生じる。
By the way, in the rotor of the superconducting generator having such a structure, the rotor outer cylinder 1 also serves as a vacuum container and prevents penetration of an AC magnetic field and prevents the same as the rotor at the time of load change and at the time of load change. It comprises a normal temperature damper 1a for preventing the same as the rotor, and a three-layer structure in which the normal temperature damper 1a is sandwiched from the outer diameter side and the inner diameter side by an outer damper support 1c of a high strength member and an inner damper support boat 1b.
When the centrifugal force and the electromagnetic force are simultaneously applied during the operation, the rotor outer cylinder 1 having the three-layer structure is deformed and the layers are separated.

【0007】そこで、高導電性金属の常温ダンパー1a
と高強度非磁性金属の内側ダンパーサポート1bと外側
ダンパーサポート1cを拡散接合により、一体化する方
法がある。
Therefore, the room temperature damper 1a made of a highly conductive metal is used.
There is a method of integrating the inner damper support 1b and the outer damper support 1c of high-strength non-magnetic metal by diffusion bonding.

【0008】この円筒体の拡散接合は、常温ダンパー1
aの内、外径を高精度に機械加工する一方、相互に接合
される内側ダンパーサポート1bの外周面と外側ダンパ
ーサポート1cの内周面も同様に高精度に機械加工後、
各円筒を重ね合わせ、高温のガスによって高い圧力を加
えて接合するもので、組立時の各円筒間のクリアランス
が小さいほど強固に接合される。
The diffusion bonding of this cylindrical body is performed by the room temperature damper 1.
While machining the inside and outside diameters of a with high precision, the outer peripheral surface of the inner damper support 1b and the inner peripheral surface of the outer damper support 1c that are joined to each other are also machined with high precision.
The cylinders are superposed and joined together by applying a high pressure with a high temperature gas, and the smaller the clearance between the cylinders during assembly, the stronger the joining.

【0009】[0009]

【発明が解決しようとする課題】ところで、火力発電所
で実用に供される数十万kWの大容量超電導発電機で
は、常温ダンパーの寸法が直径1m程度、軸方向長さが
数m程度と大型化している。
By the way, in a large-capacity superconducting generator of several hundred thousand kW which is put into practical use in a thermal power plant, the room temperature damper has a diameter of about 1 m and an axial length of about several m. It is getting larger.

【0010】しかし、このような大きな常温ダンパーで
あっても、高電導性金属の円筒の厚さは精々10mm程度
と薄く、しかもこの金属には高導電性のために銅合金が
用いられるが、この銅合金は高強度非磁性の内、外ダン
パーサポート1b,1cと比較して径方向と軸方向の寸
法が大きい軟質の円筒であり、この円筒の板厚調整のよ
うな周面研削等を変形を起こさず、精度よく加工するこ
とは極めて困難である。
However, even with such a large room temperature damper, the thickness of the cylinder of highly conductive metal is as thin as about 10 mm, and a copper alloy is used for this metal because of its high conductivity. This copper alloy is a high-strength, non-magnetic, soft cylinder having a larger radial and axial dimension than the outer damper supports 1b and 1c, and is suitable for peripheral surface grinding such as plate thickness adjustment of this cylinder. It is extremely difficult to process accurately without causing deformation.

【0011】また、内、外ダンパーサポート1b,1c
を挟んで三層構造に組立てる場合、各円筒の間に接触し
て損傷や変形が生じないように常温ダンパー1aを挿入
するために、各円筒間のクリアランスは大きくなり、そ
れに伴い拡散接合強度が低下するという問題がある。
Further, the inner and outer damper supports 1b and 1c
When assembling into a three-layer structure with the cylinder sandwiched, since the room temperature damper 1a is inserted so as to prevent damage and deformation between the cylinders, the clearance between the cylinders increases, and the diffusion bonding strength increases accordingly. There is a problem of decrease.

【0012】本発明は上記のような事情に鑑みてなされ
たもので、常温ダンパーの径および軸方向の長さが長大
になっても健全な接合が得られ、接合強度や組立性に優
れた超電導回転電機の回転子およびその製造方法を提供
することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and a sound joint can be obtained even if the diameter and the axial length of the room temperature damper become large, and the joint strength and the assemblability are excellent. An object of the present invention is to provide a rotor for a superconducting rotating electric machine and a method for manufacturing the same.

【0013】[0013]

【課題を解決するための手段】本発明は上記の目的を達
成するため、次のような手段により超電導回転電機の回
転子とその製造方法を供するものである。 (1)導電性部材からなる常温ダンパを外径側と内径側
から高強度非磁性部材からなる内側及び外側サポートに
より挟んで一体化した三層構造の回転子外筒内に冷却媒
体を収容する回転子内筒を同軸的に設け、その両端部に
設けられたトルクチューブを回転子外筒に取付けるよう
にした超電導回転電機の回転子において、前記回転子外
筒を構成する前記常温ダンパを円周方向に分割された複
数のダンパ部材により超電導回転電機の回転子を構成す
る。 (2)導電性部材からなる常温ダンパを挟んで高強度非
磁性部材の内、外側サポートの円筒を配置して三層構造
に形成する超電導回転電機の回転子の製造方法におい
て、前記常温ダンパーを分割された複数のダンパーバー
で形成し、これらのダンパーバーを前記内側ダンパーサ
ポートと外側ダンパーサポート間に挿入後、前記内、外
ダンパーサポートと拡散接合により一体化して超電導回
転電機の回転子を製造する。
In order to achieve the above object, the present invention provides a rotor for a superconducting rotating electric machine and a method for manufacturing the same by the following means. (1) The cooling medium is housed in a rotor outer cylinder having a three-layer structure in which a room temperature damper made of a conductive member is sandwiched from the outer diameter side and the inner diameter side by inner and outer supports made of a high-strength non-magnetic member and integrated. In a rotor of a superconducting rotary electric machine in which a rotor inner cylinder is coaxially provided, and torque tubes provided at both ends thereof are attached to a rotor outer cylinder, the normal temperature damper forming the rotor outer cylinder is circled. A plurality of damper members divided in the circumferential direction constitute a rotor of the superconducting rotating electric machine. (2) In a method of manufacturing a rotor of a superconducting rotating electric machine, wherein a cylinder of an outer support is arranged in a high-strength non-magnetic member with a room-temperature damper made of a conductive member sandwiched therebetween to form a three-layer structure rotor, the room-temperature damper is used. Formed with a plurality of divided damper bars, insert these damper bars between the inner damper support and the outer damper support, and then integrate them with the inner and outer damper supports by diffusion bonding to manufacture a rotor for a superconducting rotating electric machine. To do.

【0014】[0014]

【作用】上記(1)のような構成の超電導回転電機の回
転子にあっては、高強度非磁性部材の内側ダンパーサポ
ートおよび外側ダンパーサポートと、この高強度非磁性
部材に比較して剛性の劣る導電性部材からなる常温ダン
パーとを組合せて三層構造の超電導回転電機の回転子外
筒を構成する場合、内側ダンパーサポートと外側ダンパ
ーサポートはそれぞれ一体の円筒物であるのに対して、
常温ダンパーは分割された複数のダンパーバーで構成さ
れ、内側ダンパーサポートと外側ダンパーサポート間に
ダンパーバーを挿入して組立てるので、組立後のダンパ
ーバーと内、外側ダンパーサポート間の半径方向クリア
ランスを小さくし、一体化して三層構造とすることによ
り、所定のダンパー形状およびダンパー寸法に加工する
ことができる。
In the rotor of the superconducting rotary electric machine having the above-mentioned structure (1), the inner damper support and the outer damper support of the high-strength nonmagnetic member and the rigidity higher than those of the high-strength nonmagnetic member are provided. When a rotor outer cylinder of a superconducting rotary electric machine with a three-layer structure is formed by combining with a room temperature damper made of an inferior conductive member, the inner damper support and the outer damper support are each an integral cylinder, whereas
The room temperature damper is composed of multiple divided damper bars, and the damper bar is inserted between the inner damper support and the outer damper support to assemble, so the radial clearance between the assembled damper bar and the inner and outer damper supports is small. Then, by forming a three-layer structure by integrating them, it is possible to process into a predetermined damper shape and damper size.

【0015】上記(2)のような超電導回転電機の回転
子製造方法にあっては、回転子外筒の常温ダンパーは高
導電性部材のダンパーバーを拡散接合に必要な構成部品
とすることで、その加工および構造が容易になり、常温
ダンパーと内、外側ダンパーサポート相互間との健全な
接合が得られ、接合状態に優れたものになし得る。
In the method of manufacturing a rotor for a superconducting rotating electric machine as described in (2) above, the room temperature damper of the rotor outer cylinder is constructed by using a damper bar of a highly conductive member as a component necessary for diffusion bonding. The processing and structure of the damper can be facilitated, and the normal temperature damper and the inner and outer damper supports can be soundly joined to each other, and the joining state can be excellent.

【0016】[0016]

【実施例】以下本発明の実施例を図面を参照して説明す
る。図1および図2は、本発明による超電導回転電機の
回転子における拡散接合前の回転子外筒の第1の実施例
を示す軸方向および径方向断面図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are axial and radial cross-sectional views showing a first embodiment of a rotor outer cylinder before diffusion bonding in a rotor of a superconducting rotary electric machine according to the present invention.

【0017】図1および図2に示すように、回転子外筒
21はA286 等の高強度非磁性金属製の内側ダンパーサ
ポート21bと外側ダンパーサポート21c間にクロム
銅等の高導電性金属製の常温ダンパー21aを挿入して
構成される。
As shown in FIGS. 1 and 2, the rotor outer cylinder 21 is made of a highly conductive metal such as chrome copper between the inner damper support 21b and the outer damper support 21c made of high strength non-magnetic metal such as A286. It is configured by inserting the room temperature damper 21a.

【0018】常温ダンパー21aは、円周方向に分割さ
れた複数のダンパーバー21a1からなり、内側ダンパ
ーバーサポート21bと外側ダンパーバーサポート21
cをセット後、サポート間に各ダンパーバー21a1を
全周に亘って順次挿入し組立てられる。
The room temperature damper 21a is composed of a plurality of damper bars 21a1 divided in the circumferential direction, and has an inner damper bar support 21b and an outer damper bar support 21.
After setting c, the damper bars 21a1 are sequentially inserted over the entire circumference between the supports for assembly.

【0019】このような構成の回転子外筒21とすれ
ば、高精度に加工することが極めて困難な長尺の薄肉円
筒で軟質材の内、外径の研削加工もなくなり、また組立
挿入時の接触損傷の危険も少なくなる分、常温ダンパー
21aと内側ダンパーサポート21bおよび外側ダンパ
ーサポート21c間のクリアランス22を小さくするこ
とができる。
With the rotor outer cylinder 21 having such a structure, it is a long thin cylinder which is extremely difficult to be machined with high accuracy, and the outer diameter of the soft material is not ground. Since the risk of contact damage is reduced, the clearance 22 between the room temperature damper 21a and the inner damper support 21b and the outer damper support 21c can be reduced.

【0020】次に本発明の拡散接合前の回転子外筒の第
2の実施例を図3および図4を参照して説明する。図3
は回転子外筒21の軽方向端面図、図4は常温ダンパー
21aをなす一部のダンパーバーの径方向端面図であ
る。
Next, a second embodiment of the rotor outer cylinder before diffusion bonding according to the present invention will be described with reference to FIGS. 3 and 4. FIG.
Is an end view in the light direction of the rotor outer cylinder 21, and FIG. 4 is an end view in the radial direction of a part of the damper bar forming the normal temperature damper 21a.

【0021】図3に示すように、回転子外筒21はA28
6 等の高強度非磁性金属製の内側ダンパーサポート21
bと外側ダンパーサポート21c間にクロム銅等の高導
電性金属製の常温ダンパー21aを挿入して構成され
る。
As shown in FIG. 3, the rotor outer cylinder 21 is A28.
Inner damper support 21 made of high strength non-magnetic metal such as 6
A normal temperature damper 21a made of a highly conductive metal such as chrome copper is inserted between the outer damper support 21c and the outer damper support 21c.

【0022】この常温ダンパー21aは、円周方向に分
割された図4に示すような複数のダンパーバー21a2
からなり、内側ダンパーサポート21bと外側ダンパサ
ポート21cをセット後、内、外側ダンパサポート21
b,21c間に各ダンパーバー21a2を全周に亘って
順次挿入して組立てることにより、常温ダンパー21a
を構成する。この場合、ダンパーバーの円周方向側面を
テーパ23状に形成することにより、各ダンパー21a
2は円周方向にてラップし、接合面積の増大を図ってい
る。
This room temperature damper 21a is divided into a plurality of damper bars 21a2 as shown in FIG.
After setting the inner damper support 21b and the outer damper support 21c, the inner and outer damper supports 21
Each damper bar 21a2 is sequentially inserted between b and 21c over the entire circumference to assemble the room temperature damper 21a.
Is configured. In this case, each damper 21a is formed by forming the circumferential side surface of the damper bar into a taper 23 shape.
No. 2 wraps in the circumferential direction to increase the joint area.

【0023】このような構成の常温ダンパー21aは、
拡散接合時に半径方向の加圧力を受け易く、接合性が向
上する。特に回転子外筒21の大型に伴って大口径の常
温ダンパー21aを必要とする場合に大きな効果を発揮
させ得る。
The room temperature damper 21a having such a structure is
It is easy to receive a pressing force in the radial direction during diffusion bonding, and the bondability is improved. In particular, a large effect can be exerted when a large-diameter room temperature damper 21a is required due to the large size of the rotor outer cylinder 21.

【0024】上記第2の実施例では、ダンパーバーの円
周方向側面をテーパ状にしてラップさせ、接合面積の増
大を図ったが、図5に示すようにダンパーバー21a2
の円周方向側面に段差部24を設けてこの部分をラップ
させるようにしてもよい。
In the second embodiment, the side surface of the damper bar in the circumferential direction is tapered and lapped to increase the joint area. However, as shown in FIG. 5, the damper bar 21a2 is formed.
A stepped portion 24 may be provided on the side surface in the circumferential direction to wrap this portion.

【0025】次に本発明の拡散接合前の回転子外筒の常
温ダンパー21aの第3の実施例を図6を参照して説明
する。図6は常温ダンパーの軸方向断面図である。常温
ダンパー21aは円周方向に分割された複数のダンパー
バー21a3とそのダンパーバー両端を各両端部毎に短
絡するリング状の短絡環25からなり、内側ダンパーサ
ポート21bと外側ダンパーサポート21cをセット
後、内、外側ダンパーサポート21b,21c間に各ダ
ンパーバー21a3を全周に亘って順次挿入後、回転子
外筒21の両端より短絡環25を挿入し、組立て常温ダ
ンパー21aを構成するものである。
Next, a third embodiment of the room temperature damper 21a of the rotor outer cylinder before diffusion bonding according to the present invention will be described with reference to FIG. FIG. 6 is an axial sectional view of the room temperature damper. The room temperature damper 21a is composed of a plurality of circumferentially divided damper bars 21a3 and a ring-shaped short-circuit ring 25 that short-circuits both ends of the damper bar 21a. After setting the inner damper support 21b and the outer damper support 21c. After the damper bars 21a3 are sequentially inserted between the inner and outer damper supports 21b and 21c over the entire circumference, short-circuit rings 25 are inserted from both ends of the rotor outer cylinder 21 to assemble the normal temperature dampers 21a. .

【0026】この場合、ダンパーバー21a3の両端の
半径方向の厚さは中央部に比べて短絡環25の厚さ分だ
け薄くする。また、ダンパーバーの軸方向端部に段差2
6を設けて、各ダンパーバー21a3を半径方向にラッ
プさせることにより、接合面積の増大を図るようにして
いる。
In this case, the thickness of both ends of the damper bar 21a3 in the radial direction is made thinner by the thickness of the short-circuit ring 25 than in the central portion. In addition, a step 2 is formed at the axial end of the damper bar.
6 is provided and the damper bars 21a3 are lapped in the radial direction to increase the joint area.

【0027】このような構成の常温ダンパー21aにお
いては、拡散接合時半径方向の加圧力が受け易くなり、
接合性を向上させることができる。上記第3の実施例で
は、ダンパーバー21a3と短絡環25の接合面に段差
26を設けてラップさせ、接合面積の増大を図ったが、
図7に示すようにテーパ27をダンパーバー21a3の
両端に形成して短絡環25をラップさせてもよい。
In the room temperature damper 21a having such a structure, the pressing force in the radial direction is easily received during the diffusion bonding,
The bondability can be improved. In the third embodiment described above, the step 26 is provided on the joint surface of the damper bar 21a3 and the short-circuit ring 25 to wrap the step 26, thereby increasing the joint area.
As shown in FIG. 7, a taper 27 may be formed at both ends of the damper bar 21a3 to wrap the short circuit ring 25.

【0028】次に本発明の拡散接合前の回転子外筒の常
温ダンパーの第4の実施例を図8を参照して説明する。
図8は常温ダンパーの軸方向断面図である。図8に示す
ように昇温ダンパー21aは円周方向に分割された複数
のダンパーバー21a4を半径方向に分割し、分割した
面が軸方向にテーパ状28になしているダンパーバー2
1a4a,21a4bからなり、内側ダンパーサポート
21bと外側ダンパーサポート21cをセット後、内、
外側ダンパーサポート21b,21c間に半径方向に2
分割した面に軸方向にテーパ状28をなしている外側ダ
ンパーバー21a4aか内側ダンパーバー21a4bを
初めに順次挿入後、残りのダンパーバーを挿入して組立
てることにより、常温ダンパー21aを構成する。
Next, a fourth embodiment of the room temperature damper of the rotor outer cylinder before diffusion bonding according to the present invention will be described with reference to FIG.
FIG. 8 is an axial sectional view of the room temperature damper. As shown in FIG. 8, the temperature raising damper 21a radially divides a plurality of circumferentially divided damper bars 21a4, and the divided surfaces are tapered 28 in the axial direction.
1a4a, 21a4b, and after setting the inner damper support 21b and the outer damper support 21c,
2 in the radial direction between the outer damper supports 21b and 21c
The outer damper bar 21a4a or the inner damper bar 21a4b, which has a tapered shape 28 in the axial direction on the divided surfaces, is first inserted sequentially, and then the remaining damper bars are inserted and assembled to form the room temperature damper 21a.

【0029】例えば、内、外側ダンパーサポート21
b,21c間に外側ダンパーバー21a4aを順次挿入
後、内側ダンパーバー21a4bも同様に順次挿入して
組立てることにより、組立後の常温ダンパーバー21a
と内、外側ダンパーサポート21b,21c間の半径方
向のクリアランスを小さくすることができる。
For example, the inner and outer damper supports 21
After the outer damper bar 21a4a is sequentially inserted between b and 21c, the inner damper bar 21a4b is also sequentially inserted in the same manner to assemble the room temperature damper bar 21a after assembly.
It is possible to reduce the radial clearance between the inner and outer damper supports 21b and 21c.

【0030】このような構造の常温ダンパー21aにお
いては、拡散接合時半径方向のクリアランスが小さい分
だけ半径方向の圧力が受け易くなり、接合性の向上を図
ることができる。
In the room temperature damper 21a having such a structure, the radial pressure is more likely to be received due to the smaller radial clearance during diffusion bonding, and the bondability can be improved.

【0031】次に本発明の拡散接合前の回転子外筒の常
温ダンパーの第5の実施例を図9および図10を参照し
て説明する。図9は常温ダンパーを半径方向から見た一
部の展開図で、図10は回転子外筒21の径方向端面図
である。図9および図10に示すように、常温ダンパー
21aは円周方向に分割された複数のダンパーバー21
a5間のダンパーバー側面を軸方向にテーパ状29にし
たダンパーバー21a5aからなり、内側ダンパーサポ
ート21bと外側ダンパーサポート21cをセット後、
内、外側ダンパーサポート21b,21c間に各ダンパ
ーバー21a5aを交互に全周に亘って順次挿入して組
立てることにより、常温ダンパー21aを構成する。
Next, a fifth embodiment of the room temperature damper of the rotor outer cylinder before diffusion bonding according to the present invention will be described with reference to FIGS. 9 and 10. 9 is a partially developed view of the room temperature damper as viewed from the radial direction, and FIG. 10 is a radial end view of the rotor outer cylinder 21. As shown in FIG. 9 and FIG. 10, the room temperature damper 21a includes a plurality of circumferentially divided damper bars 21.
It consists of a damper bar 21a5a in which the side surface of the damper bar between a5 is tapered 29 in the axial direction. After setting the inner damper support 21b and the outer damper support 21c,
The normal temperature damper 21a is formed by alternately inserting the damper bars 21a5a between the inner and outer damper supports 21b and 21c over the entire circumference and assembling them.

【0032】このような構成の常温ダンパー21aにお
いては、ダンパーバー21a5a間のダンパーバー側面
を軸方向にテーパ形状にすることにより、円周方向に分
割された複数のダンパーバー間側面の円周方向クリアラ
ンスを小さくすることができる。また、常温ダンパー2
1aは拡散接合時、各ダンパーバー21a5aの円周方
向クリアランスが小さい分、半径方向の圧力を受け、各
ダンパーバー間の接合性を向上させることができる。
In the room temperature damper 21a having such a configuration, the damper bar side surfaces between the damper bars 21a5a are tapered in the axial direction, so that the circumferential direction of the side surface between the plurality of circumferentially divided damper bars is increased. The clearance can be reduced. Also, room temperature damper 2
1a is subjected to radial pressure due to the small circumferential clearance of each damper bar 21a5a during diffusion bonding, and can improve the bondability between each damper bar.

【0033】次に本発明の拡散接合前の回転子外筒の常
温ダンパーの第6の実施例を図11を参照して説明す
る。図11は回転子外筒21の径方向端面の部分図であ
る。図11に示すように、常温ダンパー21aは周方向
に分割された複数のダンパーバー21a6をさらに半径
方向に二層にした外側ダンパーバー21a6aと内側ダ
ンパーバー21a6bからなり、内側ダンパーバー21
a6bと外側ダンパーバー21a6aをセット後、内、
外側ダンパーサポート21b,21c間に複数のダンパ
ーバー21a6を全周に亘って順次挿入して組立てる
際、外側ダンパーバー21a6a間の側面相互間と内側
ダンパーバー21a6b間の側面相互間を円周方向にず
らして挿入して組立てることにより、常温ダンパー21
aを構成する。
Next, a sixth embodiment of the room temperature damper of the rotor outer cylinder before diffusion bonding according to the present invention will be described with reference to FIG. FIG. 11 is a partial view of a radial end surface of the rotor outer cylinder 21. As shown in FIG. 11, the room temperature damper 21a is composed of an outer damper bar 21a6a and an inner damper bar 21a6b, which are formed by further forming a plurality of circumferentially divided damper bars 21a6 into two layers in the radial direction.
After setting a6b and outer damper bar 21a6a,
When a plurality of damper bars 21a6 are sequentially inserted around the entire circumference between the outer damper supports 21b and 21c to assemble, side surfaces between the outer damper bars 21a6a and side surfaces between the inner damper bars 21a6b are circumferentially arranged. Room temperature damper 21
a.

【0034】このような構成の常温ダンパー21aにお
いては、外側ダンパーバー21a6a間の側面相互間と
内側ダンパーバー21a6b間の側面相互間が円周方向
にずれているので、各ダンパバーの円周方向側面相互間
の隙間が大きくても拡散接合により各ダンパーバーの円
周方向側面相互間の隙間が接合しなくても、外側ダンパ
ーバー21a6aと内側ダンパーバー21a6bは半径
方向の圧力を受け易いので、接合性が向上すると同時に
常温ダンパー21aを容易に一体的に円筒状に構成する
ことができる。
In the room temperature damper 21a having such a structure, the side surfaces between the outer damper bars 21a6a and the side surfaces between the inner damper bars 21a6b are displaced from each other in the circumferential direction. Even if the gaps between them are large, even if the gaps between the circumferential side surfaces of the damper bars are not joined by diffusion joining, the outer damper bar 21a6a and the inner damper bar 21a6b are easily subjected to the pressure in the radial direction. At the same time, the room temperature damper 21a can be easily and integrally formed into a cylindrical shape.

【0035】次に本発明の拡散接合前の回転子外筒の常
温ダンパーの第7の実施例を図12を参照して説明す
る。図12は回転子外筒21の径方向端面図である。図
12に示すように、常温ダンパー21aは円周方向に分
割された複数のダンパーバーからなり、そのダンパーバ
ーは材質が異なる材料のダンパーバー21a7a,21
a7bより構成されている。内側ダンパーサポート21
bと外側ダンパーサポート21cをセットした後、内、
外側ダンパーサポート21b,21c間に複数のダンパ
ーバー21a7a,21a7bを全周に亘って順次挿入
して組立てる際、例えば極間中心軸30側に高導電性金
属のダンパーバー21a7aを配置し、磁極中心軸31
側に非磁性で非導電性金属のダンパーバー21a7bを
配置して常温ダンパー21aを構成する。
Next, a seventh embodiment of the room temperature damper of the rotor outer cylinder before diffusion bonding according to the present invention will be described with reference to FIG. FIG. 12 is a radial end view of the rotor outer cylinder 21. As shown in FIG. 12, the room temperature damper 21a is composed of a plurality of circumferentially divided damper bars, and the damper bars 21a7a, 21a, 21a7, 21 are made of different materials.
It is composed of a7b. Inside damper support 21
After setting b and outer damper support 21c,
When a plurality of damper bars 21a7a, 21a7b are sequentially inserted over the entire circumference between the outer damper supports 21b, 21c for assembly, for example, the damper bar 21a7a made of a highly conductive metal is arranged on the side of the center axis 30 between poles, and the magnetic pole center is arranged. Axis 31
The non-magnetic and non-conductive metal damper bar 21a7b is arranged on the side to form the room temperature damper 21a.

【0036】このような構成の常温ダンパー21aにお
いては、例えば固定子側から超電導コイルが設置されて
いる極間中心軸30側の高導電性金属のダンパーバー2
1a7aの低抵抗電流路を通るため、電流値が増大して
磁気シールド効果も大きくなり、変動磁界が超電導コイ
ルに侵入することはない。
In the room temperature damper 21a having such a structure, for example, the damper bar 2 made of a highly conductive metal on the side of the center axis 30 between poles where the superconducting coil is installed from the stator side.
Since it passes through the low resistance current path of 1a7a, the current value increases and the magnetic shield effect also increases, so that the fluctuating magnetic field does not enter the superconducting coil.

【0037】従って、電力動揺時の超電導コイルの電流
上昇値が抑制され、超電導状態が維持される。一方、磁
極中心軸31側に非磁性で非導電性金属のダンパーバー
21a7bを配置することにより、変動磁界が侵入して
も超電導コイルは離れているので問題はなく、また回転
磁界の主なる通り道である磁極中心軸31側ダンパーバ
ー21a7bにて磁気シールドされることもなく、さら
に高導電性金属が必要でなくなった分、高強度材を選定
することが可能となり、常温ダンパー21aと内、外側
ダンパーサポート21b,21cを拡散接合にて一体化
した場合、剛性の高い回転子外筒を得ることができる。
Therefore, the current rise value of the superconducting coil during power fluctuation is suppressed, and the superconducting state is maintained. On the other hand, by disposing the non-magnetic and non-conductive metal damper bar 21a7b on the side of the magnetic pole center axis 31, there is no problem because the superconducting coil is separated even if the fluctuating magnetic field enters, and the main passage of the rotating magnetic field is also eliminated. The magnetic pole center shaft 31 side damper bar 21a7b is not magnetically shielded, and a high-strength material can be selected as much as high conductive metal is not required. When the damper supports 21b and 21c are integrated by diffusion bonding, a rotor outer cylinder having high rigidity can be obtained.

【0038】上記本発明の第7の実施例では、極間中心
軸30側に高導電性金属のダンパーバー21a7a、磁
極中心軸31側に非導電性金属のダンパーバー21a7
bと大きく2種類の材料としたが、必要に応じ円周方向
ダンパーバーの導電性を数種類に変えても、円周方向に
て任意の配置に変えてもよい。また、ダンパーバーの両
端は第3の実施例と同様に短絡環を併用してもよい。
In the seventh embodiment of the present invention described above, a damper bar 21a7a made of a highly conductive metal is provided on the side of the center axis 30 between poles, and a damper bar 21a7 made of a non-conductive metal is provided on the side of the magnetic pole center axis 31.
Although two types of materials, b), are used, the conductivity of the circumferential damper bar may be changed to several types or may be arbitrarily arranged in the circumferential direction. Further, both ends of the damper bar may be used together with a short circuit ring as in the third embodiment.

【0039】次に本発明の回転子外筒の製造方法を第1
の実施例の拡散接合前の回転子外筒をもとに説明する。
図1および図2において、超電導回転電機の回転子外筒
21は、A286 などの高強度非磁性金属製の内側ダンパ
ーサポート21bと外側ダンパーサポート21c間にク
ロム銅などの高導電性金属製の常温ダンパー21aを円
周方向に分割した複数のダンパーバー21a1を全周に
亘って順次挿入して組立後、回転子外筒21の両端面に
シール溶接リングを内側ダンパーサポート21bと外側
ダンパーサポート21c間にシール溶接し、ダンパーバ
ー21a1が挿入されたサポート間の空間を真空引き
し、真空雰囲気にした状態で密閉された図示しない拡散
接合装置の圧力容器に回転子外筒21を入れ、この圧力
容器にアルゴン等の不活性ガスを加圧封入する。
Next, the first method of manufacturing the rotor outer cylinder of the present invention will be described.
Description will be made based on the rotor outer cylinder before diffusion bonding of the embodiment of FIG.
In FIG. 1 and FIG. 2, a rotor outer cylinder 21 of a superconducting rotating electric machine is a normal temperature metal made of high conductivity metal such as chrome copper between an inner damper support 21b and an outer damper support 21c made of high strength non-magnetic metal such as A286. A plurality of damper bars 21a1 obtained by dividing the damper 21a in the circumferential direction are sequentially inserted over the entire circumference and assembled, and then seal welding rings are provided on both end surfaces of the rotor outer cylinder 21 between the inner damper support 21b and the outer damper support 21c. The space between the supports in which the damper bars 21a1 are inserted is vacuum-evacuated, and the rotor outer cylinder 21 is placed in a pressure vessel of a diffusion bonding apparatus (not shown) that is hermetically sealed in a vacuum atmosphere. Then, an inert gas such as argon is charged under pressure.

【0040】その後、ヒータ等にて加熱し、圧力容器内
の不活性ガスをさらに加熱して圧力上昇させる。そし
て、拡散接合に相応しい温度とガス圧が得られたら、こ
の温度とガス圧を一定に保持しながら、高強度非磁性金
属の内、外側ダンパーサポート21b,21cと高導電
性金属のダンパーバー21a1の拡散接合を行う。
After that, the pressure is increased by heating with a heater or the like to further heat the inert gas in the pressure vessel. When the temperature and gas pressure suitable for diffusion bonding are obtained, the outer damper supports 21b and 21c of the high-strength nonmagnetic metal and the damper bar 21a1 of the highly conductive metal are maintained while maintaining the temperature and gas pressure constant. Diffusion bonding is performed.

【0041】この拡散接合により、軟らかい高導電性金
属のダンパーバー21a1は固い高強度非磁性金属の
内、外側ダンパーサポート21b,21cと強固に結合
されて一体化し、同時にダンパーバー21a1側面相互
間も結合され、円筒状の常温ダンパー21aとなり、三
層構造で一体化により高い剛性の回転子外筒21を得る
ことができる。
By this diffusion bonding, the damper bar 21a1 made of a soft and highly conductive metal is firmly joined to the outer damper supports 21b, 21c of the hard high-strength non-magnetic metal to be integrated, and at the same time, the side surfaces of the damper bar 21a1 are also joined together. The rotor outer cylinder 21 having a high rigidity can be obtained by being combined with each other to form a cylindrical room-temperature damper 21a and having a three-layered structure.

【0042】また、前述した各実施例で示す超電導回転
電機の回転子外筒21の常温ダンパー21aを円周方向
に分割したダンパーバーの設計構造とすることで、加工
寸法精度のでない円筒の常温ダンパーを製作することな
く、加工寸法精度がでやすく、表面粗さが拡散接合に必
要な所定の精度に加工できるダンパーバーを製作すれば
よい。
Further, the normal temperature damper 21a of the rotor outer cylinder 21 of the superconducting rotating electric machine shown in each of the above-described embodiments is designed to have a damper bar design in which the normal temperature damper 21a is divided in the circumferential direction. It is sufficient to manufacture a damper bar that does not require a damper to be manufactured and that has a high processing dimensional accuracy and whose surface roughness can be processed to a predetermined accuracy required for diffusion bonding.

【0043】このため、大型構造物でありながら、比較
的薄い板厚で剛性の小さな高導電性金属を含む三層構造
の接合が可能となり、その接合部の健全性が高まる。ま
た、寸法精度も設計仕様値に見合う高精度の加工ができ
る。
Therefore, it is possible to join a three-layer structure including a high-conductivity metal having a relatively thin plate thickness and a small rigidity, even though it is a large structure, and the soundness of the joined portion is improved. In addition, the dimensional accuracy can be processed with high precision corresponding to the design specification value.

【0044】次に本発明の拡散接合前後の回転子外筒の
常温ダンパーの第9の実施例を図13および図14を参
照して説明する。図13は拡散接合前の回転子外筒21
の径方向端面の部分図であり、図14は拡散接合後の回
転子外筒21の径方向端面の部分図である。
Next, a ninth embodiment of the room temperature damper of the rotor outer cylinder before and after the diffusion bonding according to the present invention will be described with reference to FIGS. 13 and 14. FIG. 13 shows a rotor outer cylinder 21 before diffusion bonding.
14 is a partial view of the radial end surface of FIG. 14, and FIG. 14 is a partial view of the radial end surface of the rotor outer cylinder 21 after diffusion bonding.

【0045】図13および図14に示すように、高強度
非磁性金属製の内側ダンパーサポート21bの厚さ(t
1)を外側ダンパーサポート21cの厚さ(t2)より
厚くすることで、拡散接合時圧力容器の不活性ガス圧力
により外側ダンパーサポート21cはダンパーバー21
a8を介して内側ダンパーサポート21bに速く圧縮接
触し接合するので、円周方向に分割された複数のダンパ
ーバー21a8間の側面の円周方向キャップxもなくな
り、各ダンパーバー側面相互間の接合性が向上し、一体
化した円筒の常温ダンパー21aとなり、同時に内、外
側ダンパーサポート21b,21cとの三層構造を一体
化し、高い剛性の回転子外筒21を得ることができる。
As shown in FIGS. 13 and 14, the thickness (t) of the inner damper support 21b made of a high-strength non-magnetic metal is set.
By making 1) thicker than the thickness (t2) of the outer damper support 21c, the outer damper support 21c becomes the damper bar 21 due to the inert gas pressure of the pressure vessel during diffusion bonding.
Since the inner damper support 21b is quickly brought into compression contact with and joined to the inner damper support 21b via the a8, the circumferential cap x on the side surface between the plurality of circumferentially divided damper bars 21a8 is also eliminated, and the joining property between the respective damper bar side surfaces is eliminated. And a three-layer structure including the inner and outer damper supports 21b and 21c is integrated, and a highly rigid rotor outer cylinder 21 can be obtained.

【0046】[0046]

【発明の効果】以上述べたように本発明によれば、良導
電性金属の常温ダンパーを外径側からと内径側から、高
強度非磁性金属の外側ダンパーサポートと内側ダンパー
サポートで挟んで一体化した三層構造の回転子外筒の常
温ダンパーを円周方向に分割された複数個のダンパーバ
ーで構成したので、拡散接合に必要な前工程であるダン
パーバーの加工精度を向上させることができ、その分
内、外側ダンパーサポート間の隙間に合せてダンパーバ
ーの厚さを精度良く加工できるので、常温ダンパー内、
外径とダンパーサポート間のクリアランスも小さくでき
る。このため、クリアランスの小さい三層構造の固定子
外筒は拡散接合により強固に結合することができる。
As described above, according to the present invention, the room temperature damper made of a good conductive metal is sandwiched between the outer damper support and the inner damper support made of a high-strength nonmagnetic metal from the outer diameter side and the inner diameter side. Since the room temperature damper of the rotor outer cylinder with the three-layer structure is composed of multiple damper bars divided in the circumferential direction, it is possible to improve the machining accuracy of the damper bar, which is the previous step required for diffusion bonding. In that amount, the thickness of the damper bar can be accurately processed according to the gap between the outer damper supports, so that inside the normal temperature damper,
The clearance between the outer diameter and the damper support can also be reduced. Therefore, the stator outer cylinder having a three-layer structure with a small clearance can be firmly bonded by diffusion bonding.

【0047】従って、このような三層構造の回転子外筒
の三層間の接合強度が高くなる機械的強度も高く、遠心
力や電磁力が作用しても接合面に生じる剥離を確実に防
止でき、性能および信頼性の優れた超電導回転電機の回
転子およびその製造方法を提供することができる。
Therefore, the joining strength between the three layers of the rotor outer cylinder having such a three-layer structure becomes high, and the mechanical strength is high, and the peeling occurring on the joining surface is surely prevented even when centrifugal force or electromagnetic force is applied. It is possible to provide a rotor of a superconducting rotating electric machine having excellent performance and reliability, and a method for manufacturing the rotor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超電導回転電機の回転子における
拡散接合前の回転子外筒の第1の実施例を示す軸方向断
面図。
FIG. 1 is an axial sectional view showing a first embodiment of a rotor outer cylinder before diffusion bonding in a rotor of a superconducting rotary electric machine according to the present invention.

【図2】図1の回転外筒を径方向に断面して示す断面
図。
FIG. 2 is a cross-sectional view showing the rotating outer cylinder of FIG. 1 in a radial cross section.

【図3】本発明の第2の実施例の回転子外筒を示す径方
向断面図。
FIG. 3 is a radial cross-sectional view showing a rotor outer cylinder of a second embodiment of the present invention.

【図4】図3で使用されるダンパーバーの端面図。FIG. 4 is an end view of the damper bar used in FIG.

【図5】図3で使用されるダンパーバーの他の構成例を
示す端面図。
5 is an end view showing another configuration example of the damper bar used in FIG.

【図6】本発明の第3の実施例の回転子外筒における常
温ダンパーを示す軸方向断面図。
FIG. 6 is an axial sectional view showing a room temperature damper in a rotor outer cylinder of a third embodiment of the present invention.

【図7】図6で使用される常温ダンパーの他の構成例を
示す軸方向断面図。
7 is an axial cross-sectional view showing another configuration example of the room temperature damper used in FIG.

【図8】本発明の第4の実施例の回転子外筒におけるダ
ンパーバーを示す軸方向断面図。
FIG. 8 is an axial sectional view showing a damper bar in a rotor outer cylinder of a fourth embodiment of the present invention.

【図9】本発明の第5の実施例の回転子外筒における常
温ダンパーを展開して示す部分図。
FIG. 9 is a partial view showing a room temperature damper in a rotor outer cylinder of a fifth embodiment of the present invention in a developed state.

【図10】同実施例の回転子外筒を示す径方向端面図。FIG. 10 is a radial end view showing the rotor outer cylinder of the embodiment.

【図11】本発明の第6の実施例を示す回転子外筒の径
方向端面の部分図。
FIG. 11 is a partial view of a radial end surface of a rotor outer cylinder showing a sixth embodiment of the present invention.

【図12】本発明の第7の実施例を示す回転子外筒の径
方向端面図。
FIG. 12 is a radial end view of a rotor outer cylinder showing a seventh embodiment of the present invention.

【図13】本発明の第8の実施例を示す回転子外筒の拡
散接合前の径方向端の部分図。
FIG. 13 is a partial view of a radial end of a rotor outer cylinder before diffusion bonding showing an eighth embodiment of the present invention.

【図14】本発明の第9の実施例を示す回転子外筒の拡
散接合後の径方向端面の部分図。
FIG. 14 is a partial view of a radial end surface of a rotor outer cylinder after diffusion bonding showing a ninth embodiment of the present invention.

【図15】従来の代表的な超電導回転電機の回転子を示
す軸方向断面図。
FIG. 15 is an axial sectional view showing a rotor of a conventional typical superconducting rotating electric machine.

【図16】図15のA−A線に沿う径方向断面図。16 is a radial cross-sectional view taken along the line AA of FIG.

【符号の説明】[Explanation of symbols]

2……端部軸、3……液体ヘリウム、4……回転子内
筒、5……トロクチューブ、6……熱収縮吸収体、7…
…コイル溝、8……超電導コイル、9……楔、10……
絶縁物、11……超電導コイルエンド部、12……保持
環、13……中心回転管、14……輻射シールド、15
……取付座、21……回転子外筒、21a……常温ダン
パー、21b……内側ダンパーサポート、21c……外
側ダンパーサポート、21a1a〜21a8a……ダン
パーバー。
2 ... End axis, 3 ... Liquid helium, 4 ... Rotor inner cylinder, 5 ... Trok tube, 6 ... Heat shrink absorber, 7 ...
… Coil groove, 8… Superconducting coil, 9… Wedge, 10…
Insulator, 11 ... Superconducting coil end part, 12 ... Retaining ring, 13 ... Central rotating tube, 14 ... Radiation shield, 15
...... Mounting seat, 21 ...... Rotor outer cylinder, 21a ...... Room temperature damper, 21b ...... Inner damper support, 21c ...... Outer damper support, 21a1a to 21a8a ...... Damper bar.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 真由美 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 澁谷 純市 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Mayumi Yamamoto, 2-4, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa, Toshiba Keihin Office (72) Inventor Jun Shibuya, 2-suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa No. 4 Toshiba Corporation Keihin Office

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 導電性部材からなる常温ダンパを外径側
からと内径側から高強度非磁性部材からなる内側及び外
側サポートにより挟んで一体化した三層構造の回転子外
筒内に冷却媒体を収容する回転子内筒を同軸的に設け、
その両端部に設けられたトルクチューブを回転子外筒に
取付けるようにした超電導回転電機の回転子において、
前記回転子外筒を構成する前記常温ダンパを円周方向に
分割された複数のダンパ部材により構成したことを特徴
とする超電導回転電機の回転子。
1. A cooling medium in a rotor outer cylinder having a three-layer structure in which a room temperature damper made of a conductive member is sandwiched and integrated from the outer diameter side and the inner diameter side by inner and outer supports made of a high-strength non-magnetic member. Is provided coaxially with a rotor inner cylinder that accommodates
In a rotor of a superconducting rotary electric machine, in which torque tubes provided at both ends thereof are attached to a rotor outer cylinder,
A rotor for a superconducting rotating electric machine, characterized in that the room temperature damper constituting the rotor outer cylinder is constituted by a plurality of circumferentially divided damper members.
【請求項2】 常温ダンパは円周方向に分割された複数
のダンパーバー間のダンパ−バー側面間をラップさせた
ことを特徴とする請求項1記載の超電導回転電機の回転
子。
2. The rotor for a superconducting rotating electric machine according to claim 1, wherein the room temperature damper has a damper-bar side surface overlapped between a plurality of damper bars divided in the circumferential direction.
【請求項3】 常温ダンパは円周方向に分割された複数
のダンパ−バーとダンパ−バー両端を各両端部毎に短絡
するリング状の短絡環を設けたことを特徴とする請求項
1記載の超電導回転電機の回転子。
3. The room temperature damper is provided with a plurality of circumferentially divided damper bars and a ring-shaped short-circuit ring for short-circuiting both ends of the damper bar. Superconducting rotating electric machine rotor.
【請求項4】 常温ダンパは円周方向に分割された複数
のダンパ−バーを半径方向に2分割し、その分割面を軸
方向にテーパ形状にしたことを特徴とする請求項1記載
の超電導回転電機の回転子。
4. The superconducting material according to claim 1, wherein the room temperature damper comprises a plurality of circumferentially divided damper bars, which are divided into two in the radial direction, and the divided surfaces are tapered in the axial direction. Rotor of rotating electric machine.
【請求項5】 常温ダンパは円周方向に分割された複数
のダンパ−バー間のダンパ−バー側面を軸方向にテーパ
形状にしたことを特徴とする請求項1記載の超電導回転
電機の回転子。
5. The rotor of a superconducting rotating electric machine according to claim 1, wherein the room temperature damper has a damper bar side surface between a plurality of circumferentially divided damper bars, which is tapered in the axial direction. .
【請求項6】 常温ダンパを半径方向に二層にし、それ
ぞれ円周方向に分割された複数のダンパ−バー側面間部
が内層と外層相互間で円周方向にずらせたことを特徴と
する請求項1記載の超電導回転電機の回転子。
6. The normal temperature damper is formed into two layers in the radial direction, and a plurality of circumferential side-divided damper-bar side surfaces are displaced in the circumferential direction between the inner layer and the outer layer. A rotor for a superconducting rotating electric machine according to Item 1.
【請求項7】 常温ダンパは円周方向に分割された複数
のダンパ−バーの材料を2種類以上用いたことを特徴と
する請求項1記載の超電導回転電機の回転子。
7. The rotor for a superconducting rotary electric machine according to claim 1, wherein the room temperature damper uses two or more kinds of materials for a plurality of damper bars divided in the circumferential direction.
【請求項8】 導電性部材からなる常温ダンパを挟んで
高強度非磁性部材の内、外側サポートの円筒を配置して
三層構造に形成する超電導回転電機の回転子の製造方法
において、前記常温ダンパーを分割された複数のダンパ
ーバーで形成し、これらのダンパーバーを前記内側ダン
パーサポートと外側ダンパーサポート間に挿入後、前記
内、外ダンパーサポートと拡散接合により一体化するこ
とを特徴とする超電導回転電機の回転子の製造方法。
8. A method for manufacturing a rotor of a superconducting rotating electric machine, wherein a cylinder of an outer support is arranged in a high-strength non-magnetic member with a room-temperature damper made of a conductive member interposed therebetween to form a three-layer structure rotor. A superconducting device, characterized in that a damper is formed by a plurality of divided damper bars, these damper bars are inserted between the inner damper support and the outer damper support, and then integrated with the inner and outer damper supports by diffusion bonding. A method for manufacturing a rotor of a rotating electric machine.
【請求項9】 外側ダンパーサポートの厚さより内側ダ
ンパーサポートの厚さをえ大きくしたことを特徴とする
請求項1記載の超電導回転電機の回転子の製造方法。
9. The method for manufacturing a rotor of a superconducting rotary electric machine according to claim 1, wherein the thickness of the inner damper support is made larger than the thickness of the outer damper support.
JP6216305A 1994-09-09 1994-09-09 Rotor of superconducting rotary electric machine and manufacture thereof Pending JPH0884461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6216305A JPH0884461A (en) 1994-09-09 1994-09-09 Rotor of superconducting rotary electric machine and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6216305A JPH0884461A (en) 1994-09-09 1994-09-09 Rotor of superconducting rotary electric machine and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0884461A true JPH0884461A (en) 1996-03-26

Family

ID=16686447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6216305A Pending JPH0884461A (en) 1994-09-09 1994-09-09 Rotor of superconducting rotary electric machine and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0884461A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386801B1 (en) * 2012-12-28 2014-04-22 두산엔진주식회사 A damper device for rotor of supreconducting generator
KR20150119557A (en) * 2014-04-15 2015-10-26 두산중공업 주식회사 Superconducting rotation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386801B1 (en) * 2012-12-28 2014-04-22 두산엔진주식회사 A damper device for rotor of supreconducting generator
KR20150119557A (en) * 2014-04-15 2015-10-26 두산중공업 주식회사 Superconducting rotation device

Similar Documents

Publication Publication Date Title
US8365392B2 (en) Method of fabricating a rotor assembly for an electric motor
US8368270B2 (en) Stator of electric rotating machine
US11557943B2 (en) Slot cooling fins in electrical machines
GB2059177A (en) Electrical machine
JP3464515B2 (en) Stator core
JP2009517989A (en) Rotor hub and assembly of permanent magnet powered electric machine
JPH03116805A (en) Magnet cartridge for magnetic resonant magnet
CA2025299C (en) Feeder lead wire of rotor for electric machine
JPH0884461A (en) Rotor of superconducting rotary electric machine and manufacture thereof
JP6552718B2 (en) Stator of rotating electrical machine, rotating electrical machine, and method of manufacturing stator of rotating electrical machine
US4646044A (en) Bobbinless solenoid coil
US5969452A (en) Magnetic bearing construction
US4914328A (en) Electrical machine with a superconducting rotor having an improved warm damper shield and method of making same
JP2003070202A (en) High temperature superconducting coil support and coil support method
WO2019220660A1 (en) Rotary electric machine and method for manufacturing same
JP3302705B2 (en) Superconducting rotating electric machine rotor
US4465106A (en) Warm damper for a superconducting rotor
JP2003219583A (en) Stator for dynamo-electric machine
JP2717110B2 (en) Rotor for high frequency motor and method for manufacturing the same
JP3156532B2 (en) Armature of commutator type rotating electric machine
JP2001086667A (en) Motor
JP2024011498A (en) Rotary electric machine
JPH08308191A (en) Manufacture of rotor for pawl type rotary electric machine
FR3070098A1 (en) STATOR CORE SUPPORT DEVICE AND ROTARY ELECTRIC MACHINE
JPH07163098A (en) Commutator type rotating electrical machine