JPH0883945A - Excimer laser oscillator - Google Patents

Excimer laser oscillator

Info

Publication number
JPH0883945A
JPH0883945A JP21690894A JP21690894A JPH0883945A JP H0883945 A JPH0883945 A JP H0883945A JP 21690894 A JP21690894 A JP 21690894A JP 21690894 A JP21690894 A JP 21690894A JP H0883945 A JPH0883945 A JP H0883945A
Authority
JP
Japan
Prior art keywords
discharge
laser gas
gas
laser
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21690894A
Other languages
Japanese (ja)
Other versions
JP2714357B2 (en
Inventor
Shinichiro Kosugi
伸一郎 小杉
Tatsumi Goto
達美 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6216908A priority Critical patent/JP2714357B2/en
Publication of JPH0883945A publication Critical patent/JPH0883945A/en
Application granted granted Critical
Publication of JP2714357B2 publication Critical patent/JP2714357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE: To improve the flowing velocity of laser gas by making the flow of the gas in a discharge unit uniform by forming a plurality of recesses on the outer surfaces of discharge electrodes. CONSTITUTION: A pair of discharge electrodes 14a, 14b are formed of a plurality of dimples 20 of circular recesses of a circular shape in a flat surface shape on the semispherical outer surface. Thus, the flowing velocity of laser gas near the electrodes l4a, 14b approaches the flowing speed value at the center between the electrodes 14a and 14b. Accordingly, when the flowing velocities near the electrodes 14a, 14b are set to necessary minimum limit values, the velocities of the gas at the center of the electrodes 14a, 14b are not largely altered from those at the wall, and hence waste is reduced. The decrease in the flow rate of the blower 15 contributes to the reduction in the power of the blower, thereby improving the entire efficiency of the laser oscillator 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造などに使用さ
れるエキシマレーザを発生せしめるエキシマレーザ発振
装置に係り、特に、一対の放電電極等を改良したエキシ
マレーザ発振装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an excimer laser oscillating device for generating an excimer laser used in semiconductor manufacturing, and more particularly to an excimer laser oscillating device having a pair of discharge electrodes and the like improved.

【0002】[0002]

【従来の技術】従来、この種のエキシマレーザ発振装置
の一例としては、図6に示すものがある。このエキシマ
レーザ発振装置1は、密閉容器である本体ケース2内に
レーザガス3を充填し、一対の放電電極4a,4b間の
ギャップに効率よく高速でレーザガスを流すために、一
対の放電電極4a,4bのギャップを狭隘に絞る一方、
それ以外のガス流路は広く取って流路抵抗を減少させ、
レーザガス3を送風機5により例えば図中の矢印方向に
循環させ、放電により加熱されたレーザガス3を図中左
右一対の熱交換器6a,6bにより冷却するようになっ
ている。
2. Description of the Related Art Conventionally, an example of this type of excimer laser oscillator is shown in FIG. In this excimer laser oscillator 1, a main body case 2 which is a hermetically sealed container is filled with a laser gas 3 and a pair of discharge electrodes 4a, 4b are provided in order to efficiently and rapidly flow the laser gas into a gap between the pair of discharge electrodes 4a, 4b. While narrowing the gap of 4b narrowly,
The other gas flow paths should be wider to reduce the flow resistance.
The laser gas 3 is circulated in the direction of the arrow in the drawing by the blower 5, and the laser gas 3 heated by the discharge is cooled by the pair of left and right heat exchangers 6a and 6b in the drawing.

【0003】そして、図7にも示すようにレーザガス3
が例えば図中左から右に流されると、このレーザガス3
は、一対の放電電極4a,4bのパルス放電により加熱
され、かつイオン化するが、このガスと、電極スパッタ
リングによって生じる金属蒸気とを放電部から除去する
ために、レーザガス3がパルス繰り返し数に応じた速度
で流される。
Then, as shown in FIG. 7, the laser gas 3
When, for example, is flown from left to right in the figure, the laser gas 3
Is heated and ionized by the pulse discharge of the pair of discharge electrodes 4a and 4b. In order to remove this gas and the metal vapor generated by the electrode sputtering from the discharge part, the laser gas 3 responds to the pulse repetition rate. Shed at speed.

【0004】また、かかる放電は例えば2対の予備電離
電極7aと7b,8aと8bから、放電電極4a,4b
の順に行なわれ、予備電離電極7aと7b,8aと8b
では瞬間的に非常に強いアーク放電が行なわれて、紫外
光を発生させ、この紫外光の光電離作用により放電電極
4a,4b間のレーザガス3を予備電離する。次に、一
対の放電電極4a,4b間でグロー放電が行なわれて、
レーザガス3が励起され、レーザ光が紙面に垂直方向に
取り出される。
Further, such discharge is performed, for example, from two pairs of preionization electrodes 7a and 7b, 8a and 8b to discharge electrodes 4a and 4b.
Are performed in this order, and the preionization electrodes 7a and 7b, 8a and 8b
Then, a very strong arc discharge is instantaneously generated to generate ultraviolet light, and the laser gas 3 between the discharge electrodes 4a and 4b is preionized by the photoionization action of this ultraviolet light. Next, glow discharge is performed between the pair of discharge electrodes 4a and 4b,
The laser gas 3 is excited and the laser light is extracted in the direction perpendicular to the paper surface.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のエキシマレーザ発振装置1では、本体ケース
2内のレーザガス3の流れに境界層が発達し易いという
課題がある。
However, such a conventional excimer laser oscillator 1 has a problem that a boundary layer easily develops in the flow of the laser gas 3 in the main body case 2.

【0006】つまり、一対の放電電極4a,4b回りの
放電部の狭いギャップに効率よくレーザガス3を高速で
流すために、放電部の上流側では、放電部に向ってガス
流路を絞って縮小させる一方、放電部よりも下流側では
再びガス流路を拡大している。このため図7に示すよう
にレーザガス3の上流側流路断面積が断面A−Aまでは
縮小する一方、断面B−B以後の下流側流路断面積がガ
ス流れ方向に沿って次第に広がっていくので、ガス流断
面A−Aまでが加速流となる一方、断面B−B以降は減
速流となり、断面B−B以降は境界層9が発達し易い。
つまり。レーザガス3の流路断面積が最小となる断面A
−A以降急速に境界層9が発達する。
That is, in order to efficiently flow the laser gas 3 at a high speed in the narrow gap of the discharge part around the pair of discharge electrodes 4a and 4b, the gas flow path is narrowed toward the discharge part on the upstream side of the discharge part. On the other hand, on the downstream side of the discharge part, the gas flow path is expanded again. Therefore, as shown in FIG. 7, the upstream flow passage cross-sectional area of the laser gas 3 is reduced to the cross-section AA, while the downstream flow passage cross-sectional area after the cross-section BB gradually expands along the gas flow direction. Therefore, the gas flow cross section A-A becomes an accelerating flow, while the cross section B-B and thereafter becomes a decelerating flow, and the boundary layer 9 easily develops after the cross section BB.
I mean. Cross-section A where the flow passage cross-sectional area of the laser gas 3 is minimum
-After A, the boundary layer 9 develops rapidly.

【0007】したがって、レーザガス3の流速分布は図
8(A)に示すように、断面A−Aでは流速分布が縮小
流路であるためにほぼ均一になる。しかし、図8(B)
に示すようにレーザガス3の流路断面B−Bでは境界層
9の発達により、流路壁面、例えば上,下壁面近くでの
流速分布は遅くなってしまう。
Therefore, as shown in FIG. 8 (A), the flow velocity distribution of the laser gas 3 is substantially uniform in the cross section AA because the flow velocity distribution is a reduced flow passage. However, FIG. 8 (B)
As shown in FIG. 5, in the flow passage cross section BB of the laser gas 3, the flow velocity distribution near the flow passage wall surface, for example, the upper and lower wall surfaces becomes slow due to the development of the boundary layer 9.

【0008】ところで、エキシマレーザ1では一対の放
電電極4a,4b間のレーザガス3を放電励起し、レー
ザ出力を得るが、この放電励起には、通常数気圧の高ガ
ス圧力下において非常に高いエネルギ密度の放電入力を
必要とする。高エネルギ密度の放電ではガス温度は瞬時
に高温となり、放電は不安定になり易い。このため放電
は数100nsしか持続できず間欠的パルスでしか運転
できない。
By the way, in the excimer laser 1, the laser gas 3 between the pair of discharge electrodes 4a and 4b is discharge-excited to obtain a laser output, but this discharge excitation is usually very high energy under a high gas pressure of several atmospheres. Requires a density discharge input. In a high energy density discharge, the gas temperature instantly rises to a high temperature, and the discharge tends to be unstable. Therefore, the discharge can last only a few 100 ns and can be operated only by intermittent pulses.

【0009】また、一対の放電電極4a,4bの放電後
の高温になったレーザガス3はそのガス流により放電部
から除去され、新しいガスが放電部に連続的に供給され
て入れ替るが、境界層9の発達により下流側流路壁面付
近のガス流速が著しく低下するため一対の放電電極4
a,4b表面のレーザガス3の入れ替えが効率よく行な
われなかった。そのため放電部流速を必要以上に高めて
放電部のガスの入れ替えを行なっている。
The high temperature laser gas 3 after the discharge of the pair of discharge electrodes 4a and 4b is removed from the discharge part by the gas flow, and new gas is continuously supplied to the discharge part to be replaced. Due to the development of the layer 9, the gas flow velocity in the vicinity of the wall surface on the downstream side is remarkably reduced.
The replacement of the laser gas 3 on the surfaces of a and 4b was not performed efficiently. Therefore, the flow rate of the discharge part is increased more than necessary to replace the gas in the discharge part.

【0010】しかし、レーザガス3の循環に必要な動力
は一般にガス流速の3乗に比例するうえに、従来のエキ
シマレーザ発振装置1では理論上必要な放電部流速に対
して現実にはその理論値の5〜10倍のガス流速を安定
に運転するために流している。そのため、理論的に必要
なガス循環動力の100倍から1000倍の動力をガス
循環のために浪費している。
However, the power required to circulate the laser gas 3 is generally proportional to the cube of the gas flow velocity, and the theoretical value of the conventional excimer laser oscillator 1 is theoretically required for the theoretically required discharge part flow velocity. The gas flow rate is 5 to 10 times higher than that for stable operation. Therefore, 100 to 1000 times the theoretically necessary gas circulation power is wasted for gas circulation.

【0011】また、放電部にはパルス繰返し数に応じて
レーザガス3を流しているが、これは局所的な放電集中
の抑止、および放電部構造体の冷却を主目的としてい
る。つまり、放電集中はレーザ出力を低下させ、さらに
放電電極4a,4bを損傷し、レーザガスの劣化を早め
るので、放電集中の抑止は重要な技術課題となってい
る。
Further, the laser gas 3 is caused to flow in the discharge part in accordance with the number of pulse repetitions, which is mainly intended to suppress local discharge concentration and to cool the discharge part structure. That is, the discharge concentration lowers the laser output, further damages the discharge electrodes 4a and 4b, and accelerates the deterioration of the laser gas. Therefore, suppressing the discharge concentration is an important technical issue.

【0012】ところで、エキシマレーザ発振装置1の放
電では予備電離7aと7b,8aと8bにより紫外光を
発生させ、その光電離作用により一対の放電電極4a,
4b間を流れるレーザガス3を電離する。このとき生成
された初期電子は、放電電極4a,4bへの電圧印加の
初期段階では電解によりアノード方向に移動すると共
に、カソード近傍の電子も移動するのでカソード表面上
に電子欠乏層ができる。
By the way, in the discharge of the excimer laser oscillator 1, ultraviolet light is generated by the preionizations 7a and 7b and 8a and 8b, and the pair of discharge electrodes 4a, 4a and
The laser gas 3 flowing between 4b is ionized. The initial electrons generated at this time move toward the anode by electrolysis in the initial stage of voltage application to the discharge electrodes 4a and 4b, and also move the electrons near the cathode, so that an electron-deficient layer is formed on the cathode surface.

【0013】しかし、この電子欠乏層が厚いと放電集中
が起きる(V.G.Geinman,他6名著、「Formation of sel
f-sustained volume discharges in large interelectr
odegaps. 」Sov.Phys.Tech.Phys.,Vol.30,Dec.1985,pp1
394-1397 参照)。
However, if this electron-deficient layer is thick, discharge concentration occurs (VG Geinman, et al., "Formation of sel").
f-sustained volume discharges in large interelectr
odegaps. '' Sov.Phys.Tech.Phys., Vol.30, Dec.1985, pp1
394-1397).

【0014】したがって、従来のエキシマレーザ発振装
置1では高繰返しパルス放電により運転すると、放電電
極4a,4bの数ヵ所に電流が集中する場所が生じ、電
気回路の特性として高繰返し運転では放電電極4a,4
bへの電圧印加がパルス繰り返しの遅い場合よりもゆっ
くり起きる。この電圧印加速度が遅いと、電子欠乏層が
厚くなり電流の集中が生じる。電流の集中が生じると放
電電流が有効に使用されず、レーザ発振効率が悪くなっ
てしまう。
Therefore, when the conventional excimer laser oscillator 1 is operated by the high repetition pulse discharge, the electric current is concentrated in several places of the discharge electrodes 4a and 4b, and the discharge electrode 4a in the high repetition operation is characteristic of the electric circuit. , 4
The voltage application to b occurs more slowly than when the pulse repetition is slow. If the voltage application speed is slow, the electron deficient layer becomes thick and current concentration occurs. If current concentration occurs, the discharge current will not be used effectively and the laser oscillation efficiency will deteriorate.

【0015】また、従来の放電電極4a,4bの外面が
平滑であるので、長期間使用すると、放電の作用により
一点から数点の放電集中部が発生し、放電によるレーザ
ガス励起が一部に集中し、レーザガス3の励起効率が悪
化してしまう。
Further, since the outer surfaces of the conventional discharge electrodes 4a and 4b are smooth, when used for a long period of time, a discharge concentration portion from one point to several points is generated due to the action of discharge, and laser gas excitation due to the discharge is concentrated in a part. However, the excitation efficiency of the laser gas 3 deteriorates.

【0016】本発明は上記の問題点を解決するためにな
されたもので、その目的は放電部におけるレーザガスの
流れを均等化してその流速を向上させることができる高
効率のエキシマレーザ発振装置を提供することを目的と
する。
The present invention has been made to solve the above problems, and an object thereof is to provide a highly efficient excimer laser oscillator capable of equalizing the flow of laser gas in the discharge part and improving the flow velocity thereof. The purpose is to do.

【0017】[0017]

【課題を解決するための手段】本発明は上記課題を解決
するために次のように構成される。
In order to solve the above problems, the present invention is configured as follows.

【0018】本願の請求項1に記載の発明は、本体ケー
ス内のレーザガスを冷却自在に循環せしめる装置と、前
記レーザガスの流路でパルス放電してこのレーザガスを
励起する一対の放電電極とを有するエキシマレーザ発振
装置において、前記放電電極の外面に複数の凹部を形成
したことを特徴とする。
The invention according to claim 1 of the present application has a device for circulating the laser gas in the body case in a coolable manner, and a pair of discharge electrodes for pulse-discharging the laser gas in the flow path of the laser gas to excite the laser gas. In the excimer laser oscillator, a plurality of recesses are formed on the outer surface of the discharge electrode.

【0019】また、本願の請求項2に記載の発明は、放
電電極よりも下流側であって、ガスの流れ方向に沿って
末広のレーザガス流路の壁面に、複数の凹部を形成した
ことを特徴とする。
In the invention according to claim 2 of the present application, a plurality of recesses are formed on the wall surface of the divergent laser gas flow path downstream of the discharge electrode along the gas flow direction. Characterize.

【0020】さらに、本願の請求項3に記載の発明は、
凹部が円形状凹部と溝の少なくとも一方であることを特
徴とする。
Further, the invention according to claim 3 of the present application is
The concave portion is at least one of a circular concave portion and a groove.

【0021】さらにまた、本願の請求項4に記載の発明
は、円形状凹部は、放電電極の総面積に対する面積比が
78.5%以下になるように形成されていることを特徴
とする。
Furthermore, the invention according to claim 4 of the present application is characterized in that the circular concave portion is formed so that the area ratio to the total area of the discharge electrode is 78.5% or less.

【0022】また、本願の請求項5に記載の発明は、円
形状凹部の直径、または溝の幅が一対の放電電極の放電
幅の50%以下に設定されてなることを特徴とする。
The invention according to claim 5 of the present application is characterized in that the diameter of the circular recess or the width of the groove is set to 50% or less of the discharge width of the pair of discharge electrodes.

【0023】さらに、本願の請求項6に記載の発明は、
円形状凹部、または溝は、一対の放電電極のカソードに
形成されていることを特徴とする。
Further, the invention according to claim 6 of the present application is
The circular recess or groove is formed on the cathodes of the pair of discharge electrodes.

【0024】さらにまた、本願の請求項7に記載の発明
は、放電電極の少なくとも一部を透過するX線をレーザ
ガスに照射し、このレーザガスを予備電離せしめるX線
管を設ける一方、前記X線が透過する前記放電電極のX
線透過部の肉厚を薄くし、この薄肉部外面に円形状凹部
または溝を形成したことを特徴とする。
Further, in the invention according to claim 7 of the present application, an X-ray tube for irradiating the laser gas with X-rays that penetrate at least a part of the discharge electrode and pre-ionizing the laser gas is provided, while the X-rays are provided. X of the discharge electrode through which
It is characterized in that the thickness of the line-transmissive portion is reduced and a circular concave portion or groove is formed on the outer surface of the thin portion.

【0025】[0025]

【作用】放電電極の外面、または、その下流側のレーザ
ガスの流路壁面には、円形凹部であるディンプルや溝等
の凹部を形成しているので、これら凹部でレーザガスの
流れに乱れが発生する。このレーザガスの乱れによって
ガス流路壁面付近の低い速度(運動量)のレーザガスは
流れ中心部に流れ込み、逆に中心部の大きな速度(運動
量)のレーザガスは流路壁面付近に流れ込む。そのため
運動量の異なるレーザガス同士の混合が発生するので、
境界層の発達を防止ないし低減して放電部のレーザガス
の流速が均一化される。特に、レーザガス流路壁面付近
のガス流速が改善されるので、放電部のレーザガスの入
れ替え効率が良くなり、送風機の風量を低くしても、そ
のガスの入れ替えが充分に行なわれる。そのため、送風
機風量を下げることができる。送風機動力は送風機風量
の例えばほぼ3乗に比例するので、送風機風量を若干で
も下げることは送風機動力の大幅な低減につながり、レ
ーザ発振装置全体の効率を著しく向上させることができ
る。
Since the outer surface of the discharge electrode or the wall surface of the flow path of the laser gas on the downstream side of the discharge electrode is provided with recesses such as dimples and grooves, which are circular recesses, the flow of the laser gas is disturbed in these recesses. . Due to the turbulence of the laser gas, the laser gas having a low velocity (momentum) near the wall surface of the gas channel flows into the center of the flow, and conversely, the laser gas having a large velocity (momentum) at the center portion flows near the wall surface of the channel. Therefore, mixing of laser gas with different momentum occurs,
The flow velocity of the laser gas in the discharge part is made uniform by preventing or reducing the development of the boundary layer. In particular, since the gas flow velocity near the wall surface of the laser gas passage is improved, the efficiency of replacement of the laser gas in the discharge part is improved, and the replacement of the gas is sufficiently performed even if the air volume of the blower is reduced. Therefore, the blower air volume can be reduced. Since the blower power is proportional to, for example, approximately the cube of the blower air volume, even a slight reduction in the blower air volume leads to a significant reduction in the blower power, and the efficiency of the entire laser oscillator can be significantly improved.

【0026】[0026]

【実施例】以下、本発明の実施例を図1〜図5に基づい
て説明する。なお、図1〜図5中、同一または相当部分
には同一符号を付している。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5, the same or corresponding parts are designated by the same reference numerals.

【0027】図1は本発明の第1実施例の全体構成を示
す縦断面図であり、この図1において、エキシマレーザ
発振装置11は密閉容器の本体ケース12内に、レーザ
ガス13を充填する一方、所要の繰り返し周波数でパル
ス放電する上下一対の放電電極14a,14bと、レー
ザガス13を本体ケース12内で例えば図中矢印方向に
循環せしめる送風機15と、この送風機15の図中左右
に配設されて、レーザガス13を冷却せしめる一対の熱
交換器16a,16bとを内蔵している。
FIG. 1 is a vertical sectional view showing the overall construction of the first embodiment of the present invention. In FIG. 1, the excimer laser oscillator 11 is filled with a laser gas 13 in a body case 12 of a hermetically sealed container. , A pair of upper and lower discharge electrodes 14a and 14b that perform pulse discharge at a required repetition frequency, a blower 15 that circulates the laser gas 13 in the main body case 12, for example, in the direction of the arrow in the figure, and are disposed on the left and right sides of the blower 15 in the figure. And a pair of heat exchangers 16a and 16b for cooling the laser gas 13 are built in.

【0028】また、一対の放電電極14a,14bの図
中左右には、上下一対の予備電離電極17aと17b,
18aと18bを配設している。図2にも示すように一
対の放電電極14a,14b間のギャップには、その垂
直方向、つまり、図中矢印方向に流れるレーザガス13
の流路19を形成し、この流路19は上流側19aと下
流側19bとに向けてそれぞれ次第に拡径するように形
成されている。
On the left and right sides of the pair of discharge electrodes 14a and 14b in the figure, a pair of upper and lower preionization electrodes 17a and 17b,
18a and 18b are provided. As shown in FIG. 2, in the gap between the pair of discharge electrodes 14a and 14b, the laser gas 13 flowing in the vertical direction, that is, in the direction of the arrow in the figure.
The flow passage 19 is formed so that the diameter of the flow passage 19 gradually increases toward the upstream side 19a and the downstream side 19b.

【0029】そして、一対の放電電極14a,14b
は、その半球状外面に、平面形状が円形の円形凹部であ
る複数のディンプル20をそれぞれ形成している。
Then, the pair of discharge electrodes 14a, 14b
On the outer surface of the hemisphere, a plurality of dimples 20 each having a circular concave shape in a plan view are formed.

【0030】このディンプル20には文献(加藤雅弘、
他3名著、「球状飛翔体における抗力と揚力、流れの可
視化」Vol.7 Suppl.、1987年10月、pp.153-156)
に示されるように流体流れの剥離を妨げる効果がある。
つまり、ゴルフボールに形成されるディンプルは気流に
乱れを発生させ、その乱れによってボール表面付近の低
い速度のガス流が流れ中心部に流れ込む一方、流れ中心
部の高速度のガスは壁面付近に流れ込む。そのため、壁
面近くの上述の壁面近くの遅いガス流と壁面から離れた
部分の速いガス流とが混合し、ゴルフボール表面の流速
が上がる。流れの剥離とは表面近くの流速が0またはマ
イナスになった状態をいうので、ディンプルの剥離を妨
げる効果はこの乱れの発生による。
This dimple 20 has a reference (Masahiro Kato,
3 others, "Drag, lift, and flow visualization in spherical flying vehicles," Vol.7 Suppl., October 1987, pp.153-156)
As shown in, there is an effect of preventing separation of the fluid flow.
In other words, the dimples formed on the golf ball generate turbulence in the air flow, and the turbulence causes the low-velocity gas flow near the ball surface to flow into the flow center, while the high-velocity gas near the ball flow near the wall surface. . Therefore, the above-mentioned slow gas flow near the wall surface and the fast gas flow near the wall surface are mixed, and the flow velocity on the surface of the golf ball is increased. The flow separation means a state in which the flow velocity near the surface is zero or negative, and therefore the effect of preventing the separation of the dimples is due to the occurrence of this turbulence.

【0031】これとほぼ同様に、一対の放電電極14
a,14bの外面のディンプル20も同様にレーザガス
13の流れに乱れを発生させ、その乱れによって放電電
極14a,14b付近の低い速度(運動量)のレーザガ
ス流は中心部に流れ込み、逆に中心部の大きな速度(運
動量)のレーザガス流は壁面付近に流れ込み、これらは
混合するので、上述のゴルフボールと同様に、図7で示
す従来のエキシマレーザ発振装置1の境界層9の発達が
防止ないし低減されて放電部におけるレーザガス13の
流速が均一化される。
Almost the same as this, a pair of discharge electrodes 14
Similarly, the dimples 20 on the outer surfaces of a and 14b also generate turbulence in the flow of the laser gas 13, and the turbulence causes the laser gas flow of low velocity (momentum) near the discharge electrodes 14a and 14b to flow into the central portion, and conversely to the central portion. Since the laser gas flow having a large velocity (momentum) flows into the vicinity of the wall surface and mixes with each other, the development of the boundary layer 9 of the conventional excimer laser oscillator 1 shown in FIG. 7 is prevented or reduced similarly to the above golf ball. As a result, the flow velocity of the laser gas 13 in the discharge part is made uniform.

【0032】したがって、レーザガス13の放電部にお
ける入れ替え効率が良くなり、送風機15の風量が低く
ても放電部のレーザガスの入替えが十分に行なわれるの
で、送風機風量を下げることができる。このため、従来
は、レーザの高繰返し運転をする際、放電電極14a,
14b外面近傍のレーザガス13の流速が必要なガス流
速になるように、送風機風量を増大させることで対応し
てきたが、従来は放電電極14a,14b近傍のレーザ
ガス流速を必要最小限の値としても、放電電極14a,
14b間中央部での連続ガス流速は必要量を大幅に上回
りに無駄になっていた。これに対して本実施例のように
ディンプル20を放電電極14a,14bに設けると、
放電電極14a,14b近傍のレーザガス流速が放電電
極14a,14b間中心部の流速値に近付く。したがっ
て、放電電極14a,14b近傍の流速を必要最小限の
値にすると、放電電極14a,14b中心部のガス流速
も壁面での流速と大きく変わらないので無駄が少なくな
る。また、送風機動力は送風機風量の3乗に比例するの
で、送風機15の風量を若干でも下げることは送風機動
力の大幅な低減につながり、レーザ発振装置11全体の
効率を著しく向上させることができる。
Therefore, the efficiency of replacement of the laser gas 13 in the discharge part is improved, and the replacement of the laser gas in the discharge part is sufficiently performed even if the air volume of the blower 15 is low, so that the air volume of the blower can be reduced. Therefore, conventionally, when the laser is operated at high repetition rate, the discharge electrode 14a,
Although it has been dealt with by increasing the blower air volume so that the flow velocity of the laser gas 13 near the outer surface of 14b becomes a required gas flow velocity, conventionally, even if the laser gas flow velocity near the discharge electrodes 14a and 14b is set to a necessary minimum value, Discharge electrode 14a,
The continuous gas flow velocity in the central portion between 14b was much more than the required amount and wasted. On the other hand, when the dimples 20 are provided on the discharge electrodes 14a and 14b as in this embodiment,
The laser gas flow velocity near the discharge electrodes 14a and 14b approaches the flow velocity value at the central portion between the discharge electrodes 14a and 14b. Therefore, if the flow velocity in the vicinity of the discharge electrodes 14a, 14b is set to the necessary minimum value, the gas flow velocity at the central portions of the discharge electrodes 14a, 14b does not significantly change from the flow velocity at the wall surface, so that waste is reduced. Further, since the blower power is proportional to the cube of the blower air volume, reducing the air volume of the blower 15 even a little leads to a significant reduction in the blower power, and the efficiency of the entire laser oscillator 11 can be significantly improved.

【0033】ところで、ディンプル20を放電電極14
a,14bの外面に形成することによりディンプル20
のエッジ部に電界が集中するので、ディンプル20のエ
ッジ部に電流が集中する可能性が高くなる。しかも、こ
の電界集中が一点に集中する場合や、この集中部の電極
表面全体に対する面積比が非常に小さい場合は、レーザ
出力が低下してしまう。図7で示す従来の放電電極4
a,4bの場合、その外面が平滑であるので、長期間使
用すると、放電作用により一点から数点の放電集中部が
発生し、放電によるレーザガス励起が一部に集中し、レ
ーザガスの励起効率が悪くなってしまう。
By the way, the dimple 20 is connected to the discharge electrode 14
The dimples 20 are formed on the outer surfaces of a and 14b.
Since the electric field is concentrated on the edge portion of the, the electric current is more likely to be concentrated on the edge portion of the dimple 20. Moreover, when the electric field concentration is concentrated at one point or when the area ratio of the concentrated portion to the entire electrode surface is very small, the laser output is reduced. Conventional discharge electrode 4 shown in FIG.
In the case of a and 4b, since the outer surface is smooth, when used for a long period of time, a discharge concentrated portion is generated from one point to several points due to the discharge action, laser gas excitation due to discharge is concentrated in a part, and laser gas excitation efficiency is increased. It gets worse.

【0034】これに対し、ディンプル20を放電電極1
4a,14bの外面に設けた本実施例の場合は、電界集
中部が電極表面に満遍なく分布することになり、放電は
長期的に安定化し、放電によるレーザガス励起も均一に
行なわれる。
On the other hand, the dimple 20 is connected to the discharge electrode 1
In the case of the present embodiment provided on the outer surfaces of 4a and 14b, the electric field concentration portions are evenly distributed on the electrode surface, the discharge is stabilized for a long time, and the laser gas excitation by the discharge is also uniformly performed.

【0035】なお、上記ディンプル20は放電電極14
a,14b外面のレーザガス流に乱れを与えるために形
成したものであるから、レーザガス13の流れを乱す形
状であれば、ディンプル20の代りに複数の溝を放電電
極14a,14bの外面に形成してもよく、上記実施例
とほぼ同様の効果を得ることができる。この溝は碁盤目
状に形成してもよいし、スパイラルにしてもよい。また
これら、溝、ディンプル20の形状は、突起でなければ
どのような形状であってもよく、また、一対の放電電極
14a,14bのカソードとアノードとで形状を変えて
もよい。なお、突起でも流体力学的には同様の効果を得
ることができるが、突起とした場合、放電時に電流が突
起に集中し、アーク状放電になり易い。この場合に、レ
ーザ出力は低下するがレーザ発振をすることはできる。
The dimples 20 are the discharge electrodes 14
Since it is formed to give turbulence to the laser gas flow on the outer surfaces of a and 14b, a plurality of grooves are formed on the outer surfaces of the discharge electrodes 14a and 14b instead of the dimples 20 if the shape is such that the flow of the laser gas 13 is disturbed. However, substantially the same effect as that of the above-described embodiment can be obtained. This groove may be formed in a grid pattern or may be spiral. The shape of the groove and the dimple 20 may be any shape as long as it is not a projection, and the shape of the cathode and the anode of the pair of discharge electrodes 14a and 14b may be changed. It should be noted that although similar effects can be obtained from the protrusions in terms of hydrodynamics, when the protrusions are used, an electric current is concentrated on the protrusions during discharge and arc discharge is likely to occur. In this case, laser output can be reduced, but laser oscillation can be performed.

【0036】そして、上記第1実施例の場合、放電電極
14a,14bの外面に形成した各ディンプル20のサ
イズが大き過ぎると、ディンプル20の凹部のレーザガ
スが放電励起されなくなってしまい、上記効果が得られ
なくなる場合がある。つまり、各ディンプル20のサイ
ズは少なくとも放電幅(放電間距離)よりも小さい直径
(溝の場合は幅)であることが必要であり、放電幅の5
0%以下が適当な大きさである。またディンプル20の
ピッチも放電に関係するディンプル凹部を除く部分の面
積があまり小さくなると、放電の不安定を招くため、デ
ィンプル20の凹部の総面積が放電電極14a,14b
の総面積に対する面積比が78.5%以下であることが
必要である。
In the case of the first embodiment, if the size of each dimple 20 formed on the outer surface of the discharge electrodes 14a and 14b is too large, the laser gas in the concave portion of the dimple 20 will not be excited by discharge and the above effect will be obtained. It may not be obtained. That is, the size of each dimple 20 needs to have a diameter (width in the case of a groove) smaller than at least the discharge width (distance between discharges).
An appropriate size is 0% or less. In addition, the pitch of the dimples 20 also becomes unstable if the area of the portion excluding the dimple recesses related to the discharge becomes too small. Therefore, the total area of the recesses of the dimples 20 is set to the discharge electrodes 14a, 14b.
It is necessary that the area ratio to the total area of 78.5% or less.

【0037】図3は本発明の第2実施例の要部縦断面図
であり、これは電極部の下流側のレーザガス流路19b
の内壁面19cにも複数のディンプル20aを形成した
点に特徴がある。
FIG. 3 is a longitudinal sectional view of a main part of a second embodiment of the present invention, which shows a laser gas flow path 19b on the downstream side of the electrode part.
The inner wall surface 19c is characterized in that a plurality of dimples 20a are formed.

【0038】この第2実施例によれば、下流側レーザガ
ス流路19bの壁面19cにこのように複数のディンプ
ル20aを設けることによりレーザガス13の流れの剥
離を防止することができる。つまり、レーザガス13の
流れが剥離してしまった場合は、その流路壁面近傍でレ
ーザガス13が停滞する。放電後のレーザガス13は電
離しており、また金属蒸気を含むので電気抵抗が低い。
したがって、レーザガス13が放電電極14a,14b
の近傍で滞留した場合、その電気抵抗の低い部分を放電
電流が流れるので、レーザガス13が有効に励起されな
くなり、レーザ発振効率を悪化させる。
According to the second embodiment, the separation of the flow of the laser gas 13 can be prevented by providing the plurality of dimples 20a on the wall surface 19c of the downstream laser gas passage 19b. That is, when the flow of the laser gas 13 is separated, the laser gas 13 stagnates near the wall surface of the flow path. The laser gas 13 after the discharge is ionized and contains metal vapor, so that the electric resistance is low.
Therefore, the laser gas 13 is discharged to the discharge electrodes 14a and 14b.
In the case of staying in the vicinity of, the discharge current flows through the portion having a low electric resistance, so that the laser gas 13 is not effectively excited and the laser oscillation efficiency is deteriorated.

【0039】これに対し、この第2実施例では一対の放
電電極14a,14b外面と流路壁面19cとにディン
プル20,20aを設けるので、レーザガス13の循環
が良好になり、このために、放電電流がレーザガス13
の励起に有効に使われ、レーザ発振効率を向上させるこ
とができる。
On the other hand, in this second embodiment, since the dimples 20 and 20a are provided on the outer surfaces of the pair of discharge electrodes 14a and 14b and the flow passage wall surface 19c, the circulation of the laser gas 13 is improved, and therefore the discharge is performed. Current is laser gas 13
It is effectively used to excite laser and can improve laser oscillation efficiency.

【0040】図4は本発明の第3実施例の要部縦断面図
であり、この実施例は上記第1実施例における予備電離
電極17aと17b,18aと18bをX線管21に置
換した点に特徴がある。このX線管21は一対の放電電
極14a,14bの一方、例えば14b内へ、その裏面
の凹部14b1 より挿入されて、その先端よりも先方の
透過部14b2 を透過してレーザガス13にX線を照射
してレーザガス13を予備電離するものである。
FIG. 4 is a vertical cross-sectional view of a main portion of a third embodiment of the present invention. In this embodiment, the preionization electrodes 17a and 17b and 18a and 18b in the first embodiment are replaced with an X-ray tube 21. The point is characteristic. The X-ray tube 21 is inserted into one of the pair of discharge electrodes 14a and 14b, for example, 14b from the recess 14b1 on the back surface thereof, and transmits the X-rays to the laser gas 13 through the transmitting portion 14b2 which is ahead of the tip thereof. The laser gas 13 is pre-ionized by irradiation.

【0041】そして、一方の放電電極14bのX線透過
部14b2 の外面にも複数のディンプル20または溝を
設けている。このために、ディンプル20または溝がX
線管21からのX線を散乱させる効果を持つので、レー
ザガス13をより均一に予備電離でき、放電がより均一
になるので、レーザガス13の励起効率を向上させるこ
とができる。また、図5に示すように、放電電極のX線
透過部14b2 の肉厚をより薄くすることにより、この
部分のX線透過率を上げて予備電離効率をさらに高め、
レーザガス励起効率を向上させることができる。
A plurality of dimples 20 or grooves are also provided on the outer surface of the X-ray transmitting portion 14b2 of the one discharge electrode 14b. Because of this, the dimples 20 or grooves are X
Since it has the effect of scattering the X-rays from the radiation tube 21, the laser gas 13 can be preionized more uniformly, and the discharge becomes more uniform, so that the excitation efficiency of the laser gas 13 can be improved. Further, as shown in FIG. 5, by making the thickness of the X-ray transmitting portion 14b2 of the discharge electrode thinner, the X-ray transmittance of this portion is increased and the preliminary ionization efficiency is further increased.
The laser gas excitation efficiency can be improved.

【0042】なお、高繰返し運転のエキシマレーザでは
レーザガス13の流速が非常に速い。この場合、放電電
極14a,14b間の流路19に流れるレーザガス13
の流れは完全に乱流となり、境界層9(図7参照)はあ
まり発達しない。このような場合にも放電電極14a,
14bのカソード側にディンプル20を設けると、放電
集中を防止する効果が得られる。つまり、ティンプル2
0を設けると、そのディンプル20のエッジ部に電界の
集中が起きるが、カソードにディンプル20を設ける
と、この電界集中部からの電子の放出が、電圧印加の初
期段階から起きる。そして、前述したように高繰返し運
転時にはカソード表面近傍の電子欠乏層が厚くなり、放
電電流集中を引き起こし、レーザ発振効率を下げてしま
うが、ディンプル20をカソードに設けると、ディンプ
ルのエッジ部から放出される電子がこれを補い、電子欠
乏層が生じない。そのため、高繰返し運転時特有の放電
電流の集中を避けることができるので、高繰返し運転時
の効率の低下を防ぐことかできる。
In the excimer laser operating at high repetition rate, the flow velocity of the laser gas 13 is very high. In this case, the laser gas 13 flowing in the flow path 19 between the discharge electrodes 14a and 14b
Is completely turbulent, and the boundary layer 9 (see FIG. 7) is not well developed. Even in such a case, the discharge electrode 14a,
By providing the dimple 20 on the cathode side of 14b, the effect of preventing discharge concentration can be obtained. That is, the temple 2
When 0 is provided, the electric field is concentrated at the edge portion of the dimple 20, but when the dimple 20 is provided at the cathode, electrons are emitted from the electric field concentrated portion from the initial stage of voltage application. Then, as described above, at the time of high repetition operation, the electron depletion layer near the cathode surface becomes thick, which causes discharge current concentration and lowers the laser oscillation efficiency. However, when the dimple 20 is provided on the cathode, it is emitted from the edge portion of the dimple. The generated electrons make up for this, and an electron-deficient layer does not occur. Therefore, it is possible to avoid the concentration of the discharge current peculiar to the high repetition operation, so that it is possible to prevent the efficiency from decreasing during the high repetition operation.

【0043】[0043]

【発明の効果】以上説明したように本発明は、放電電極
の外面、またはその下流側のレーザガスの流路壁面に、
円形凹部であるディンプルや溝等の凹部を複数形成した
ので、これら凹部によりレーザガスの流れに乱流を与え
て、その流路に境界層が形成されるのを低減ないし防止
することができる。このために、レーザガス循環に必要
な送風機動力を低減することができると共に、レーザガ
ス流速を高めて放電領域で加熱されたレーザガスの入替
えをスムーズに行なうことができるので、レーザ発振効
率を高めることができる。
As described above, according to the present invention, the outer surface of the discharge electrode, or the flow path wall surface of the laser gas on the downstream side thereof,
Since a plurality of recesses such as dimples and grooves which are circular recesses are formed, it is possible to reduce or prevent the formation of a boundary layer in the flow path by giving a turbulent flow to the laser gas flow by these recesses. Therefore, the blower power required for circulating the laser gas can be reduced, and the laser gas flow velocity can be increased to smoothly replace the laser gas heated in the discharge region, so that the laser oscillation efficiency can be improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るエキシマレーザ発振装置の第1実
施例の全体構成を示す縦断面図。
FIG. 1 is a vertical sectional view showing the overall configuration of a first embodiment of an excimer laser oscillator according to the present invention.

【図2】図1の要部拡大図。FIG. 2 is an enlarged view of a main part of FIG.

【図3】本発明の第2実施例の要部拡大図。FIG. 3 is an enlarged view of a main part of the second embodiment of the present invention.

【図4】本発明の第3実施例の要部拡大図。FIG. 4 is an enlarged view of a main part of a third embodiment of the present invention.

【図5】本発明の第4実施例の要部拡大図。FIG. 5 is an enlarged view of a main part of a fourth embodiment of the present invention.

【図6】従来のエキシマレーザ発振装置の全体構成を示
す縦断面図。
FIG. 6 is a vertical sectional view showing the overall configuration of a conventional excimer laser oscillator.

【図7】図6の一部拡大図。7 is a partially enlarged view of FIG.

【図8】(A)は図7で示すA−A部のレーザガス流速
分布図、(B)は図7で示すB−B部のレーザガス流速
分布図。
8A is a laser gas flow velocity distribution diagram of AA portion shown in FIG. 7, and FIG. 8B is a laser gas flow velocity distribution diagram of BB portion shown in FIG.

【符号の説明】[Explanation of symbols]

11 エキシマレーザ発振装置 12 本体ケース 13 レーザガス 14a,14b 一対の放電電極 15 送風機 16a,16b 熱交換器 17aと17b,18aと18b 2対の予備電離電極 19 流路 19b 下流側流路 19c 流路壁面 20,20a ディンプル 11 Excimer Laser Oscillator 12 Body Case 13 Laser Gas 14a, 14b Pair of Discharge Electrodes 15 Blowers 16a, 16b Heat Exchanger 17a and 17b, 18a and 18b 2 Pairs of Pre-ionization Electrodes 19 Channel 19b Downstream Channel 19c Channel Wall 20,20a dimple

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 本体ケース内のレーザガスを冷却自在に
循環せしめる装置と、前記レーザガスの流路でパルス放
電してこのレーザガスを励起する一対の放電電極とを有
するエキシマレーザ発振装置において、前記放電電極の
外面に複数の凹部を形成したことを特徴とするエキシマ
レーザ発振装置。
1. An excimer laser oscillating device comprising: a device for circulating a laser gas in a main body case in a freely coolable manner; and a pair of discharge electrodes for pulse-discharging the laser gas in a flow path of the laser gas to excite the laser gas. An excimer laser oscillating device having a plurality of recesses formed on the outer surface thereof.
【請求項2】 放電電極よりも下流側であって、ガスの
流れ方向に沿って末広のレーザガス流路の壁面に、複数
の凹部を形成したことを特徴とする請求項1記載のエキ
シマレーザ発振装置。
2. The excimer laser oscillation according to claim 1, wherein a plurality of recesses are formed on the wall surface of the divergent laser gas flow path downstream of the discharge electrode along the gas flow direction. apparatus.
【請求項3】 凹部が円形状凹部と溝の少なくとも一方
であることを特徴とする請求項1または2記載のエキシ
マレーザ発振装置。
3. The excimer laser oscillator according to claim 1, wherein the concave portion is at least one of a circular concave portion and a groove.
【請求項4】 円形状凹部は、放電電極の総面積に対す
る面積比が78.5%以下になるように形成されている
ことを特徴とする請求項3記載のエキシマレーザ発振装
置。
4. The excimer laser oscillating device according to claim 3, wherein the circular concave portion is formed so that an area ratio with respect to the total area of the discharge electrode is 78.5% or less.
【請求項5】 円形状凹部の直径、または溝の幅が一対
の放電電極の放電幅の50%以下に設定されてなること
を特徴とする請求項3または4記載のエキシマレーザ発
振装置。
5. The excimer laser oscillator according to claim 3, wherein the diameter of the circular recess or the width of the groove is set to 50% or less of the discharge width of the pair of discharge electrodes.
【請求項6】 円形状凹部、または溝は、一対の放電電
極のカソードに形成されていることを特徴とする請求項
3〜5のいずれか1項に記載のエキシマレーザ発振装
置。
6. The excimer laser oscillator according to claim 3, wherein the circular recess or groove is formed on the cathodes of the pair of discharge electrodes.
【請求項7】 放電電極の少なくとも一部を透過するX
線をレーザガスに照射し、このレーザガスを予備電離せ
しめるX線管を設ける一方、前記X線が透過する前記放
電電極のX線透過部の肉厚を薄くし、この薄肉部外面に
円形状凹部または溝を形成したことを特徴とする請求項
3〜6のいずれか1項に記載のエキシマレーザ発振装
置。
7. X which penetrates at least a part of the discharge electrode
The X-ray tube for irradiating the laser gas with the laser gas and pre-ionizing the laser gas is provided, while reducing the thickness of the X-ray transmitting portion of the discharge electrode through which the X-ray is transmitted, and the outer surface of the thin portion has a circular recess or The excimer laser oscillation device according to claim 3, wherein a groove is formed.
JP6216908A 1994-09-12 1994-09-12 Excimer laser oscillation device Expired - Fee Related JP2714357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6216908A JP2714357B2 (en) 1994-09-12 1994-09-12 Excimer laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6216908A JP2714357B2 (en) 1994-09-12 1994-09-12 Excimer laser oscillation device

Publications (2)

Publication Number Publication Date
JPH0883945A true JPH0883945A (en) 1996-03-26
JP2714357B2 JP2714357B2 (en) 1998-02-16

Family

ID=16695807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6216908A Expired - Fee Related JP2714357B2 (en) 1994-09-12 1994-09-12 Excimer laser oscillation device

Country Status (1)

Country Link
JP (1) JP2714357B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503946A (en) * 2000-06-09 2004-02-05 サイマー, インコーポレイテッド Long life electrode for gas discharge laser
WO2004066461A1 (en) * 2003-01-24 2004-08-05 Trumpf, Inc. Diffusion-cooled laser system
US6804285B2 (en) 1998-10-29 2004-10-12 Canon Kabushiki Kaisha Gas supply path structure for a gas laser
US7706424B2 (en) 2005-09-29 2010-04-27 Cymer, Inc. Gas discharge laser system electrodes and power supply for delivering electrical energy to same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199883A (en) * 1989-01-30 1990-08-08 Mitsubishi Electric Corp Gas laser device
JPH0380876A (en) * 1989-08-23 1991-04-05 Sumitomo Rubber Ind Ltd Golf ball
JPH03239914A (en) * 1990-02-16 1991-10-25 Toyota Central Res & Dev Lab Inc Fluidic flowmeter
JPH04129283A (en) * 1990-09-20 1992-04-30 Toshiba Corp Gas laser oscillator
JPH04305987A (en) * 1991-04-02 1992-10-28 Toshiba Corp Gas laser oscillator
JPH04348573A (en) * 1991-05-27 1992-12-03 Mitsubishi Heavy Ind Ltd Gas passage structure for gas laser
JPH0547671A (en) * 1991-08-12 1993-02-26 Nec Corp Vapor growth apparatus
JPH0685350A (en) * 1992-09-02 1994-03-25 Toshiba Corp Gas laser oscillator
JPH06152003A (en) * 1992-11-10 1994-05-31 Toshiba Corp Excimer laser oscillating system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199883A (en) * 1989-01-30 1990-08-08 Mitsubishi Electric Corp Gas laser device
JPH0380876A (en) * 1989-08-23 1991-04-05 Sumitomo Rubber Ind Ltd Golf ball
JPH03239914A (en) * 1990-02-16 1991-10-25 Toyota Central Res & Dev Lab Inc Fluidic flowmeter
JPH04129283A (en) * 1990-09-20 1992-04-30 Toshiba Corp Gas laser oscillator
JPH04305987A (en) * 1991-04-02 1992-10-28 Toshiba Corp Gas laser oscillator
JPH04348573A (en) * 1991-05-27 1992-12-03 Mitsubishi Heavy Ind Ltd Gas passage structure for gas laser
JPH0547671A (en) * 1991-08-12 1993-02-26 Nec Corp Vapor growth apparatus
JPH0685350A (en) * 1992-09-02 1994-03-25 Toshiba Corp Gas laser oscillator
JPH06152003A (en) * 1992-11-10 1994-05-31 Toshiba Corp Excimer laser oscillating system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804285B2 (en) 1998-10-29 2004-10-12 Canon Kabushiki Kaisha Gas supply path structure for a gas laser
JP2004503946A (en) * 2000-06-09 2004-02-05 サイマー, インコーポレイテッド Long life electrode for gas discharge laser
WO2004066461A1 (en) * 2003-01-24 2004-08-05 Trumpf, Inc. Diffusion-cooled laser system
US6879616B2 (en) 2003-01-24 2005-04-12 Trumpf, Inc. Diffusion-cooled laser system
US7706424B2 (en) 2005-09-29 2010-04-27 Cymer, Inc. Gas discharge laser system electrodes and power supply for delivering electrical energy to same

Also Published As

Publication number Publication date
JP2714357B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US4841538A (en) CO2 gas laser device
US3772610A (en) Arcless electrode construction for gas transport laser
KR100516128B1 (en) Corona preionization electrode unit for use in gas laser apparatus
JPH0883945A (en) Excimer laser oscillator
JP4046975B2 (en) Discharge laser having porous insulating layer covering anode discharge surface
KR950013054B1 (en) Discharge-pumped gas laser with bapfle partition
US3860887A (en) Electrically excited high power flowing gas devices such as lasers and the like
JP5493030B2 (en) Discharge excitation type pulse oscillation gas laser device
GB2107512A (en) Apparatus for producing a laser-active state in a fast subsonic flow
JPH0373151B2 (en)
JP4845094B2 (en) Discharge excitation type pulse oscillation gas laser device
US5271026A (en) Discharge excitation gas laser device
JPH0685350A (en) Gas laser oscillator
JP2012009892A (en) Discharge excitation-type pulse oscillation gas laser apparatus
JP3065681B2 (en) Gas laser oscillation device
JPS63229771A (en) Highly repetitive pulse laser oscillator
JP3090796B2 (en) Excimer laser oscillation device
JP2983570B2 (en) Laser oscillator
JPS6388877A (en) Gas laser device
JPS6348881A (en) Gas laser oscillator
JP4280132B2 (en) Gas laser device
JPH04196186A (en) Gas laser
JPS63227067A (en) Gas laser oscillator
JP2923022B2 (en) Pulse oscillation type gas laser oscillation device
JPH04133372A (en) Pulse oscillation type gas laser oscillator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees