JPH0883834A - Processing equipment by ion beam - Google Patents

Processing equipment by ion beam

Info

Publication number
JPH0883834A
JPH0883834A JP6243396A JP24339694A JPH0883834A JP H0883834 A JPH0883834 A JP H0883834A JP 6243396 A JP6243396 A JP 6243396A JP 24339694 A JP24339694 A JP 24339694A JP H0883834 A JPH0883834 A JP H0883834A
Authority
JP
Japan
Prior art keywords
sample
sample holder
holder
rotation
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6243396A
Other languages
Japanese (ja)
Inventor
Seitaro Oishi
鉦太郎 大石
Shinya Sekimoto
信也 関本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6243396A priority Critical patent/JPH0883834A/en
Publication of JPH0883834A publication Critical patent/JPH0883834A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve processing precision and cooling performance for a sample and to make high a throughput of processing equipment by making the size of a sample holder be the same substantially as the bore diameter of an ion source and by disposing it in a plurality of arrays at the inner and outer circumferences thereof. CONSTITUTION: A diameter of setting of a sample holder is made the same substantially as the one of an ion source of a large bore diameter and a sample holder 10 on the outer circumference side and a sample holder 20 on the inner circumference side are provided over the whole of an ion beam irradiation plane at the inner and outer circumferences thereof. Thereby ion beams emitted can be used at the maximum. In order to cool down a sample 21 subjected to irradiation by the ion beams, cooling water is supplied to the sample holders 10 and 20 from a cooling water inlet-outlet joint 43 through cooling pipings 44 in directions of arrows. In this way, the sample 21 is cooled down directly by supplying the cooling water even onto the rear sides of the sample holders 10 and 20. According to this constitution, it is possible to improve a cooling characteristic and processing precision (of uniformity and a processed shape) and to attain a high throughput.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオンビームミリング
やイオンビームスパッタなどのイオンビーム加工装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion beam processing apparatus such as ion beam milling and ion beam sputtering.

【0002】[0002]

【従来の技術】従来、この種のイオンビーム加工装置で
は、イオン源口径が大口径の例えばφ400以上となっ
た場合、試料ホルダ10は、図5に示すように、イオン
源口径とはほぼ同一径程度でホルダ外周上に配置され
る。ここで、5はシャッタ、6は真空チャンバであり、
点線は試料の冷却水系統の一部を概略的に示す。図5か
ら明らかなように、試料ホルダ10は、ホルダ外周上に
配置されるため、中央部がぽっかりと空いた部分が生
じ、イオンビームが照射されても試料がないため、この
中央部のイオンビームは無駄となっていた。このため、
イオンビーム加工装置の高スループット化に問題があっ
た。また、従来のイオンビーム加工装置では、試料ホル
ダを複数列全周に配置し、各試料ホルダに自公転機構を
設けたときの構造が複雑になるため、冷却水の通水を試
料ホルダの回転駆動機構まで導入しない間接冷却機構構
造となっており、試料の加工精度(均一性や加工形状)
や冷却性能に問題があった。また、冷却水の通水を試料
ホルダの回転駆動機構まで導入する直接冷却構造として
も、同様に構造が複雑になるため、効率のよい加工精度
や冷却性能を得られなかった。イオンビーム加工装置の
従来技術としては、特願昭60−158242号、特願
昭60−191929号があり、自公転構造試料ホルダ
のブロック構造としては特願昭63−313872号が
知られている。
2. Description of the Related Art Conventionally, in this type of ion beam processing apparatus, when the diameter of the ion source is larger than, for example, φ400, the sample holder 10 has a diameter substantially the same as that of the ion source, as shown in FIG. It is arranged on the outer circumference of the holder with a diameter of approximately the same. Here, 5 is a shutter, 6 is a vacuum chamber,
The dotted line schematically shows a part of the cooling water system of the sample. As is clear from FIG. 5, since the sample holder 10 is arranged on the outer circumference of the holder, there is a gap in the central portion, and there is no sample even when the ion beam is irradiated. The beam was wasted. For this reason,
There was a problem in increasing the throughput of the ion beam processing apparatus. Also, in the conventional ion beam processing equipment, the structure becomes complicated when the sample holders are arranged in multiple rows and the rotation mechanism is installed in each sample holder. It has an indirect cooling mechanism structure that does not introduce a drive mechanism, so the sample processing accuracy (uniformity and processing shape)
There was a problem with the cooling performance. Further, even if the direct cooling structure in which the cooling water is introduced to the rotary drive mechanism of the sample holder is also complicated, the processing accuracy and the cooling performance cannot be obtained efficiently. Japanese Patent Application No. 60-158242 and Japanese Patent Application No. 60-191929 are known as conventional techniques of the ion beam processing apparatus, and Japanese Patent Application No. 63-313872 is known as a block structure of a sample holder having a revolving structure. .

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上述
した事情に鑑み、試料の加工精度及び冷却性能の向上と
イオンビーム加工装置の高スループット化に好適なイオ
ンビーム加工装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, an object of the present invention is to provide an ion beam processing apparatus suitable for improving the processing accuracy and cooling performance of a sample and increasing the throughput of the ion beam processing apparatus. It is in.

【0004】[0004]

【課題を解決するための手段】上記目的は、導入したガ
スをプラズマ化し、イオンを生成させるイオン源と、こ
のイオンを照射する試料を保持する試料ホルダと、試料
ホルダを駆動する駆動機構と、真空チャンバとを備える
イオンビーム加工装置において、試料ホルダをイオン源
の口径と概略同一サイズとし、かつ、その内・外周に複
数列配置することにより、また、内・外周に複数列配置
した試料ホルダに、それぞれ自公転機構及び冷却機構を
設け、自公転機構内に設けた冷却機構を介して各試料ホ
ルダの裏面側まで冷却水を供給し、試料を直接冷却する
ことにより、達成することができる。
Means for Solving the Problems The above-mentioned object is to ionize an introduced gas into plasma to generate ions, a sample holder for holding a sample to be irradiated with the ions, and a drive mechanism for driving the sample holder. In an ion beam processing apparatus equipped with a vacuum chamber, the sample holders have substantially the same size as the diameter of the ion source, and are arranged in a plurality of rows inside and outside the sample holder, and also in a plurality of rows inside and outside the sample holder. Can be achieved by directly providing a cooling / revolving mechanism and a cooling mechanism, and supplying cooling water to the back side of each sample holder through the cooling mechanism provided in the rotating / revolution mechanism to directly cool the sample. .

【0005】[0005]

【作用】本発明は、試料ホルダの設置する径を大口径イ
オン源と概略同一径とし、かつ、その内周、外周のイオ
ンビーム照射面全面に試料ホルダを複数列そして全周に
配置することにより、引き出されたイオンビームを目一
杯活用し、また、試料ホルダ裏面にまで冷却水を通水し
て、試料を直接冷却することにより、試料の冷却特性を
改善し、加工精度(均一性や加工形状)を向上させ、高
スループット化を達成する。
According to the present invention, the diameter of the sample holder to be installed is substantially the same as that of the large-diameter ion source, and the sample holders are arranged in a plurality of rows and all around the ion beam irradiation surface on the inner and outer circumferences thereof. By making full use of the extracted ion beam, cooling water is passed to the back surface of the sample holder to directly cool the sample, improving the cooling characteristics of the sample and improving the processing accuracy (uniformity and The processed shape) is improved and high throughput is achieved.

【0006】[0006]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図4は、本発明を適用するイオンビーム加工装置の
構成図である。図4において、イオンビーム加工装置
は、イオン源アーク室1内でプラズマを発生させるため
の熱電子放出型イオン源(バケット型イオン源)を備え
ており、プラズマを発生させるため、まず、フィラメン
ト電極3からフィラメント4に電力を供給し、フィラメ
ント4を点灯させ、熱電子を放出させる。イオン源アー
ク室1の壁とフィラメント4との間に電圧を印加する
と、その間でアーク放電が生じ、放出された熱電子は、
イオン源アーク室1の外周上に配置された磁石の磁界
(図示せず)により螺旋運動を行う。このような状態の
イオン源アーク室1にガスを導入すると、ガス分子は熱
電子と衝突し、プラズマ化される。このプラズマ中イオ
ンは、イオン源アーク室1の真空チャンバ6側に設置さ
れた2枚のイオン源電極2間に印加される電圧により、
真空チャンバ6内に引き出される。引き出されたイオン
は、試料ホルダ10の前面に配置されたシャッタ5によ
り電気的に調整、設定される。このシャッタ5を開口し
た時、イオンビームは、試料ホルダ10に保持された試
料上に照射され、加工を開始する。試料ホルダ10は、
イオンビームによる試料の加工均一性を保ち、効率を向
上させるため、自公転機構や傾斜機構(図示せず)を備
えており、これらの機構は、収納容器12で密閉され
る。傾斜機構を駆動する傾斜駆動機構13は、真空チャ
ンバ6内の圧力とは隔離して大気圧下に設けられ、試料
の取出口となる真空チャンバ扉7を介して真空チャンバ
6の外部に設けられる。この傾斜駆動機構13に連接し
て設ける自公転機構を駆動する試料ホルダ10の駆動用
モータ11を含む回転駆動機構(図示せず)は、収納容
器12内に収納され、真空チャンバ6内部に設置され
る。この回転駆動機構に対する電源の供給及び試料ホル
ダ10に対する冷却水あるいはガスの供給は、傾斜駆動
機構13を介して行われる。8は主ゲート弁、9は真空
ポンプである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a configuration diagram of an ion beam processing apparatus to which the present invention is applied. In FIG. 4, the ion beam processing apparatus includes a thermionic emission type ion source (bucket type ion source) for generating plasma in the ion source arc chamber 1. In order to generate plasma, first, the filament electrode is used. Power is supplied from 3 to the filament 4 to light the filament 4 and emit thermoelectrons. When a voltage is applied between the wall of the ion source arc chamber 1 and the filament 4, an arc discharge occurs between them and the emitted thermoelectrons are
A spiral motion is performed by a magnetic field (not shown) of a magnet arranged on the outer circumference of the ion source arc chamber 1. When gas is introduced into the ion source arc chamber 1 in such a state, gas molecules collide with thermoelectrons and are converted into plasma. The ions in the plasma are generated by the voltage applied between the two ion source electrodes 2 installed on the vacuum chamber 6 side of the ion source arc chamber 1.
It is drawn out into the vacuum chamber 6. The extracted ions are electrically adjusted and set by the shutter 5 arranged on the front surface of the sample holder 10. When the shutter 5 is opened, the sample held by the sample holder 10 is irradiated with the ion beam to start processing. The sample holder 10 is
In order to maintain the processing uniformity of the sample by the ion beam and to improve the efficiency, a revolving mechanism and a tilting mechanism (not shown) are provided, and these mechanisms are sealed by the storage container 12. The tilt drive mechanism 13 for driving the tilt mechanism is provided under the atmospheric pressure so as to be isolated from the pressure in the vacuum chamber 6, and is provided outside the vacuum chamber 6 via the vacuum chamber door 7 serving as a sample outlet. . A rotation drive mechanism (not shown) including a drive motor 11 for driving the sample holder 10 connected to the tilt drive mechanism 13 is housed in the storage container 12 and installed in the vacuum chamber 6. To be done. The power supply to the rotation drive mechanism and the supply of cooling water or gas to the sample holder 10 are performed via the tilt drive mechanism 13. Reference numeral 8 is a main gate valve, and 9 is a vacuum pump.

【0007】次に、本発明の一実施例を図1〜図3によ
り説明する。図1は、本発明の一実施例を示すイオンビ
ーム加工装置の試料ホルダの縦断面図である。図1にお
いて、5はシャッタ、6は真空チャンバ、7は真空チャ
ンバ扉、10は外周側に設置した試料ホルダ、11は駆
動用モータ、20は内周側に設置した試料ホルダ、25
は公転軸、26は支持ベース、28は自転ホルダ内周側
固定歯車、34は歯車、35は歯車、36はモータカバ
ー、38は軸受、41はXリング、42は支持台、43
は冷却水出入口継手、45は傾斜機構軸、46は傾斜機
構軸受を示す。試料ホルダ10,20は、図4の傾斜駆
動機構13を操作すると、傾斜機構軸受46を軸受とし
て傾斜機構軸45が回転し、イオンビームに対して直角
または所定の角度に傾斜する。駆動用モータ11が駆動
されると、その駆動トルクは、歯車34,35を介して
ホルダ中央の公転軸25へ伝えられ、試料ホルダ10,
20を公転させると共に、自転ホルダ内周側固定歯車2
8及び外周側固定歯車30(図3に示す)を介して試料
ホルダ10,20を自転させる(詳細を後述する)。こ
こで、公転軸25に対向した軸受38は支持ベース26
に固定され、公転軸25と軸受38間はXリング41で
真空、水シールされる。同様に自転ホルダ内周側固定歯
車28及び外周側固定歯車も支持ベース26に固定され
る。また、支持ベース26は支持台42に固定される。
一方、試料ホルダ10,20に供給する冷却水は、冷却
水出入口継手43から矢印の方向に供給され、試料ホル
ダ10,20の試料21(図3に示す)を冷却後矢印の
方向に流れ、冷却水出入口継手43から排水される(詳
細を後述する)。
Next, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a vertical sectional view of a sample holder of an ion beam processing apparatus showing an embodiment of the present invention. 1, 5 is a shutter, 6 is a vacuum chamber, 7 is a vacuum chamber door, 10 is a sample holder installed on the outer peripheral side, 11 is a drive motor, 20 is a sample holder installed on the inner peripheral side, 25
Is a revolving shaft, 26 is a support base, 28 is a rotation holder inner peripheral side fixed gear, 34 is a gear, 35 is a gear, 36 is a motor cover, 38 is a bearing, 41 is an X ring, 42 is a support base, 43
Is a cooling water inlet / outlet joint, 45 is a tilt mechanism shaft, and 46 is a tilt mechanism bearing. When the tilt drive mechanism 13 of FIG. 4 is operated, the sample holders 10 and 20 rotate the tilt mechanism shaft 45 with the tilt mechanism bearing 46 as a bearing, and tilt the tilt angle to a right angle or a predetermined angle with respect to the ion beam. When the drive motor 11 is driven, its drive torque is transmitted to the revolution shaft 25 at the center of the holder via the gears 34, 35, and the sample holder 10,
20 and revolves around the inner circumference of the rotation holder fixed gear 2
8 and the outer peripheral side fixed gear 30 (shown in FIG. 3) to rotate the sample holders 10 and 20 (details will be described later). Here, the bearing 38 facing the revolution shaft 25 is the support base 26.
The orbiting shaft 25 and the bearing 38 are vacuum and water sealed with an X ring 41. Similarly, the inner peripheral side fixed gear 28 and the outer peripheral side fixed gear of the rotation holder are also fixed to the support base 26. The support base 26 is fixed to the support base 42.
On the other hand, the cooling water supplied to the sample holders 10 and 20 is supplied from the cooling water inlet / outlet joint 43 in the direction of the arrow, and flows in the direction of the arrow after cooling the sample 21 (shown in FIG. 3) of the sample holders 10 and 20, It is discharged from the cooling water inlet / outlet joint 43 (details will be described later).

【0008】図2は、図1に示すイオンビーム加工装置
の試料ホルダの一部を示す横断面図である。図2におい
て、5はシャッタ、6は真空チャンバ、10は外周側に
設置した試料ホルダ、20は内周側に設置した試料ホル
ダ、43は冷却水出入口継手、44は冷却水配管、46
は傾斜機構軸受を示す。本実施例では、外周側に設置し
た試料ホルダ10の内周に試料ホルダ20を設置し、イ
オンビーム照射による試料21(図3に示す)を冷却す
るために、それぞれの試料ホルダ10,20に冷却水出
入口継手43から矢印の方向に冷却配管44を介して冷
却水を供給する。なお、外周側に設置した試料ホルダ1
0に冷却水を供給する冷却配管は点線44’のように簡
略化して示した。また、右回転方向の矢印Aは公転軸2
5による試料ホルダ10,20の回転方向、そして、左
回転方向の矢印Bは自転ホルダ内周側固定歯車28及び
外周側固定歯車30(図3に示す)による試料ホルダ1
0,20の回転方向をそれぞれ示す。
FIG. 2 is a transverse sectional view showing a part of the sample holder of the ion beam processing apparatus shown in FIG. 2, 5 is a shutter, 6 is a vacuum chamber, 10 is a sample holder installed on the outer peripheral side, 20 is a sample holder installed on the inner peripheral side, 43 is a cooling water inlet / outlet joint, 44 is a cooling water pipe, 46
Indicates a tilt mechanism bearing. In the present embodiment, the sample holder 20 is installed on the inner circumference of the sample holder 10 installed on the outer circumference side, and in order to cool the sample 21 (shown in FIG. 3) due to ion beam irradiation, the sample holders 10 and 20 are respectively provided. Cooling water is supplied from the cooling water inlet / outlet joint 43 through the cooling pipe 44 in the direction of the arrow. The sample holder 1 installed on the outer circumference side
The cooling pipe for supplying the cooling water to 0 is simplified and shown as a dotted line 44 '. Further, the arrow A in the right rotation direction is the revolution shaft 2
5, the arrow B in the rotation direction of the sample holders 10 and 20 and the left rotation direction indicates the sample holder 1 formed by the rotation holder inner peripheral side fixed gear 28 and the outer peripheral side fixed gear 30 (shown in FIG. 3).
The rotation directions of 0 and 20 are shown respectively.

【0009】図3は、図1に示すイオンビーム加工装置
の試料ホルダの回転駆動機構と冷却水供給系統の詳細な
縦断面図である。図3において、10は外周側に設置し
た試料ホルダ、11は駆動用モータ、20は内周側に設
置した試料ホルダ、21は試料、24は自転軸、25は
公転軸、26は支持ベース、27は自転用歯車、28は
自転ホルダ内周側固定歯車、29は自転用歯車、30は
自転ホルダ外周側固定歯車、34は歯車、35は歯車、
36はモータカバー、37a,37bは自転ホルダの軸
受、38は軸受、40はOリング、41はXリング、4
2は支持台、43aは冷却水入口継手、43bは冷却水
出口継手、44は冷却水配管を示す。
FIG. 3 is a detailed vertical sectional view of the rotation drive mechanism of the sample holder and the cooling water supply system of the ion beam processing apparatus shown in FIG. In FIG. 3, 10 is a sample holder installed on the outer peripheral side, 11 is a drive motor, 20 is a sample holder installed on the inner peripheral side, 21 is a sample, 24 is a rotating shaft, 25 is a revolving shaft, 26 is a support base, 27 is a rotation gear, 28 is a rotation holder inner peripheral side fixed gear, 29 is a rotation gear, 30 is a rotation holder outer peripheral side fixed gear, 34 is a gear, 35 is a gear,
36 is a motor cover, 37a and 37b are bearings of a rotation holder, 38 is a bearing, 40 is an O ring, 41 is an X ring, 4
2 is a support stand, 43a is a cooling water inlet joint, 43b is a cooling water outlet joint, and 44 is a cooling water pipe.

【0010】まず、試料ホルダの自公転の回転駆動機構
について説明する。試料ホルダの回転駆動系として、駆
動用モータ11が駆動されると、その駆動トルクは、歯
車34,35を介してホルダ中央の公転軸25に伝えら
れ、公転軸25が回転して、外周側に設置した試料ホル
ダ10と内周側に設置した試料ホルダ20を公転させ
る。この公転軸25に対向した軸受38は支持ベース2
6に固定され、公転軸25と軸受38間は、Xリング4
1で真空、水シールされる。同様に自転ホルダ内周側固
定歯車28及び外周側固定歯車30も支持ベース26に
固定される。これに対して公転軸25側には外周側に設
置された、ワンタッチでブロックをさし込み固定可能な
自転ホルダの軸受37aと、その内周側に島状に配置さ
れた自転ホルダの軸受37bが固定される。その軸受3
7a,37bに対し、自転軸24が挿入され、各々各部
をOリング40で真空、水シールする。試料ホルダ1
0,20の各自転軸24には下部側に内周側自転用歯車
27及び外周側自転用歯車29が取り付いている。この
ため公転軸25は、駆動モータ11より駆動トルクを伝
達されると、歯車34と歯車35のギヤ比で決る公転数
で回転し、自転ホルダの軸受37a,37bも同様に回
転する。しかし、試料ホルダ10,20の各自転軸24
は、内周側自転用歯車27及び外周側自転用歯車29が
取付けられているため、試料ホルダ支持ベース26に固
定された自転ホルダ内周側固定歯車28及び外周側固定
歯車30と噛み合い、試料ホルダ10,20の各自転軸
24は、その内周側自転用歯車27及び外周側自転用歯
車29と自転ホルダ内周側固定歯車28及び自転ホルダ
外周側固定歯車30のギヤ比に比例した自転数で回転す
る。
First, a rotation drive mechanism for rotation of the sample holder will be described. When the drive motor 11 is driven as a rotary drive system of the sample holder, the drive torque is transmitted to the revolution shaft 25 at the center of the holder via the gears 34 and 35, and the revolution shaft 25 rotates to the outer peripheral side. The sample holder 10 installed on the inner side and the sample holder 20 installed on the inner peripheral side are revolved. The bearing 38 facing the revolution shaft 25 is the support base 2
6 is fixed, and the X-ring 4 is provided between the revolution shaft 25 and the bearing 38.
1 is vacuum and water sealed. Similarly, the inner peripheral side fixed gear 28 and the outer peripheral side fixed gear 30 of the rotation holder are also fixed to the support base 26. On the other hand, on the revolving shaft 25 side, the bearing 37a of the rotation holder, which is installed on the outer peripheral side and is capable of inserting and fixing the block with one touch, and the bearing 37b of the rotation holder, which is arranged in an island shape on the inner peripheral side thereof. Is fixed. The bearing 3
The rotation shaft 24 is inserted into 7a and 37b, and each portion is vacuum-sealed and water-sealed with an O-ring 40. Sample holder 1
An inner circumference side rotation gear 27 and an outer circumference side rotation gear 29 are attached to the lower side of each of the 0 and 20 rotation shafts 24. For this reason, when the drive torque is transmitted from the drive motor 11, the revolution shaft 25 rotates at a revolution number determined by the gear ratio between the gear 34 and the gear 35, and the bearings 37a and 37b of the rotation holder also rotate. However, each rotation shaft 24 of the sample holders 10 and 20
Since the inner circumference side rotation gear 27 and the outer circumference side rotation gear 29 are attached, the gear meshes with the rotation holder inner circumference side fixed gear 28 and the outer circumference side fixed gear 30 fixed to the sample holder support base 26, Each of the rotation shafts 24 of the holders 10 and 20 rotates in proportion to the gear ratio of the inner circumference side rotation gear 27 and the outer circumference side rotation gear 29, the rotation holder inner circumference side fixed gear 28, and the rotation holder outer circumference side fixed gear 30. Rotate by number.

【0011】つぎに、試料ホルダの冷却水供給機構(系
統)について説明する。真空チャンバ6の外部側に設置
された試料ホルダ傾斜機構は、図1で説明したように、
傾斜機構軸45と傾斜機構軸受46より構成され、この
傾斜機構軸受46にイオンビーム照射による試料21を
冷却するための冷却水を通す導水路(図示せず)が埋設
されている。冷却水(点印で示す)は、矢印のように、
傾斜機構軸受46に埋設した導水路を通じ、冷却配管4
4を介して、冷却水入口継手43aに供給される。冷却
水入口継手43aに供給された冷却水は、公転軸受38
に導入され(図面左向きの矢印)、回転継手を介して公
転軸25に導かれ(図面上向きの矢印)、公転軸25の
上面のプール状に広がった導水路に導かれる(図面左向
きの矢印)。このプール状に広がった導水路は、外周側
のワンタッチでブロックをさし込み固定可能な軸受37
aと、内周側の島状に配置された軸受37bのそれぞれ
の導水路に、公転軸25と同様に、回転継手を介して連
結され、また、それぞれの軸受37a,37bの導水路
は、試料ホルダ10,20の各自転軸24のそれぞれの
導水路に、公転軸25と同様に、回転継手を介して連結
される。公転軸25の上面のプール状に広がった導水路
に導かれた冷却水は、それぞれの軸受37a,37bの
導水路に導かれ(図面上向きの矢印)、試料ホルダ1
0,20の各自転軸24の上面側に供給される(図面左
と右向きの矢印)。かくして試料ホルダ22の下面側ま
で冷却水が通水され、試料21を直接冷却する。試料2
1を冷却した冷却水は、前述した導水路とは別の導水路
に導かれ、図示の矢印のように、試料ホルダ10,20
の各自転軸24の導水路から、それぞれの軸受37a,
37bの導水路、公転軸25の上面のプール状に広がっ
た導水路、公転軸25の図示の下向きの矢印の導水路に
導かれ、公転軸受38の導水路より冷却水出口継手43
bに導かれ、矢印のように、冷却配管44を介して、傾
斜機構軸受46に埋設した導水路(図示せず)を通じて
排給される。ここで、本実施例のイオンビーム加工装置
の試料ホルダは、外周側に設置した複数の試料ホルダ1
0と内周側に設置した複数の試料ホルダ20から構成さ
れ、それぞれ自公転機構を有するため、各試料ホルダへ
の冷却水は、内・外周に配置した試料ホルダ10,20
の各自転軸24が全数並列回路となるよう、公転軸25
のプール部を設け、このプール部から内・外周側に設置
した各試料ホルダに均等給水する。
Next, the cooling water supply mechanism (system) of the sample holder will be described. The sample holder tilting mechanism installed on the outside of the vacuum chamber 6 is, as described in FIG.
A tilt mechanism shaft 45 and a tilt mechanism bearing 46 are provided, and a water guiding channel (not shown) is buried in the tilt mechanism bearing 46 for passing cooling water for cooling the sample 21 by ion beam irradiation. Cooling water (indicated by dots) is
Through the water conduit embedded in the tilt mechanism bearing 46, the cooling pipe 4
4 is supplied to the cooling water inlet joint 43a. The cooling water supplied to the cooling water inlet joint 43a is supplied to the revolution bearing 38
Is introduced (arrow pointing left in the drawing), guided to the revolving shaft 25 via a rotary joint (arrow pointing up in the drawing), and guided to a pool-shaped water conduit on the upper surface of the revolving shaft 25 (arrow pointing left in the drawing). . This pool-shaped water guideway is a bearing 37 that allows the block to be inserted and fixed with one touch on the outer peripheral side.
a and the respective water conduits of the bearings 37b arranged in an island shape on the inner peripheral side are connected via a rotary joint similarly to the revolution shaft 25, and the water conduits of the respective bearings 37a and 37b are Similar to the revolution shaft 25, it is connected to the respective water conduits of the respective rotation shafts 24 of the sample holders 10 and 20 via rotary joints. The cooling water guided to the water conduit that spreads in a pool shape on the upper surface of the revolution shaft 25 is guided to the water conduits of the bearings 37a and 37b (arrows pointing upward in the drawing), and the sample holder 1
It is supplied to the upper surface side of each of the rotation shafts 0 and 20 (arrows pointing left and right in the drawing). Thus, the cooling water is passed to the lower surface side of the sample holder 22, and the sample 21 is directly cooled. Sample 2
The cooling water that has cooled 1 is introduced into a water conduit different from the above-mentioned water conduit, and sample holders 10, 20 are drawn as indicated by arrows.
From the water conduit of each of the rotating shafts 24 of the respective bearings 37a,
37 b, the water guide that spreads in a pool shape on the upper surface of the revolution shaft 25, and the water guide pipe of the downward arrow of the revolution shaft 25 that guides the cooling water outlet joint 43 from the water guide passage of the revolution bearing 38.
b, and is discharged through a water conduit (not shown) embedded in the tilt mechanism bearing 46 via the cooling pipe 44 as indicated by the arrow. Here, the sample holder of the ion beam processing apparatus of the present embodiment includes a plurality of sample holders 1 installed on the outer peripheral side.
0 and a plurality of sample holders 20 installed on the inner circumference side, each having a rotation / revolution mechanism, so that the cooling water to each of the sample holders 10 and 20 arranged on the inner and outer circumferences is cooled.
Revolution axis 25 so that each rotation axis 24 of
A pool section is provided, and water is evenly supplied from this pool section to each sample holder installed on the inner and outer circumference sides.

【0012】本実施例は、以上説明したように、試料ホ
ルダの設置する径を例えばφ400以上の大口径イオン
源と概略同一径とし、かつ、その内周、外周にそれぞれ
複数列の試料ホルダを配置することにより、引き出され
たイオンビームを目一杯活用し、また、内周、外周に設
置したそれぞれの試料ホルダの裏面にまで冷却水を通水
する直接冷却とすることにより、試料の冷却特性を改善
し、加工精度(均一性や加工形状)を向上させ、高スル
ープット化を達成することができる。
In this embodiment, as described above, the diameter of the sample holder to be installed is approximately the same as that of a large-diameter ion source of, for example, φ400 or more, and a plurality of rows of sample holders are provided on the inner circumference and outer circumference, respectively. By arranging it, the extracted ion beam can be fully utilized, and the cooling characteristics of the sample can be reduced by direct cooling water flowing to the back surface of each sample holder installed on the inner and outer circumferences. It is possible to improve processing accuracy (uniformity and processing shape) and achieve high throughput.

【0013】[0013]

【発明の効果】以上説明したように、本発明によれば、
試料ホルダの設置する径を例えばφ400以上の大口径
イオン源と概略同一径とし、かつ、その内周、外周のイ
オンビーム照射面全面に試料ホルダを複数列そして全周
に配置することにより、引き出されたイオンビームを目
一杯活用し、また、試料ホルダ裏面にまで冷却水を通水
して、試料を直接冷却することにより、試料の冷却特性
を改善し、加工精度(均一性や加工形状)を向上させ、
高スループット化を達成することができる。
As described above, according to the present invention,
The diameter of the sample holder is approximately the same as that of a large-diameter ion source with a diameter of φ400 or more, and the sample holders are arranged in multiple rows and all around the ion beam irradiation surface on the inner and outer circumferences of the ion holder. The cooling characteristics of the sample are improved and the processing accuracy (uniformity and processing shape) is improved by fully utilizing the generated ion beam, and by cooling water through the back side of the sample holder to cool the sample directly. Improve
Higher throughput can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すイオンビーム加工装置
の試料ホルダの縦断面図
FIG. 1 is a vertical sectional view of a sample holder of an ion beam processing apparatus showing an embodiment of the present invention.

【図2】図1に示すイオンビーム加工装置の試料ホルダ
の一部を示す横断面図
2 is a cross-sectional view showing a part of a sample holder of the ion beam processing apparatus shown in FIG.

【図3】図1に示すイオンビーム加工装置の試料ホルダ
の回転駆動機構と冷却水供給機構(系統)の詳細な縦断
面図
FIG. 3 is a detailed vertical sectional view of a rotation drive mechanism and a cooling water supply mechanism (system) of the sample holder of the ion beam processing apparatus shown in FIG.

【図4】本発明を適用するイオンビーム加工装置の構成
FIG. 4 is a block diagram of an ion beam processing apparatus to which the present invention is applied.

【図5】従来構造のイオンビーム加工装置の試料ホルダ
の一部を示す横断面図
FIG. 5 is a cross-sectional view showing a part of a sample holder of an ion beam processing apparatus having a conventional structure.

【符号の説明】[Explanation of symbols]

10 試料ホルダ 11 駆動用モータ 20 試料ホルダ 21 試料 24 自転軸 25 公転軸 26 支持ベース 27 自転用歯車 28 自転ホルダ内周側固定歯車 29 自転用歯車 30 自転ホルダ外周側固定歯車 34 歯車 35 歯車 37 軸受 38 軸受 43 冷却水出入口継手 44 冷却水配管 45 傾斜機構軸 46 傾斜機構軸受 10 sample holder 11 drive motor 20 sample holder 21 sample 24 rotating shaft 25 revolving shaft 26 support base 27 rotating gear 28 rotating holder inner peripheral side fixed gear 29 rotating gear 30 rotating holder outer peripheral fixed gear 34 gear 35 gear 37 bearing 38 bearing 43 cooling water inlet / outlet joint 44 cooling water pipe 45 tilt mechanism shaft 46 tilt mechanism bearing

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/203 S 9545−4M 21/3065 21/31 D // C23C 14/50 H 8939−4K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 21/203 S 9545-4M 21/3065 21/31 D // C23C 14/50 H 8939-4K

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導入したガスをプラズマ化し、イオンを
生成させるイオン源と、このイオンを照射する試料を保
持する試料ホルダと、試料ホルダを駆動する駆動機構
と、真空チャンバとを備えるイオンビーム加工装置にお
いて、試料ホルダをイオン源の口径と概略同一サイズと
し、かつ、その内・外周に複数列配置することを特徴と
するイオンビーム加工装置。
1. Ion beam processing comprising an ion source for plasmaizing the introduced gas to generate ions, a sample holder for holding a sample for irradiating the ions, a drive mechanism for driving the sample holder, and a vacuum chamber. In the apparatus, the ion beam processing apparatus is characterized in that the sample holders have substantially the same size as the diameter of the ion source, and a plurality of rows are arranged inside and outside the sample holder.
【請求項2】 請求項1において、内・外周に複数列配
置した試料ホルダは、それぞれ自公転機構及び冷却機構
を有し、自公転機構内に設けた冷却機構を介して各試料
ホルダの裏面側まで冷却水を供給し、試料を直接冷却す
ることを特徴とするイオンビーム加工装置。
2. The sample holder according to claim 1, wherein the sample holders arranged in a plurality of rows on the inner and outer circumferences respectively have a rotation and revolution mechanism and a cooling mechanism, and the back surface of each sample holder is provided via a cooling mechanism provided in the rotation and revolution mechanism. An ion beam processing device characterized in that cooling water is supplied to the side to directly cool the sample.
【請求項3】 請求項2において、自公転機構は、駆動
用モータの駆動トルクをホルダ中央の公転軸に伝え、公
転軸を回転して、外周側に設置した試料ホルダと内周側
に設置した試料ホルダを公転させると同時に、公転軸の
回転を、内周側自転用歯車及び外周側自転用歯車と自転
ホルダ内周側固定歯車及び外周側固定歯車を介して試料
ホルダの各自転軸24に伝達し、各自転軸24を回転し
て、外周側に設置した試料ホルダと内周側に設置した試
料ホルダを自転させることを特徴とするイオンビーム加
工装置。
3. The revolving mechanism according to claim 2, wherein the drive torque of the drive motor is transmitted to the revolution shaft in the center of the holder, the revolution shaft is rotated, and the sample holder is installed on the outer peripheral side and the sample holder is installed on the inner peripheral side. The sample holder is revolved, and at the same time, the revolution shaft is rotated by rotating each of the rotation shafts 24 of the sample holder through the inner circumference side rotation gear and the outer circumference side rotation gear, the rotation holder inner circumference side fixed gear and the outer circumference side fixed gear. To rotate each of the rotation shafts 24 to rotate the sample holder installed on the outer peripheral side and the sample holder installed on the inner peripheral side.
【請求項4】 請求項2において、冷却機構は、冷却水
を試料ホルダ傾斜機構に埋設した導水路から公転軸受及
び公転軸に設けた導水路を経て公転軸の上面のプール状
に広がった導水路に導き、内・外周に配置したそれぞれ
の自転ホルダの軸受の導水路を経てそれぞれの試料ホル
ダの各自転軸の上面側に供給して、試料を直接冷却する
ことを特徴とするイオンビーム加工装置。
4. The cooling mechanism according to claim 2, wherein the cooling water is spread from a water conduit embedded in the sample holder tilting mechanism to a pool shape on the upper surface of the revolution shaft through a water conduit provided in the revolution bearing and the revolution shaft. Ion beam processing characterized by directing the sample to the water channel, supplying it to the upper surface side of each rotation axis of each sample holder via the water guide channel of the bearing of each rotation holder arranged inside and outside, and directly cooling the sample apparatus.
JP6243396A 1994-09-12 1994-09-12 Processing equipment by ion beam Pending JPH0883834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6243396A JPH0883834A (en) 1994-09-12 1994-09-12 Processing equipment by ion beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6243396A JPH0883834A (en) 1994-09-12 1994-09-12 Processing equipment by ion beam

Publications (1)

Publication Number Publication Date
JPH0883834A true JPH0883834A (en) 1996-03-26

Family

ID=17103247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6243396A Pending JPH0883834A (en) 1994-09-12 1994-09-12 Processing equipment by ion beam

Country Status (1)

Country Link
JP (1) JPH0883834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107226A (en) * 2006-10-26 2008-05-08 Jeol Ltd Sample preparing system
JP2013507776A (en) * 2009-10-09 2013-03-04 クリー インコーポレイテッド Multi-rotation epitaxial growth apparatus and reactor incorporating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107226A (en) * 2006-10-26 2008-05-08 Jeol Ltd Sample preparing system
JP2013507776A (en) * 2009-10-09 2013-03-04 クリー インコーポレイテッド Multi-rotation epitaxial growth apparatus and reactor incorporating the same
US9637822B2 (en) 2009-10-09 2017-05-02 Cree, Inc. Multi-rotation epitaxial growth apparatus and reactors incorporating same

Similar Documents

Publication Publication Date Title
JP2556637B2 (en) Deposition system on substrate by magnetron cathode
US4417968A (en) Magnetron cathode sputtering apparatus
JPH06508886A (en) Cantilever mounting for rotating cylindrical magnetron
US5370737A (en) Vacuum treatment apparatus comprising annular treatment chamber
JPS61183461A (en) Evaporation source for vacuum coating apparatus
JP5248254B2 (en) X-ray generation method and X-ray generation apparatus
JPH0883834A (en) Processing equipment by ion beam
EP1435400A1 (en) Film deposition system and film deposition method using the same
US3689790A (en) Moving target sealed x-ray tube
US3794872A (en) Moving target spring loaded x-ray tube
JPH0925573A (en) Sputtering apparatus
US7982197B2 (en) Ion implantation apparatus and a method for fluid cooling
US4128781A (en) X-ray tube
US5569361A (en) Method and apparatus for cooling a sputtering target
KR0178555B1 (en) Magnetron sputter coating method and apparatus with rotating magnet cathode
JPH0794711B2 (en) Rotary table for ion plating device
US4891516A (en) Device for axially and angularly positioning a beam or the like in a sealed chamber
JP4219566B2 (en) Sputtering equipment
EP0801416A1 (en) Plasma processing chamber with epicyclic magnet source assembly
JPH0688229A (en) Electric control for rotation of magnetic zone of spattering target in double cylindrical magnetron
JP4005687B2 (en) Magnetron apparatus and sputtering apparatus
JPH08227685A (en) Ion shower doping device
JP2004172135A (en) X-ray generating method and rotary anticathode x-ray generator
JP3679113B2 (en) Layer deposition method and apparatus
JPH0348200A (en) Utilization device and method for synchrotron radiation beam

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees