JPH0883768A - Method and device for forming thin film - Google Patents

Method and device for forming thin film

Info

Publication number
JPH0883768A
JPH0883768A JP21618294A JP21618294A JPH0883768A JP H0883768 A JPH0883768 A JP H0883768A JP 21618294 A JP21618294 A JP 21618294A JP 21618294 A JP21618294 A JP 21618294A JP H0883768 A JPH0883768 A JP H0883768A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
thin film
semiconductor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21618294A
Other languages
Japanese (ja)
Inventor
Naoharu Sugiyama
直治 杉山
Hiroyuki Kanetani
宏行 金谷
Koji Usuda
宏治 臼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21618294A priority Critical patent/JPH0883768A/en
Publication of JPH0883768A publication Critical patent/JPH0883768A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To safely and easily clean a semiconductor substrate on which an oxide film is formed at a low temperature by heating the substrate in a high- vacuum, hydrogen gas, argon gas, or nitrogen gas atmosphere in which the coming off of oxides from the surface of the semiconductor is substantially faster than the oxidation of the surface. CONSTITUTION: An oxide film having 1nm thick is formed on the surface of a semiconductor (Si) substrate 2 for forming thin film by treating the substrate 2 with sulfuric acid and hydrogen peroxide solution. The substrate 2 is introduced to a thin film forming device and set in a pretreatment chamber 3 and Si ions are implanted into the oxide film with energy of 20-1,000eV by operating an ion implanting device 6. Then the substrate 2 carrying the oxide film implanted with Si ions is introduced to a thin film growing chamber 4 and heated in a vacuum. As a result of the heating, the oxide film is evaporated and the clean surface of the Si substrate is exposed. After the surface of the Si substrate 2 is cleaned and a disilane gas is introduced to the chamber 4, and then, an Si thin film is grown on the cleaned surface of the substrate 2, the substrate 2 is taken out from the chamber 4 through an unloading chamber 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】半導体装置の製造プロセスにおいて、薄
膜成長技術はイオン注入法に代わるp-n 接合形成手段と
して注目されている。すなわち、イオン注入法の場合
は、イオン注入による不純物の深さ方向への分布の揺ら
ぎが本質的に起こるのに対して、薄膜成長法では異なる
不純物を含む半導体層を積層することにより、極めて急
峻な接合界面を形成し得る可能性がある。しかし、薄膜
形成(成長)技術を応用する半導体装置の製造プロセス
では、半導体(結晶)基板表面の残留不純物が作製され
る半導体装置の品質に極めて大きな影響を及ぼす。たと
えばSi結晶表面の場合、その表面に存在する自然酸化
膜、有機汚染物、重金属などの残留不純物は、薄膜ゲー
ト酸化膜の高精度の制御を困難にしたり、絶縁耐圧など
の電気特性の劣化を招来する。または、メタルオーミッ
クコンタクトの作製において、直列抵抗の増加や整流特
性の劣化といった、プロセス阻害要因や素子性能低下要
因として働く。したがって、上記の残留不純物の無いク
リーンな半導体結晶表面の形成は、半導体製造装置作成
プロセスにおいて不可欠といえる。
2. Description of the Related Art In a semiconductor device manufacturing process, a thin film growth technique has been attracting attention as a pn junction forming means instead of an ion implantation method. That is, in the case of the ion implantation method, the fluctuation of the distribution of the impurities in the depth direction due to the ion implantation essentially occurs, whereas in the thin film growth method, the semiconductor layers containing different impurities are laminated to make it extremely steep. It may be possible to form an excellent bonding interface. However, in a semiconductor device manufacturing process to which a thin film forming (growth) technique is applied, residual impurities on the surface of a semiconductor (crystal) substrate have an extremely large effect on the quality of the manufactured semiconductor device. For example, in the case of a Si crystal surface, residual impurities such as a natural oxide film, organic contaminants, and heavy metals on the surface make it difficult to control the thin gate oxide film with high accuracy and deteriorate the electrical characteristics such as withstand voltage. Invite. Alternatively, in the production of a metal ohmic contact, it acts as a process impeding factor or a device performance deteriorating factor such as an increase in series resistance or deterioration of rectification characteristics. Therefore, it can be said that the formation of a clean semiconductor crystal surface free from the above-mentioned residual impurities is indispensable in the semiconductor manufacturing apparatus manufacturing process.

【0003】しかしながら、従来採られている半導体
(結晶)基板表面の清浄化法においては、結晶表面の残
留不純物が必ずしも十分に低減されているとはいい難
く、半導体結晶表面汚染に起因すると考えられる半導体
素子の性能低下が、プロセス依存性としてしばしば観測
される。この課題に対する一解決策として、 RCA洗浄
(W.Kern RCA Review Vol.31(1970)などによって、Si表
面を酸化膜で覆う方法が適用される場合がある。
However, in the conventional method for cleaning the surface of a semiconductor (crystal) substrate, it is difficult to say that the residual impurities on the crystal surface are not necessarily sufficiently reduced, and it is considered that this is due to contamination of the semiconductor crystal surface. Degradation of semiconductor device performance is often observed as process dependence. As a solution to this problem, a method of covering the Si surface with an oxide film by RCA cleaning (W. Kern RCA Review Vol.31 (1970)) may be applied.

【0004】一般にSi基板上に酸化膜を形成すると、酸
化膜形成前のSi基板上の残留不純物、すなわち、炭素,
酸素などが酸化膜中に取り込まれる。そこで、前記酸化
膜を形成後、酸化膜を除去する次の工程で、Si基板表面
に対する残留不純物の付着を抑えることができれば、清
浄なSi表面を得ることができる。上記の RCA洗浄の場合
は、Si基板上に 1nm以上の酸化膜を形成した後、Si基板
の加熱が可能な真空装置内に導入し、たとえば10-8Pa程
度の、Si基板を汚染する可能性が低い高真空中で 900〜
1000℃の温度で加熱することにより、酸化膜を脱離させ
て清浄表面を得ることが可能になる。
Generally, when an oxide film is formed on a Si substrate, residual impurities on the Si substrate before the oxide film is formed, that is, carbon,
Oxygen and the like are taken into the oxide film. Therefore, if the adhesion of residual impurities to the surface of the Si substrate can be suppressed in the next step of removing the oxide film after forming the oxide film, a clean Si surface can be obtained. In the case of the above-mentioned RCA cleaning, after forming an oxide film of 1 nm or more on the Si substrate, it is introduced into a vacuum device that can heat the Si substrate, and it is possible to contaminate the Si substrate, for example, about 10 -8 Pa. 900 ~ in low vacuum
By heating at a temperature of 1000 ° C, the oxide film can be desorbed and a clean surface can be obtained.

【0005】また、前記低温プロセス化の他の手段とし
て、たとえば過酸化水素,硫酸−過酸化水素,硝酸,水
酸化アンモニア−過酸化水素,塩酸−過酸化水素などの
化学薬品水溶液、あるいは酸素ガス,塩酸−酸素ガス,
水素−酸素ガスなどのガス雰囲気で処理し、酸化膜を形
成(生成)した後、真空中, 900℃で加熱処理を施し
て、前記生成させた酸化膜を揮散させて清浄面を露出さ
せる手段も知られている。
Further, as another means for the low temperature process, for example, an aqueous solution of chemicals such as hydrogen peroxide, sulfuric acid-hydrogen peroxide, nitric acid, ammonia hydroxide-hydrogen peroxide, hydrochloric acid-hydrogen peroxide, or oxygen gas. , Hydrochloric acid-oxygen gas,
Means for forming (generating) an oxide film by treating in a gas atmosphere such as hydrogen-oxygen gas, and then performing heat treatment at 900 ° C. in a vacuum to volatilize the generated oxide film to expose a clean surface. Is also known.

【0006】[0006]

【発明が解決しようとする課題】前記 RCA洗浄手段で
は、酸化膜の形成工程が比較的簡便である上、大気中に
放置しておいても界面が酸化膜で保護されているため、
取り扱いが容易である。しかしながら、Si基板の加熱が
高真空下で可能な真空排気装置を不可欠とするばかりで
なく、たとえば 6インチ以上の大口径ウェハーを処理す
る場合、装置サイズの拡大、装置価格の増大が課題とな
る。さらに、最大の問題点は、半導体基板上に作成され
るデバイスの微細化が顕著な、最近のICなどでは、同一
基板上に異なる半導体装置を形成する複雑な半導体製造
プロセスが要求され始めていることにある。すなわち、
従来の高真空加熱プロセスを全ての工程で適用すること
なく、より低温で半導体装置を形成するプロセスが不可
欠となってきた。たとえば、イオン注入法などでドーピ
ング層を形成してある半導体基板面に、パターニング処
理など施して、前記パターニング処理面に異なる電気伝
導性を有する薄膜を成長(形成)する場合、前記半導体
基板のドーピングプロファイルを崩さないためにも、薄
膜成長(形成)に先立っての表面清浄化処理を低温度で
行うことが重要である。さらに具体的には、たとえばバ
イポーラトランジスタおよび MOSトランジスタを複合化
Bi-CMOS LSIなどでは、CMOS部分を作成した後にバイポ
ーラ部分を作成することになる。ここで、バイポーラ部
分のベース層を薄膜成長技術で作成するに先立って、基
板面の清浄化処理を高温で行うと、既に作成してあるCM
OS部分の不純物分布が大きく変ってしまい素子特性の劣
化が懸念される。つまり、たとえば 800℃以下の基板温
度で半導体製造プロセスを行なうこと、すなわち、基板
清浄化において、より低温で清浄なSi基板表面を得るこ
との可能なプロセスが要求され始めている。さらに詳述
すると、薄膜成長用の原料および薄膜成長雰囲気中の不
純物を極力低減する一方、表面清浄なSi基板を用い、か
つ基板温度を 750℃程度以下に設定することにより、成
膜中の温度による不純物拡散が無視できる程度に低減
し、急峻な界面形成が可能となる。
In the RCA cleaning means, the oxide film forming process is relatively simple, and the interface is protected by the oxide film even when left in the atmosphere.
Easy to handle. However, not only is an evacuation device capable of heating the Si substrate under high vacuum indispensable, but, for example, when processing large-diameter wafers of 6 inches or more, an increase in device size and an increase in device price become issues. . Furthermore, the biggest problem is that the miniaturization of devices created on a semiconductor substrate is remarkable, and in recent ICs and the like, complicated semiconductor manufacturing processes for forming different semiconductor devices on the same substrate are beginning to be required. It is in. That is,
A process of forming a semiconductor device at a lower temperature has become indispensable without applying the conventional high vacuum heating process in all steps. For example, in the case where a thin film having different electrical conductivity is grown (formed) on the patterning surface by performing patterning processing or the like on the surface of the semiconductor substrate on which the doping layer is formed by the ion implantation method or the like, the doping of the semiconductor substrate is performed. In order not to destroy the profile, it is important to perform the surface cleaning treatment at a low temperature prior to thin film growth (formation). More specifically, for example, combine bipolar transistors and MOS transistors
In a Bi-CMOS LSI or the like, the bipolar part is created after the CMOS part is created. If the substrate surface is cleaned at high temperature before the base layer of the bipolar part is formed by the thin film growth technique, the CM
There is concern that the impurity distribution in the OS part will change significantly and the device characteristics will deteriorate. That is, for example, a semiconductor manufacturing process is performed at a substrate temperature of 800 ° C. or lower, that is, a process capable of obtaining a clean Si substrate surface at a lower temperature is beginning to be required in substrate cleaning. More specifically, the impurities in the thin film growth raw material and the thin film growth atmosphere are reduced as much as possible, while the temperature during film formation is reduced by using a clean surface Si substrate and setting the substrate temperature to about 750 ° C or lower. Impurity diffusion due to is reduced to a negligible level, and a steep interface can be formed.

【0007】しかしながら、現状では、とりわけ、低温
化プロセスの効果が期待できるSi基板の表面清浄化につ
いての完全な解決策が示されておらず、より低温でのSi
表面清浄化プロセスの実現が望まれていた。そして、フ
ッ化水素(HF)溶液中で自然酸化膜を除去後において、
水素終端した表面は大気中でも比較的安定であることが
最近示されている。しかしながら、やはり処理後の時間
経過とともに、表面の残留不純物は、たとえば炭素や酸
素といった残留不純物が%オーダの表面密度で増加して
いくので、決定的な表面保持法とはなり得ない。さら
に、フッ化水素水溶液によって自然酸化膜を除去した
後、純水出の洗浄値中に再び酸化膜が発生するのを回避
するために、純水での洗浄工程を省略する試みもある。
しかし、この方法は腐食性の極めて強いフッ酸水溶液に
浸した直後の基板および治具を(フッ化水素水溶液滴が
小量付着したまま)取りだし、次ぎの工程に進むため、
工業的に問題がある。
However, at present, in particular, a complete solution for cleaning the surface of a Si substrate, which can be expected to have an effect of a low temperature process, has not been shown, and Si at a lower temperature cannot be obtained.
Realization of a surface cleaning process has been desired. And after removing the natural oxide film in hydrogen fluoride (HF) solution,
It has recently been shown that hydrogen-terminated surfaces are relatively stable in air. However, the residual impurities on the surface cannot be a decisive surface holding method because residual impurities such as carbon and oxygen increase with the surface density on the order of%, as time passes after the treatment. Further, there is also an attempt to omit the cleaning step with pure water after the natural oxide film is removed by the hydrogen fluoride aqueous solution, in order to prevent the oxide film from being generated again during the cleaning value of pure water.
However, this method takes out the substrate and jig immediately after they are immersed in the hydrofluoric acid aqueous solution, which is extremely corrosive (with a small amount of hydrogen fluoride aqueous solution droplets attached), and proceeds to the next step.
There is an industrial problem.

【0008】上記のように、半導体(結晶)、たとえば
si基板上への薄膜形成工程においては、より低温で半導
体(結晶)基板面の清浄を確保し、形成する薄膜との界
面を制御するために、低温で実現し得る表面制御技術が
不可欠なものとして検討されてはいるものの、従来知ら
れている方法は、安全、かつ簡便で、清浄度を確保しつ
つ、半導体表面上に酸化膜、結晶、非晶質、ポリなどを
形成することは困難であるという問題点があった。
As described above, semiconductors (crystals), for example,
In the thin film formation process on the si substrate, the surface control technology that can be realized at low temperature is indispensable to ensure the cleanliness of the semiconductor (crystal) substrate surface at a lower temperature and control the interface with the thin film to be formed. However, the conventionally known method is safe and simple, and it is difficult to form an oxide film, crystal, amorphous, poly, etc. on the semiconductor surface while ensuring cleanliness. There was a problem that was.

【0009】本発明は、かかる事情に鑑みてなされたも
のであって、半導体表面の清浄化をより低温、安全かつ
簡便に実現し、半導体基板面上に高品質な薄膜を形成さ
せて、より高性能の半導体装置を実現し得る薄膜形成方
法および薄膜形成装置の提供を目的とする。
The present invention has been made in view of the above circumstances, and realizes cleaning of a semiconductor surface at a lower temperature, safely and simply, and a high quality thin film is formed on the surface of a semiconductor substrate. An object of the present invention is to provide a thin film forming method and a thin film forming apparatus capable of realizing a high-performance semiconductor device.

【0010】[0010]

【課題を解決するための手段】本発明に係る第1の薄膜
形成方法は、半導体基板面上に膜厚 1nm以下の酸化膜を
形成する工程と、前記酸化膜を形成した半導体基板を高
真空,水素ガス,アルゴンガス,窒素ガスなど半導体表
面の酸化よりも、実質的に表面からの酸化物の脱離の方
が速い雰囲気中で加熱する工程と、前記加熱により表面
酸化膜を脱離させて清浄な半導体表面を得る工程と、前
記清浄化した半導体表面に薄膜を形成する工程とを具備
して成ることを特徴としている。
A first thin film forming method according to the present invention comprises a step of forming an oxide film having a film thickness of 1 nm or less on a surface of a semiconductor substrate, and a high vacuum of the semiconductor substrate having the oxide film formed thereon. , A step of heating in an atmosphere in which the desorption of oxides from the surface is substantially faster than the oxidation of the semiconductor surface, such as hydrogen gas, argon gas, or nitrogen gas, and the surface oxide film is desorbed by the heating. And a step of forming a thin film on the cleaned semiconductor surface.

【0011】そして、この薄膜形成方法においては、半
導体基板面上に膜厚 1nm以下の酸化膜を形成する工程に
先立って、半導体基板の表面を酸化する速度よりもエッ
チングする速度が速い液体で洗浄する工程を採ることが
望ましく、また、酸化物の脱離の方が速い雰囲気中での
加熱は、 800℃以下で行うことが好ましい。
In this thin film forming method, prior to the step of forming an oxide film having a thickness of 1 nm or less on the surface of the semiconductor substrate, the surface of the semiconductor substrate is washed with a liquid having a faster etching rate than an oxidizing rate. It is desirable that the heating step be performed, and that heating in an atmosphere in which oxide desorption is faster is performed at 800 ° C. or lower.

【0012】本発明に係る第2の薄膜形成方法は、半導
体基板面上に酸化膜を形成する工程と、前記形成した半
導体基板の酸化膜に20〜1000eVのエネルギーでシリコン
イオンをイオン注入する工程と、前記イオン注入処理を
施した半導体基板を高真空,水素ガス,アルゴンガス,
窒素ガスあるいはこれらの2種以上の混合ガスなどの雰
囲気中で加熱処理を施し、酸化膜を揮散・除去して清浄
な半導体表面を得る工程と、前記清浄化した半導体表面
に薄膜を形成する工程とを具備して成ることを特徴とし
ている。
A second method of forming a thin film according to the present invention comprises a step of forming an oxide film on a surface of a semiconductor substrate and a step of implanting silicon ions into the oxide film of the formed semiconductor substrate with energy of 20 to 1000 eV. And the semiconductor substrate that has been subjected to the ion implantation process under high vacuum, hydrogen gas, argon gas,
A step of performing a heat treatment in an atmosphere of nitrogen gas or a mixed gas of two or more of these gases to volatilize and remove the oxide film to obtain a clean semiconductor surface; and a step of forming a thin film on the cleaned semiconductor surface. It is characterized by comprising and.

【0013】本発明に係る第3の薄膜形成方法は、半導
体基板をフッ化水素系溶液に浸し基板表面の酸化膜を除
去する工程と、前記酸化膜を除去した半導体基板表面を
水素で終端化する工程と、前記表面を水素で終端化した
半導体基板を残留酸素分圧および残留水蒸気分圧が 1×
10-8Pa以下の真空中に収容・装着する工程と、前記真空
系の酸素分圧を 1×10-6Pa〜 1×10-3Paに制御する一
方、半導体基板温度を 500〜 800℃に制御して表面の不
純物を除去した後、原料気体を導入して半導体基板面に
薄膜を成長させる工程とを具備して成ることを特徴とす
る。
A third method of forming a thin film according to the present invention comprises the steps of immersing a semiconductor substrate in a hydrogen fluoride solution to remove an oxide film on the substrate surface, and terminating the semiconductor substrate surface from which the oxide film has been removed with hydrogen. And the semiconductor substrate whose surface is terminated with hydrogen has a residual oxygen partial pressure and residual water vapor partial pressure of 1 ×.
The process of accommodating and mounting in a vacuum of 10 -8 Pa or less, and controlling the oxygen partial pressure of the vacuum system to 1 × 10 -6 Pa to 1 × 10 -3 Pa, while the semiconductor substrate temperature is 500 to 800 ° C. And removing impurities on the surface by controlling the temperature to 2) and introducing a source gas to grow a thin film on the surface of the semiconductor substrate.

【0014】そして、この薄膜形成方法においては、半
導体基板が少なくとも1か所に p-n接合を有している場
合、成膜時の基板温度を 750℃以下に設定することが望
ましい。
In this thin film forming method, when the semiconductor substrate has a pn junction at at least one place, it is desirable to set the substrate temperature during film formation to 750 ° C. or lower.

【0015】本発明に係る薄膜形成装置は、成長用の真
空容器と、前記真空容器内を残留酸素分圧および残留水
蒸気分圧が 1×10-8Pa以下の真空系に排気する排気機構
と、前記真空容器に内装され成長用の半導体基板を支持
する基板支持機構と、前記基板支持機構に支持される半
導体基板を 500〜 800℃に加熱する温度制御可能な基板
加熱体と、前記真空容器内にIV族元素を含む原料気体を
導入する原料気体導入部と、前記真空系の酸素分圧を 1
×10-6Pa〜 1×10-3Paに制御する酸素分圧制御部とを具
備して成ることを特徴とする。
A thin film forming apparatus according to the present invention comprises a vacuum container for growth, and an exhaust mechanism for exhausting the inside of the vacuum container to a vacuum system having a residual oxygen partial pressure and a residual water vapor partial pressure of 1 × 10 −8 Pa or less. A substrate supporting mechanism that is installed in the vacuum container and supports a semiconductor substrate for growth; a substrate heater that can control the temperature of the semiconductor substrate supported by the substrate supporting mechanism to 500 to 800 ° C .; and the vacuum container A raw material gas introduction part for introducing a raw material gas containing a group IV element inside, and the oxygen partial pressure of the vacuum system
It is characterized by comprising an oxygen partial pressure control unit for controlling the pressure from × 10 -6 Pa to 1 × 10 -3 Pa.

【0016】なお、本発明は次ぎのような実験・試行に
基づいてなされたものである。すなわち、表面に自然酸
化物が残存しているシリコン(Si)基板を、フッ化水素水
溶液に浸漬して、浸漬時間(秒)と自然酸化物の残存膜
厚(nm)の関係を検討したところ、図1に示すごとくであ
り、酸化膜厚をサブnmのオーダーで制御することが可能
であった。次ぎに、前記処理面に膜厚 1nm以下、たとえ
ば 0.5nmの酸化膜をSi基板面に形成した後、高真空中
(たとえば 2×10-7Pa)に導入して 800℃以下(たとえ
ば 790℃)で加熱後の基板表面残留不純物量を、オージ
ェ電子分光法 (Auger-Electron-Spectroscopy:AES)で評
価したところ、図2示すごとくであり、AES信号のうち
酸素ピーク強度の減少から、Si基板面の酸化膜離脱が確
認された。ここで、 800℃以下の低温加熱で、酸化膜の
離脱が完了した基板表面は、たとえばフッ酸水溶液およ
び純水洗浄によってSi基板面を水素終端処理してから、
大気を介して真空中に導入した後の清浄化処理面に比べ
て、基板表面の残留不純物である炭素量,酸素量がそれ
ぞれ数分の1に低減していることを示す。つまり、酸化
膜の厚さによっては、より低温での加熱処理でも酸化膜
の離脱が容易に起こることを見出した。
The present invention was made based on the following experiments and trials. That is, a silicon (Si) substrate on which a native oxide remains is immersed in an aqueous solution of hydrogen fluoride, and the relationship between the immersion time (seconds) and the remaining film thickness of the native oxide (nm) is examined. As shown in FIG. 1, it was possible to control the oxide film thickness on the order of sub-nm. Next, an oxide film with a film thickness of 1 nm or less, for example 0.5 nm, is formed on the treated surface on the Si substrate surface, and then introduced into a high vacuum (for example, 2 × 10 -7 Pa) and 800 ° C or less (for example, 790 ° C Fig. 2 shows the amount of impurities remaining on the substrate surface after heating with) by Auger-Electron-Spectroscopy (AES). Detachment of the oxide film on the surface was confirmed. Here, the substrate surface from which the oxide film has been removed by heating at a low temperature of 800 ° C. or lower is subjected to hydrogen termination treatment on the Si substrate surface by, for example, cleaning with a hydrofluoric acid solution and pure water, and then,
It is shown that the amount of carbon and oxygen as residual impurities on the surface of the substrate are reduced to several times each, as compared with the cleaning surface after being introduced into a vacuum through the atmosphere. That is, it has been found that the oxide film is easily detached even by heat treatment at a lower temperature depending on the thickness of the oxide film.

【0017】また、Si基板面に生成(形成)した酸化膜
は、Siイオンの注入によって、たとえば SiO2 から SiO
へと酸化膜組成が変化し、より低温度で容易に揮散して
清浄なSi基板面を露出することを見出した。
The oxide film formed (formed) on the surface of the Si substrate is, for example, SiO 2 to SiO 2 by the implantation of Si ions.
It was found that the composition of the oxide film changes, and volatilizes easily at lower temperatures to expose a clean Si substrate surface.

【0018】さらに、水素で表面を終端化した半導体基
板面に、所要の薄膜たとえばSi層を成長させる前に、そ
の容器内の雰囲気の酸素分圧によって、基板成長面の清
浄性が容易に確保・維持され、その後、良質な半導体層
(膜)などが形成できることを確認した。そして本発明
は、これらの点に着目して達成したものである。
Further, before the required thin film such as a Si layer is grown on the surface of the semiconductor substrate whose surface is terminated with hydrogen, the oxygen partial pressure of the atmosphere in the container easily ensures the cleanliness of the substrate growth surface. -It was confirmed that a good quality semiconductor layer (film) can be formed after being maintained. The present invention has been achieved by focusing on these points.

【0019】[0019]

【作用】第1の薄膜形成方法によれば、従来よりも薄い
酸化膜を半導体基板上に形成することによって、従来よ
りも低い基板加熱温度で、酸化膜の脱離(もしくは離
脱)が起こる性質を利用して従来に比べ、より低温でよ
り表面残留不純物量を抑制した清浄表面を得ることが可
能となる。したがって、半導体基板表面の酸化や有機物
の再吸着を防止することも可能となり、この表面とその
上に作製される薄膜で界面を形成する素子の電気的特性
の向上が容易に実現され、より高性能な半導体装置を得
ることが可能となる。
According to the first thin film forming method, the oxide film is desorbed (or desorbed) at a substrate heating temperature lower than the conventional one by forming the oxide film thinner than the conventional one on the semiconductor substrate. It is possible to obtain a clean surface at a lower temperature by suppressing the amount of surface residual impurities as compared with the conventional method. Therefore, it becomes possible to prevent the oxidation of the surface of the semiconductor substrate and the re-adsorption of organic substances, and it is easy to improve the electrical characteristics of the element that forms the interface between this surface and the thin film formed on the surface, and it is possible to further improve the electrical characteristics. It is possible to obtain a high-performance semiconductor device.

【0020】第2の薄膜形成方法によれば、酸化膜にシ
リコン(Si)イオンを注入することによって、酸化膜組成
が SiO2 からより揮散もしくは蒸発し易い SiOに変化す
るので、より低温度で清浄な基板面を露出させ得るばか
りでなく、予め基板に形成されていたドーピングファイ
ルなどに対する悪影響の回避もしくは大幅な低減も可能
となる。したがって、急峻な接合界面を有する半導体装
置の製造手段とした場合、既に p-n接合を形成している
各不純物注入領域における不純物分布の揺れの発生など
抑制されるので、特性劣化を招来することなく、所望の
半導体装置を形成し得ることになる。
According to the second thin film forming method, by injecting silicon (Si) ions into the oxide film, the composition of the oxide film changes from SiO 2 to SiO which is more easily volatilized or evaporated, so that at a lower temperature. Not only is it possible to expose a clean substrate surface, but it is also possible to avoid or significantly reduce the adverse effects on the doping files and the like previously formed on the substrate. Therefore, when it is used as a manufacturing method of a semiconductor device having a steep junction interface, the fluctuation of the impurity distribution in each impurity-implanted region where the pn junction is already formed is suppressed, so that the characteristics are not deteriorated. A desired semiconductor device can be formed.

【0021】第3の薄膜形成方法によれば、酸素と基板
を構成している元素、たとえばシリコンとの結合初期で
は、その蒸気圧が高いこと利用して、たとえば 700℃程
度の基板温度で清浄化面を露出させて、この清浄化面に
酸素を供給し、表面の原子を脱離させることができる。
つまり、所要の成膜を成すに先立って、酸素分圧を所定
の範囲内に選択した雰囲気で、基板を加熱することによ
り、酸化の速度を SiOの離脱速度より遅くし、基板表面
を炭素不純物とともにエッチングして表面を清浄化し、
その後に急峻な界面接合を成す薄膜が成長されることに
なる。
According to the third thin film forming method, oxygen is cleaned at a substrate temperature of, for example, about 700 ° C. by utilizing its high vapor pressure at the initial bonding of the element constituting the substrate, for example, silicon. The exposed surface can be exposed and oxygen can be supplied to the cleaned surface to desorb the surface atoms.
That is, prior to forming the required film, the substrate is heated in an atmosphere in which the oxygen partial pressure is selected within a predetermined range, so that the rate of oxidation is slower than the rate of SiO release and the substrate surface is covered with carbon impurities. Etch with to clean the surface,
After that, a thin film forming a sharp interface junction is grown.

【0022】さらに、薄膜形成装置によれば、前記第3
の薄膜形成方法が、容易、かつ確実に、あるいは再現性
よく実施し得る。
Further, according to the thin film forming apparatus, the third
The method of forming a thin film can be easily and reliably performed with good reproducibility.

【0023】[0023]

【実施例】以下、図1〜図12を参照して本発明の実施例
を説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0024】実施例1 先ず、ドーピングパターンを備え、かつ表面に膜厚 5nm
程度の自然酸化物が残存しているSi基板を用意し、予め
用意しておいた気相成膜用装置の真空容器に装着して、
たとえば 2×10-7Pa程度の高真空に排気した後、 790℃
でSi基板を加熱処理した。この加熱処理においては、Si
基板表面の酸化による酸化膜の生成よりも、実質的に酸
化物膜の離脱の方が速く、清浄な基板面が露出された。
その後、真空容器へ酸素ガスおよびシランガスを導入
し、前記清浄化した基板面に膜厚 8nm程度のシリコン酸
化膜を成長させた。次いで、前記シリコン酸化膜を生成
させたSi基板を、スパッタ装置にセットし、前記シリコ
ン酸化膜面上に金属電極層を設けて、 MOSキャパシター
のゲート電極付き半導体装置を作成した。
Example 1 First, a doping pattern was provided and a film thickness of 5 nm was formed on the surface.
Prepare a Si substrate on which some natural oxide remains, and attach it to the vacuum container of the vapor phase film deposition device prepared in advance,
For example, after evacuating to a high vacuum of 2 × 10 -7 Pa, 790 ℃
The Si substrate was heat treated at. In this heat treatment, Si
The release of the oxide film was substantially faster than the formation of the oxide film by the oxidation of the substrate surface, and the clean substrate surface was exposed.
Then, oxygen gas and silane gas were introduced into the vacuum container to grow a silicon oxide film having a film thickness of about 8 nm on the cleaned substrate surface. Next, the Si substrate on which the silicon oxide film was formed was set in a sputtering apparatus, and a metal electrode layer was provided on the surface of the silicon oxide film to prepare a semiconductor device with a gate electrode of a MOS capacitor.

【0025】上記作成した半導体装置について、そのゲ
ート酸化膜の破壊電界強度を測定したところ、図3 (a)
に示すごとく、平均耐圧が11MV/cm程度で、比較例(図
3 (b))の場合よりも高かった。なお、比較例は、前記
自然酸化物膜をフッ酸水溶液によって除去した後、純水
で洗浄して清浄化面とした他は、同様の条件で作成した
半導体装置のゲート酸化膜の破壊電界強度である。
When the breakdown electric field strength of the gate oxide film of the semiconductor device prepared above was measured, FIG.
As shown in Fig. 3, the average breakdown voltage was about 11 MV / cm, which was higher than that of the comparative example (Fig. 3 (b)). In the comparative example, the breakdown electric field strength of the gate oxide film of the semiconductor device prepared under the same conditions except that the natural oxide film was removed with an aqueous solution of hydrofluoric acid and then washed with pure water to form a cleaned surface. Is.

【0026】また、前記Si基板面の清浄化後における残
留不純物量と積層欠陥密度(cm-2)との関連性を、オー
ジェ電子分光法 (Auger-Electron-Spectroscopy:AES)で
評価したところ、図4示すごとくであった。すなわち、
前記清浄化面の残留不純物量を AESで測定しておき、そ
の後、その清浄化面に気相成長させたシリコン膜の積層
欠陥密度を測定し、両者の関連性を検討・評価したとこ
ろ、表面残留不純物量は 2%以下,積層欠陥密度も 2個
/cm2 以下であった。一方、比較例として、前記自然酸
化物膜をフッ化水素水溶液によって除去した後、純水で
洗浄して清浄化面とした他は、同様の条件でシリコン膜
を成長させた場合の残留不純物量と積層欠陥密度の関連
性を図4に併せて示す。比較例の場合は、表面残留不純
物量は 4〜 8%,積層欠陥密度20個/cm2 以上であっ
た。
The relationship between the amount of residual impurities after cleaning the surface of the Si substrate and the stacking fault density (cm −2 ) was evaluated by Auger-Electron-Spectroscopy (AES). It was as shown in FIG. That is,
The amount of residual impurities on the cleaned surface was measured by AES, then the stacking fault density of the vapor-deposited silicon film on the cleaned surface was measured, and the relationship between the two was examined and evaluated. The amount of residual impurities was 2% or less, and the stacking fault density was 2 / cm 2 or less. On the other hand, as a comparative example, the amount of residual impurities when the silicon film was grown under the same conditions, except that the natural oxide film was removed with an aqueous solution of hydrogen fluoride and then washed with pure water to form a cleaned surface. FIG. 4 also shows the relationship between and the stacking fault density. In the case of the comparative example, the amount of surface residual impurities was 4 to 8% and the stacking fault density was 20 defects / cm 2 or more.

【0027】ここで、酸化膜の破壊電界強度が高いこと
は、たとえばDRAMなどのメモリー素子や超高速デバイス
の電気的特性の向上、あるいは製品の歩留まり向上に大
きく寄与することになる。また、積層欠陥密度の低減
は、たとえばデバイス化して動作させたとき、成長膜を
通しての電気的なリークなどの発生が、それだけ解消・
回避されることになるので、半導体装置の信頼性向上を
図ることになる。
Here, the high breakdown electric field strength of the oxide film greatly contributes to the improvement of the electrical characteristics of the memory device such as DRAM and the ultra-high speed device or the improvement of the product yield. In addition, the reduction of stacking fault density can be solved by reducing the occurrence of electrical leakage through the growth film when operating as a device.
Since it is avoided, the reliability of the semiconductor device is improved.

【0028】上記では、薄く制御した自然酸化膜を利用
して清浄表面を形成する場合に着いて説明したが、実際
には、市販の基板面に生成している自然酸化膜をそのま
ま使用しないこともある。具体的には、有機物やメタル
汚染の除去を目的とした次のような洗浄液、すなわち過
酸化水素,硫酸−過酸化水素,硝酸,水酸化アンモニア
−過酸化水素,塩酸−過酸化水素など酸化作用のある化
学薬品水溶液、あるいは酸素ガス,塩酸−酸素ガス,水
素−酸素ガスなどのガス雰囲気で処理し、酸化膜を形成
(生成)することも可能である。その他、気相から酸化
膜を形成するドライ酸化法,熱酸化法などで形成するこ
とができるが、いずれの場合も酸化膜の厚さを 1nm以下
にする必要がある。
In the above description, the case of forming a clean surface by using a thinly controlled natural oxide film was explained, but in reality, the natural oxide film formed on the surface of a commercially available substrate should not be used as it is. There is also. Specifically, the following cleaning liquids for the purpose of removing organic substances and metal contamination, that is, oxidizing action such as hydrogen peroxide, sulfuric acid-hydrogen peroxide, nitric acid, ammonia hydroxide-hydrogen peroxide, hydrochloric acid-hydrogen peroxide, etc. It is also possible to form (generate) an oxide film by processing in an aqueous chemical solution containing a certain amount of chemicals or in a gas atmosphere of oxygen gas, hydrochloric acid-oxygen gas, hydrogen-oxygen gas or the like. Alternatively, the oxide film can be formed from the gas phase by a dry oxidation method, a thermal oxidation method, or the like, but in any case, the thickness of the oxide film needs to be 1 nm or less.

【0029】さらに、他のSi基板上への酸化膜の形成方
法として、予め清浄化したシリコン基板表面に、直接所
望の酸化膜を膜厚制御しながら形成する手段がある。す
なわち、Si基板面の自然酸化膜をフッ酸水溶液などで除
去した後、溶存酸素濃度 300ppbの純水によるリンス
で、Si基板表面と純水との相互作用が容易に進行し、純
水がSi基板(結晶)表面をエッチングする。このエッチ
ング作用に伴って、Si基板表面酸化の防止とともに表面
汚染を防止しつつ、Si基板(結晶)面の平坦化も行なわ
れる。そして、この洗浄工程に連続して、新たな酸化膜
を形成する工程を行なえばよい。ここで、連続してとは
洗浄工程で用いた液体中に保持したまま、あるいは液体
から取り出すことなく液体の置換を行なって、酸化膜を
形成することを意味する。
Further, as another method for forming an oxide film on a Si substrate, there is a means for forming a desired oxide film directly on the surface of a silicon substrate which has been cleaned in advance while controlling the film thickness. That is, after removing the natural oxide film on the Si substrate surface with a hydrofluoric acid solution or the like, rinsing with pure water with a dissolved oxygen concentration of 300 ppb facilitates the interaction between the Si substrate surface and pure water, and The substrate (crystal) surface is etched. With this etching action, the Si substrate (crystal) surface is flattened while preventing the Si substrate surface from being oxidized and preventing surface contamination. Then, a step of forming a new oxide film may be performed subsequent to this cleaning step. Here, "continuously" means forming an oxide film while being held in the liquid used in the cleaning step or by replacing the liquid without taking it out from the liquid.

【0030】この工程においいて用いることのできる洗
浄液体は、酸素のみを添加した純水、硫酸+過酸化水素
水、フッ化水素+過酸化水素水、塩酸+過酸化水素水な
ど、シリコンに対する酸化剤である。ここに添加する酸
素の濃度は酸化膜を形成する程度に高ければよく、具体
的には 300 ppb〜 9 ppm程度が好ましい。いずれの場合
にも、洗浄工程の後に、半導体基板を液体から取り出す
ことなく、Si基板表面に酸化膜を形成する。たとえば、
洗浄する工程で純水を用い、酸化膜を形成する工程にお
いても純水を用いたとすると、洗浄する工程と酸化膜を
形成する工程とで用いる液体が同一であるから、液体の
置換を行なわなくてもすむ。一方、洗浄する工程で純
水、酸化膜を形成する工程で硫酸+過酸化水素水を用い
た場合には、半導体基板を液体から取り出さずに液体の
置換を行なえば、半導体の結晶表面が清浄なままで酸化
膜を形成できる。つまり従来のように、洗浄する工程の
後に、酸化を行なうためSi基板を液体から取り出すこと
によって、洗浄する工程で清浄となった結晶の表面が汚
染されてしまうのを防ぐことができる。
The cleaning liquid that can be used in this step is an oxidation of silicon such as pure water containing only oxygen, sulfuric acid + hydrogen peroxide solution, hydrogen fluoride + hydrogen peroxide solution, hydrochloric acid + hydrogen peroxide solution. It is an agent. The concentration of oxygen added here should be high enough to form an oxide film, and specifically, it is preferably about 300 ppb to 9 ppm. In any case, after the cleaning step, the oxide film is formed on the surface of the Si substrate without removing the semiconductor substrate from the liquid. For example,
If pure water is used in the cleaning step and pure water is used also in the step of forming the oxide film, the liquid used in the cleaning step and the step of forming the oxide film are the same, so there is no need to replace the liquid. I'm sorry. On the other hand, when pure water is used in the washing step and sulfuric acid + hydrogen peroxide solution is used in the step of forming an oxide film, if the liquid is replaced without removing the semiconductor substrate, the crystal surface of the semiconductor is cleaned. The oxide film can be formed as it is. That is, as in the conventional case, by removing the Si substrate from the liquid for oxidation after the cleaning step, it is possible to prevent the surface of the crystal cleaned in the cleaning step from being contaminated.

【0031】なお、気体から取り出す場合でも、Si基板
の表面に 1%以上の面密度では、酸素・炭素の汚染を生
じさせない不活性ガスの雰囲気中に、一時的にSi基板を
入れた後、酸化膜を形成する工程を行なえば、連続して
酸化膜を形成する場合と同様な効果が得られる。ここで
不活性ガスとは、有機成分、あるいは酸素などの分圧を
制御した真空、水素ガス、窒素ガス、アルゴンガス、ヘ
リウムガスなどが挙げられる。
Even when the Si substrate is taken out from the gas, if the surface density of the Si substrate is 1% or more, after the Si substrate is temporarily put in an atmosphere of an inert gas that does not cause oxygen / carbon contamination, By performing the step of forming the oxide film, the same effect as in the case of forming the oxide film continuously can be obtained. Here, examples of the inert gas include vacuum in which the partial pressure of organic components or oxygen is controlled, hydrogen gas, nitrogen gas, argon gas, helium gas, and the like.

【0032】また、上記ではSi基板面に、Si薄膜,酸化
膜の形成例を示したが、たとえば非晶質シリコン層もし
くはポリシリコン層などの薄膜形成においても、同様な
作用効果が得られる。
Although the example of forming the Si thin film and the oxide film on the surface of the Si substrate has been described above, the same action and effect can be obtained in forming a thin film such as an amorphous silicon layer or a polysilicon layer.

【0033】実施例2 先ず、図5に構成の概略を示すような薄膜形成装置を用
意した。図5において1は薄膜形成用の半導体基板(た
とえばSi基板)2を受け渡すロードロック室、3は前記
薄膜形成用のSi基板2を前処理する前処理室、4は薄膜
成長室、5は所要の薄膜を成長させたSi基板2を受けと
るアンロード室、6は前処理室3内でSi基板2に対し
て、シリコン(Si)イオンを20〜1000eVのエネルギーで注
入するイオン注入装置である。
Example 2 First, a thin film forming apparatus having a schematic structure shown in FIG. 5 was prepared. In FIG. 5, 1 is a load lock chamber for transferring a semiconductor substrate (for example, Si substrate) 2 for thin film formation, 3 is a pretreatment chamber for pretreating the Si substrate 2 for thin film formation, 4 is a thin film growth chamber, and 5 is a thin film growth chamber. An unloading chamber for receiving the Si substrate 2 on which a required thin film is grown, and 6 is an ion implantation apparatus for implanting silicon (Si) ions into the Si substrate 2 in the pretreatment chamber 3 at an energy of 20 to 1000 eV. .

【0034】一方、硫酸+過酸化水素水での処理によ
り、表面に厚さ 1nmの酸化膜を形成したSi基板を用意
し、このSi基板を、前記薄膜形成装置に導入し、前処理
室3内にセットし、イオン注入装置6を動作させ、前記
酸化膜にドープ量 1.5×1015cm-2, 200eVでSiイオン
を注入した。なお、図6は、Siイオン注入エネルギーと
Siイオンの射影飛程(Rp)の関係を示したもので、たとえ
ばRp= 5nmでSiイオンは酸化膜中に入り込むので、酸化
膜の厚さ,Siイオン注入量,イオン注入エネルギーなど
適宜選択すればよい。ここで、酸化膜の厚さは 1nm以下
であることが望ましいけれど、 2nm程度までは許容でき
る。つまり、膜厚 2nm以下なら、前記Siイオン注入よっ
て、酸化膜が低次の酸化膜化して揮散し易くなって、低
温でも蒸発可能となる。
On the other hand, a Si substrate having an oxide film with a thickness of 1 nm formed on the surface by treatment with sulfuric acid + hydrogen peroxide solution is prepared, and this Si substrate is introduced into the thin film forming apparatus and pretreatment chamber 3 Then, the ion implanter 6 was operated to implant Si ions into the oxide film at a doping amount of 1.5 × 10 15 cm -2 and 200 eV. In addition, FIG. 6 shows Si ion implantation energy and
It shows the relationship of the projective range (Rp) of Si ions. For example, when Rp = 5 nm, Si ions penetrate into the oxide film. Therefore, the thickness of the oxide film, Si ion implantation amount, ion implantation energy, etc. can be selected as appropriate. Good. Here, it is desirable that the thickness of the oxide film is 1 nm or less, but up to about 2 nm is acceptable. That is, if the film thickness is 2 nm or less, the Si ion implantation causes the oxide film to become a low-order oxide film and easily volatilize, and vaporization is possible even at a low temperature.

【0035】次ぎに、前記酸化膜にSiイオン注入された
Si基板2を、薄膜成長室4に導入し、真空中で加熱処理
する。図7は、この加熱処理による酸化膜の離脱状態を
示すスペクトル図である。すなわち、前記酸化膜にSiイ
オン注入されたSi基板2について、真空中下での加熱温
度における酸化膜の離脱との関係を TDS(Thermal Desor
ption Spectroscopy) で評価・検討したところ、曲線A
で示すごとく、 700℃付近を中心温度として酸化膜の離
脱が認められ、容易に酸化膜が蒸発して清浄なSi基板面
が露出した。なお、図7に比較例として、前記酸化膜に
Siイオンの注入を行わなかったときの加熱温度と酸化膜
の離脱との関係を曲線aで示す。曲線aから分かるよう
に、比較例の場合は酸化膜が離脱する中心温度は 900℃
付近であり、実施例の場合に比べて 200℃も高い。
Next, Si ions were implanted into the oxide film.
The Si substrate 2 is introduced into the thin film growth chamber 4 and heat-treated in vacuum. FIG. 7 is a spectrum diagram showing a state where the oxide film is separated by this heat treatment. That is, regarding the Si substrate 2 in which Si ions are implanted into the oxide film, the relationship with the detachment of the oxide film at the heating temperature under vacuum is shown by TDS (Thermal Desor).
Ption Spectroscopy) evaluated and examined the curve A
As shown in, the oxide film was found to detach from the center temperature around 700 ° C, and the oxide film was easily evaporated to expose a clean Si substrate surface. In addition, as a comparative example in FIG.
A curve a shows the relationship between the heating temperature and the removal of the oxide film when Si ions were not implanted. As can be seen from the curve a, in the case of the comparative example, the central temperature at which the oxide film desorbs is 900 ° C.
It is in the vicinity, and is 200 ° C. higher than that of the example.

【0036】前記Si基板2表面の清浄化処理後、薄膜成
長室4にジシランガスを導入し、前記清浄化面に厚さ 1
00nmのSi薄膜を積層・成長させてから、アンロード室5
を介して取り出した。こうしてSi薄膜を積層・成長させ
たSi基板について、Si基板およびSi薄膜の不純物SIMSプ
ロファイルを測定したところ、図8 (a)に示すごとくで
あり、Si薄膜/Si基板界面には、炭素 2×1012cm-2,酸
素 2×1012cm-2しか存在しなかった。また、前記積層・
成長させたSi薄膜の積層欠陥濃度は102 個/cm2 以下で
あった。
After the surface of the Si substrate 2 is cleaned, disilane gas is introduced into the thin film growth chamber 4 so that the cleaned surface has a thickness of 1
After stacking and growing 00nm Si thin film, unload chamber 5
Taken out through. The impurity SIMS profiles of the Si substrate and the Si thin film were measured for the Si substrate on which the Si thin films were laminated and grown in this way. As shown in Fig. 8 (a), the Si thin film / Si substrate interface had carbon 2 × There were only 10 12 cm -2 and oxygen 2 × 10 12 cm -2 . In addition, the laminated
The stacking fault concentration of the grown Si thin film was 10 2 / cm 2 or less.

【0037】なお、上記において、Si基板2表面の酸化
膜にSiイオン注入後、大気中にケ月放置してから、真空
中, 700℃での加熱で表面を清浄化処理し、その清浄化
面に厚さ nmのSi薄膜を積層・成長させてから、アンロ
ード室5を介して取り出した。こうしてSi薄膜を積層・
成長させたSi基板について、Si基板およびSi薄膜の不純
物SIMSプロファイルを測定したところ、図9に示すごと
くであり、Si薄膜/Si基板界面には、炭素 2×1012c
m-2,酸素 2×1012cm-2しか存在しなかった。また、前
記積層・成長させたSi薄膜の積層欠陥濃度は102 個/cm
2 以下であった。この例から、Siイオン注入酸化膜/Si
基板界面は、大気中に放置しても依然清浄さを保持して
いることが分かる。
In the above, after the Si ions were implanted into the oxide film on the surface of the Si substrate 2 and left in the atmosphere for a month, the surface was cleaned by heating at 700 ° C. in vacuum. Then, a Si thin film having a thickness of nm was laminated and grown, and then taken out through the unload chamber 5. In this way, stack Si thin films
Impurity SIMS profiles of the Si substrate and the Si thin film were measured for the grown Si substrate, and the results are as shown in FIG. 9. The Si thin film / Si substrate interface had carbon 2 × 10 12 c.
There were only m -2 and oxygen 2 x 10 12 cm -2 . The stacking fault density of the stacked and grown Si thin film is 10 2 / cm.
It was less than 2 . From this example, Si ion implantation oxide film / Si
It can be seen that the substrate interface remains clean even if left in the atmosphere.

【0038】また、比較のため、酸化膜にSiイオンの注
入を行わずにフッ化水素水溶液を用いて清浄化処理した
他は、同一の条件でSi薄膜を積層・成長させた場合の不
純物SIMSプロファイルは図8 (b)に示すごとく、酸素不
純物濃度は 2×1012cm-2であったが、炭素不純物濃度が
6×1012cm-2と高く、Si薄膜の積層欠陥濃度も104 個/
cm2 であった。
For comparison, the impurity SIMS when Si thin films are laminated and grown under the same conditions except that the hydrogen fluoride aqueous solution is used for cleaning without implanting Si ions into the oxide film. As shown in Fig. 8 (b), the oxygen impurity concentration was 2 × 10 12 cm -2 , but the carbon impurity concentration was
High as 6 × 10 12 cm -2 and stacking fault concentration of Si thin film is 10 4 /
It was cm 2 .

【0039】さらに、前記実施例で、Si基板2として、
ソース領域2a,ドレイン領域2bを予め形設したSi基板を
用い、前記と同様の条件で表面に形成さている酸化膜に
Siイオンを注入し、加熱処理して酸化膜を蒸発させて清
浄な面を露出させてから、酸化膜の気相成長およびSi薄
膜の気相成長を行った後、パターニングを行ってSi薄膜
バイポーラトランジスタを作成した。このSi薄膜バイポ
ーラトランジスタのCMOS部について、その不純物プロフ
ァイルを測定・評価した結果を図10 (a)に模式的に示
す。図10 (a)において、実線は清浄化処理前の不純物プ
ロファイルを、点線は清浄化処理後の不純物プロファイ
ルを示す。
Further, in the above embodiment, as the Si substrate 2,
Using the Si substrate with the source region 2a and the drain region 2b pre-formed, the oxide film formed on the surface under the same conditions as above
After implanting Si ions and heating to evaporate the oxide film to expose the clean surface, vapor phase growth of the oxide film and vapor phase growth of the Si thin film are performed, and then patterning is performed to perform the Si thin film bipolar. I made a transistor. The result of measuring and evaluating the impurity profile of the CMOS part of this Si thin film bipolar transistor is schematically shown in Fig. 10 (a). In FIG. 10 (a), the solid line shows the impurity profile before the cleaning treatment, and the dotted line shows the impurity profile after the cleaning treatment.

【0040】また、比較のため、酸化膜にSiイオンの注
入を行わずに、 900℃での真空加熱で清浄化処理した他
は、同一の条件で作成したSi薄膜バイポーラトランジス
タのCMOS部における不純物プロファイルを図10 (b)に模
式的に示す。ここで、実線は清浄化処理前の不純物プロ
ファイル、点線は清浄化処理後の不純物プロファイルで
ある。これらの対比から分かるように、実施例の場合
は、ドーピング不純物の拡散も起きないため、チャンネ
ル長がほとんど変化しないので、微細化が要求される L
SI半導体装置の形成に適し、また歩留まりの向上も期待
される。一方、比較例の場合は、ドーピング不純物の拡
散が起こり、チャンネル長の変化が認められる。
For comparison, the impurities in the CMOS portion of the Si thin film bipolar transistor prepared under the same conditions were used except that the cleaning treatment was performed by vacuum heating at 900 ° C. without implanting Si ions into the oxide film. The profile is shown schematically in Fig. 10 (b). Here, the solid line is the impurity profile before the cleaning process, and the dotted line is the impurity profile after the cleaning process. As can be seen from these comparisons, in the case of the embodiment, since the diffusion of the doping impurities does not occur, the channel length hardly changes.
It is suitable for forming SI semiconductor devices and is expected to improve yield. On the other hand, in the case of the comparative example, the diffusion of the doping impurities occurs and the change of the channel length is recognized.

【0041】実施例3 先ず、図11に構成の概略を断面的に示す薄膜形成装置を
用意した。図11において、7は原料ガスを導入して半導
体膜など成長する真空容器型の成膜室であり、たとえば
ステレンレス鋼製で容器壁を冷却水で冷却可能に形成さ
れている。8は成長用半導体基板(たとえばSi基板)
で、被成長面を下向きとして成膜室7内に保持される一
方、裏面側に装着した加熱用ヒーター9によって、基板
温度 850℃程度まで加熱可能と成っている。また、10は
前記成膜室7にケートバルブ11を介して接続するロード
ロック室であり、成膜室7内の真空(たとえば10-7Pa以
上)を落とすことなく、成長用Si基板8の成膜室7内搬
入、もしくは成膜室7内から搬出を可能とするため真空
度 5×10-6Pa以上を維持し得る。ここで、成長用Si基板
8の成膜室7内搬入時に、成膜室7内の真空度が 5×10
-6Paに成ったときでも、約30分後には成膜室7内の真空
度を10-7Paまで回復し得る。
Example 3 First, a thin film forming apparatus having a schematic sectional view of the structure shown in FIG. 11 was prepared. In FIG. 11, reference numeral 7 denotes a vacuum container type film forming chamber in which a raw material gas is introduced to grow a semiconductor film or the like, which is made of, for example, stainless steel and is formed so that the container wall can be cooled with cooling water. 8 is a semiconductor substrate for growth (eg, Si substrate)
The growth temperature is held in the film forming chamber 7 with the growth surface facing downward, while the heating heater 9 mounted on the back surface can heat the substrate to a temperature of about 850 ° C. Further, 10 is a load lock chamber connected to the film forming chamber 7 via a gate valve 11, and the growth Si substrate 8 can be formed without reducing the vacuum (for example, 10 −7 Pa or more) in the film forming chamber 7. A vacuum degree of 5 × 10 −6 Pa or higher can be maintained because it can be carried in or out of the film forming chamber 7. Here, when the growth Si substrate 8 is carried into the film forming chamber 7, the degree of vacuum in the film forming chamber 7 is 5 × 10 5.
Even when the pressure reaches -6 Pa, the degree of vacuum in the film forming chamber 7 can be restored to 10 -7 Pa after about 30 minutes.

【0042】さらに、12,13は前記成膜室7,ロードロ
ック室10をそれぞれ所要の真空度に排気する到達真空度
10-8Pa,到達真空度10-7Paのターボ分子ポンプである。
14は前記成膜室7に成膜用原料ガスを導入する原料ガス
導入ノズル、15は前記成膜室7に酸化・離脱用のガスを
導入する酸化・離脱用のガス導入ノズルである。そし
て、前記各ガス導入ノズル14,15は、系統別に排気系 1
6a, 16bおよび排気可能な予備室 17a, 17bを介してガ
スボンベ 18a, 18b, 18c, 18d側に接続している。
Further, 12 and 13 are ultimate vacuums at which the film forming chamber 7 and the load lock chamber 10 are evacuated to required vacuum levels, respectively.
It is a turbo molecular pump with a pressure of 10 -8 Pa and an ultimate vacuum of 10 -7 Pa.
Reference numeral 14 is a source gas introducing nozzle for introducing a film forming source gas into the film forming chamber 7, and 15 is an oxidizing / desorbing gas introducing nozzle for introducing an oxidizing / desorbing gas into the film forming chamber 7. Further, each of the gas introduction nozzles 14 and 15 has an exhaust system 1 for each system.
It is connected to the gas cylinders 18a, 18b, 18c, 18d through 6a, 16b and spare chambers 17a, 17b that can be exhausted.

【0043】ここで、高圧ガスボンベ 18aはたとえばジ
シランガス(100%) 、 18bはたとえばジボランガス 1%
窒素ガス希釈ガス系のドーパント源であり、減圧弁 19
a, 19bで減圧した後、マスフローコントローラー 20
a, 20bで流量を制御し、要すれば、予備室 17aで混合
して成膜室7に供給する構成を採っている。一方、高圧
ガスボンベ 18cはたとえば基板8を高温加熱した後、表
面を水素で終端するための水素ガス源、 18dはたとえば
基板8表面酸化用の酸素ガスを水素ガスで希釈した混合
ガス源であり、減圧弁 19c, 19dで減圧した後、マスフ
ローコントローラー20c, 20dで流量を制御し、要すれ
ば、予備室 17bで混合して成膜室7に供給する構成を採
っている。なお、原料ガスおよび酸素ガスの導入経路を
分離しているのは、主として水素化合物から成る原料ガ
スが酸素と反応して分解するのを防止するためであり、
原料ガス導入経路にへの酸素混入を回避し、残留酸素分
圧を常に低く保つことも可能である。さらに、この構成
では、基板表面を水素で終端する用になっているので、
表面清浄化後の汚染など回避される。
Here, the high pressure gas cylinder 18a is, for example, disilane gas (100%), and 18b is, for example, diborane gas 1%.
Nitrogen gas is a diluent gas type dopant source, and a pressure reducing valve 19
After depressurizing with a and 19b, mass flow controller 20
The flow rates are controlled by a and 20b, and if necessary, they are mixed in the preliminary chamber 17a and supplied to the film forming chamber 7. On the other hand, the high pressure gas cylinder 18c is, for example, a hydrogen gas source for terminating the surface with hydrogen after heating the substrate 8 at a high temperature, and 18d is, for example, a mixed gas source in which oxygen gas for oxidizing the surface of the substrate 8 is diluted with hydrogen gas. After the pressure is reduced by the pressure reducing valves 19c and 19d, the flow rate is controlled by the mass flow controllers 20c and 20d, and if necessary, they are mixed in the preliminary chamber 17b and supplied to the film forming chamber 7. The reason why the introduction paths of the raw material gas and the oxygen gas are separated is to prevent the raw material gas mainly consisting of a hydrogen compound from reacting with oxygen and decomposing,
It is also possible to avoid mixing oxygen into the raw material gas introduction path and always keep the residual oxygen partial pressure low. Furthermore, in this configuration, since the surface of the substrate is terminated with hydrogen,
Contamination after surface cleaning is avoided.

【0044】次に、前記構成の薄膜形成装置を用いた薄
膜形成について説明する。
Next, thin film formation using the thin film forming apparatus having the above-mentioned structure will be described.

【0045】先ず、硫酸によって脱脂処理した後、 0.5
%フッ化水素水溶液で表面の自然酸化膜を除去し、大気
を介さずに超純水で洗浄してから高純度窒素ガス中で乾
燥した水素終端を形成したSiウエハーを成長用基板8と
して用意した。この成長用基板8をロードロック室10に
挿入し、ロードロック室10内を真空排気して、真空度が
10-5Paになった時点でゲートバルブ11を開け、前記成
長用基板8を真空排気されている成膜室7内に搬入後、
前記バルブ11を閉じる一方、成長用基板8を所定位置に
セットした。
First, after degreasing with sulfuric acid, 0.5
% Hydrogen fluoride aqueous solution to remove the natural oxide film on the surface, wash with ultrapure water without passing through the air, and then dry in high-purity nitrogen gas. Prepare a Si wafer with a hydrogen termination formed as the growth substrate 8. did. The growth substrate 8 is inserted into the load lock chamber 10, the inside of the load lock chamber 10 is evacuated, and the degree of vacuum is
When the pressure reached 10 −5 Pa, the gate valve 11 was opened, and the growth substrate 8 was loaded into the vacuum-deposited film forming chamber 7,
While the valve 11 was closed, the growth substrate 8 was set at a predetermined position.

【0046】次いで、成膜室7内に水素ガス源 18cか
ら、水素ガス 80 SCCMを導入したところ、成膜室7内の
真空度は 0.2Paとなった。この状態で、加熱用ヒーター
9によって成長用Si基板8を 750℃まで加熱し、続いて
混合ガス源 18dから酸素−水素混合ガスを 0.4SCCMを成
膜室7内に導入したところ、酸素分圧10-6Paとなった。
この状態を30分間保持した後、前記混合ガスの導入を停
止し、さらに成長用基板8温度を 650℃まで下げた。
Next, when 80 SCCM of hydrogen gas was introduced from the hydrogen gas source 18c into the film forming chamber 7, the degree of vacuum in the film forming chamber 7 became 0.2 Pa. In this state, the growth Si substrate 8 was heated to 750 ° C. by the heater 9 for heating, and 0.4 SCCM of oxygen-hydrogen mixed gas was introduced into the film forming chamber 7 from the mixed gas source 18d. It became 10 -6 Pa.
After maintaining this state for 30 minutes, the introduction of the mixed gas was stopped, and the temperature of the growth substrate 8 was further lowered to 650 ° C.

【0047】その後、前記成長用Si基板8の温度が安定
した時点で、前記水素ガスの導入を停止し、原料ガス源
18aからジシランガスを1.0 SCCM,およびドーパント源
18bから 1%のジボランガス0.1 SCCMを成膜室7内に導
入し、約30分間p型Si薄膜を成長を行い厚さ 100nmのSi
薄膜結晶を得た。
After that, when the temperature of the growth Si substrate 8 becomes stable, the introduction of the hydrogen gas is stopped and the source gas source
Disilane gas 1.0 SCCM from 18a, and dopant source
Introducing 0.1% diborane gas 0.1 SCCM from 18b into the film forming chamber 7 and growing a p-type Si thin film for about 30 minutes to form a 100 nm thick Si film.
A thin film crystal was obtained.

【0048】前記形成したSi薄膜の深さ(厚さ)方向の
不純物分布を二次イオン質量分析計(SIMS)で測定しとこ
ろ、図12 (a)に示すごとくであった。すなわち、基板8
/成長膜界面に対応する深さ 100nmの位置で、不純物と
しての炭素および酸素が僅かに検出されるが、それらの
不純物が全て界面に(平坦に)存在すると仮定し、面当
たりの濃度を見積もると炭素は 3×1012/cm-2,酸素は
4×1012/cm-2となる。 比較のため、前記Si膜成長に
先立った酸素分圧下での熱処理を省略し、成膜室7内に
導入後すぐに 650℃に加熱保持し、前記と同様の条件で
厚さ 100nmのp型Si薄膜を成長させた。このp型Si薄膜
について、二次イオン質量分析計で深さ方向の不純物分
布を測定した結果を図12 (b)に示す。この比較例の場
合、基板8/成長膜界面の不純物としての炭素濃度は 6
×1013/cm-2,酸素濃度は 5×1013/cm-2で実施例の場
合に比べて1020倍の不純物が残存していた。さらに、他
の比較例として、酸素ガスを導入しないで、水素ガス雰
囲気中で基板を加熱処理した後、前記と同様の条件でp
型Si膜を成長させ、このp型Si膜について深さ方向の不
純物分布を測定した結果を図12 (c)に示す。この場合、
酸素濃度は 3×1012/cm-2,と低減していたが、炭素濃
度は 5.5×1013/cm-2でほとんど低減していなかった。
この実施例および比較例から分かるように、Si基板表
面の初期酸化膜は、 750℃の加熱で容易に離脱(除去)
が可能であるけれど、炭素系の不純物除去には酸素分圧
下での加熱処理が有効である。 実施例4 先ず、6インチSi基板24枚を収納・装着可能な石英製反
応管を成膜装置本体とし、Si基板の収納・装着後、石英
製反応管内の到達真空度として10-8Paを得るために、排
気能力1500L/min のターボ分子ポンプ2台を主排気装置
を具備して成る気相成膜用装置を用意した。なお、この
気相成膜用装置は、石英製反応管内にSi基板を挿入・装
着するとき、真空度の低下を防止するためのロードロー
ック室が付設され、さらにジシランガス,ジボランガス
などの原料ガス、および酸素ガスなどを導入するガス導
入ラインも付設されている。
The impurity distribution in the depth (thickness) direction of the formed Si thin film was measured by a secondary ion mass spectrometer (SIMS), and it was as shown in FIG. 12 (a). That is, the substrate 8
Carbon and oxygen as impurities are slightly detected at the depth of 100 nm corresponding to the / growth film interface, but it is assumed that all of these impurities are (flat) at the interface, and the concentration per surface is estimated. And carbon is 3 × 10 12 / cm -2 , oxygen is
It becomes 4 × 10 12 / cm -2 . For comparison, the heat treatment under the partial pressure of oxygen prior to the growth of the Si film was omitted, and the film was heated to 650 ° C. immediately after being introduced into the film forming chamber 7 and kept under the same conditions as described above to form a p-type film having a thickness of 100 nm. A Si thin film was grown. The results of measuring the impurity distribution in the depth direction of this p-type Si thin film with a secondary ion mass spectrometer are shown in FIG. 12 (b). In the case of this comparative example, the carbon concentration as an impurity at the substrate 8 / growth film interface is 6
The impurity concentration was × 10 13 / cm -2 and the oxygen concentration was 5 × 10 13 / cm -2 , and 1020 times more impurities remained than in the case of the example. Further, as another comparative example, after the substrate was heat-treated in a hydrogen gas atmosphere without introducing oxygen gas, p
FIG. 12 (c) shows the result of measuring the impurity distribution in the depth direction of this p-type Si film after growing the p-type Si film. in this case,
The oxygen concentration was reduced to 3 × 10 12 / cm -2 , but the carbon concentration was 5.5 × 10 13 / cm -2, which was hardly reduced.
As can be seen from this Example and Comparative Example, the initial oxide film on the surface of the Si substrate was easily separated (removed) by heating at 750 ° C.
However, heat treatment under partial pressure of oxygen is effective for removing carbon-based impurities. Example 4 First, a quartz reaction tube capable of accommodating / mounting 24 6-inch Si substrates was used as a film forming apparatus main body, and after accommodating / mounting Si substrates, the ultimate vacuum in the quartz reaction tube was 10 −8 Pa. In order to obtain the above, a vapor phase film deposition apparatus comprising two turbo molecular pumps having an exhaust capacity of 1500 L / min and a main exhaust apparatus was prepared. This vapor phase film forming apparatus is provided with a load lock chamber for preventing a decrease in vacuum when inserting and mounting a Si substrate in a quartz reaction tube, and further, a raw material gas such as disilane gas or diborane gas, and A gas introduction line for introducing oxygen gas is also attached.

【0049】一方、Si基板として、CMOSトランジスタお
よびバイポーラトランジスタ混載デバイス構成用のもの
を用意した。すなわち、 MOSトランジスタ用のソース・
ドレイン部の不純物拡散が終了し、さらにゲート酸化膜
を含む酸化膜が全面に形成され、かつ前記ゲート領域の
酸化膜面上に Poly-Si層が滞積されている。また、バイ
ポーラトランジスタ部はコレクタを形成するため基板よ
り高濃度のn型がドーピングされ、このn型がドーピン
グ層上に、ベース層を形成する領域を規制するために、
一部を開口した酸化膜を有するSi基板を用意した。つま
り、Si基板面に能動トランジスタを形成する領域は、ベ
ース層形成予定部を除き酸化膜で被覆されたSi基板で
ある。
On the other hand, as the Si substrate, one having a CMOS transistor and bipolar transistor mixed device configuration was prepared. That is, the source for the MOS transistor
Impurity diffusion in the drain portion is completed, an oxide film including a gate oxide film is further formed on the entire surface, and a Poly-Si layer is accumulated on the oxide film surface in the gate region. In addition, the bipolar transistor portion is doped with n-type having a higher concentration than the substrate to form a collector, and the n-type controls the region where the base layer is formed on the doping layer.
A Si substrate having an oxide film with an opening partly prepared was prepared. That is, the region where the active transistor is formed on the surface of the Si substrate is the Si substrate covered with the oxide film except for the portion where the base layer is to be formed.

【0050】次ぎに、前記Si基板複数を、大気から遮断
した形態でフッ化水素 3%水溶液を収容した石英製ビー
カー内に投入し、 2分間エッチング処理を行ってベース
層形成予定面の自然酸化膜を除去した。その後、前記大
気から遮断したままの形態で、フッ化水素 3%水溶液
を、溶存酸素10 ppb以下に低減した純水で置換し、約10
分間水洗後、前記純水を窒素ガスで置換して乾燥させて
から、大気中に取り出し、前記薄膜形成装置のロードロ
ック室に搬入した。この時点で、ロードロック室を10-4
Pa程度に真空排気してから、ロードロック室内に搬入し
たSi基板を、温度500℃,酸素分圧 1Paになるよう水素
ガスが導入されている石英製反応管内に、ゲートバルブ
を介して挿入・搬送した。前記Si基板の挿入・搬送後
も、石英製反応管内に水素ガスの導入をつづけながら、
約30分間排気した。
Next, the plurality of Si substrates were placed in a quartz beaker containing a 3% aqueous solution of hydrogen fluoride in a state of being shielded from the atmosphere and subjected to etching treatment for 2 minutes to spontaneously oxidize the surface on which the base layer was to be formed. The film was removed. After that, while keeping the atmosphere shielded from the atmosphere, a 3% aqueous solution of hydrogen fluoride was replaced with pure water whose dissolved oxygen was reduced to 10 ppb or less,
After washing with water for a minute, the pure water was replaced with nitrogen gas and dried, and then taken out into the air and carried into the load lock chamber of the thin film forming apparatus. At this point, load lock chamber 10 -4
After evacuating to about Pa, the Si substrate carried into the load lock chamber was inserted through a gate valve into a quartz reaction tube into which hydrogen gas was introduced so that the temperature was 500 ° C and the oxygen partial pressure was 1 Pa. Transported. Even after the Si substrate was inserted and transported, while continuing to introduce hydrogen gas into the quartz reaction tube,
Exhausted for about 30 minutes.

【0051】この後、前記石英製反応管内の温度を 700
℃まで上昇させる一方、酸素分圧が3×10-5Paになるよ
うに酸素ガスを、前記水素ガスとともに20分間導入し、
その後は水素ガスのみ導入を続けた。石英製反応管内の
温度を 550℃まで低下させた時点で、水素ガスの導入を
停止し、同時に成膜用原料ガスとして、ジシラン(分圧
0.3Pa)およびジボラン(分圧10-3Pa)をそれぞれ40分
間導入して、前記Si基板面上に厚さ50nmのp型Si層を形
成した。このp型Si層形成後、原料ガスの導入を停止
し、再び水素ガスの導入に切り替え、石英製反応管内を
水素ガス雰囲気出満たしてから、 500℃に温度を低下さ
せて前記Si基板をロードロック室に取り出した。次ぎ
に、前記Si基板の全面に成長させたp型Si層のうち、ベ
ース層および引き出し電極部となる部分を残し、それ以
外の部分をエッチング処理によって除去してベース部分
を形成した。
After that, the temperature in the quartz reaction tube was raised to 700
While raising the temperature to 0 ° C., oxygen gas is introduced together with the hydrogen gas for 20 minutes so that the oxygen partial pressure becomes 3 × 10 −5 Pa,
After that, introduction of only hydrogen gas was continued. When the temperature inside the quartz reaction tube was lowered to 550 ° C, the introduction of hydrogen gas was stopped, and at the same time, disilane (partial pressure
0.3 Pa) and diborane (partial pressure 10 −3 Pa) were introduced for 40 minutes to form a p-type Si layer having a thickness of 50 nm on the Si substrate surface. After forming this p-type Si layer, stop the introduction of raw material gas, switch to the introduction of hydrogen gas again, fill the inside of the quartz reaction tube with hydrogen gas atmosphere, then lower the temperature to 500 ° C and load the Si substrate. I took it out to the lock room. Next, of the p-type Si layer grown on the entire surface of the Si substrate, the base layer and the extraction electrode portion were left, and the other portions were removed by etching to form a base portion.

【0052】Bi-CMOSのバイポーラトランジスタの製造
において、上記のような手段でベース層を形成すると、
基板温度を 750℃以上に昇温する必要がないため、既に
形成しておいたCMOS部のドーピングプロファイルが変化
する恐れも解消する。このことは、 Bi-CMOSにおいて、
CMOS部にかかる余分な熱負荷を見込んで設計する必要が
なくなることを意味し、より微細な(高速動作に対応で
きる)CMOS部を Bi-CMOSの中に形成することを可能とす
る。また、前記CMOS部におけるソース・ドレイン部のド
ーピング層の再拡散によるチャンネル長の変動やバラツ
キの発生も防止・抑制されるので、信頼性および歩留ま
りの向上なども図られることになる。
In the production of Bi-CMOS bipolar transistor, if the base layer is formed by the above means,
Since it is not necessary to raise the substrate temperature to 750 ° C or higher, there is no fear that the doping profile of the already formed CMOS part will change. This means that in Bi-CMOS,
This means that there is no need to design for the extra heat load on the CMOS part, which makes it possible to form a finer CMOS part (capable of high-speed operation) in Bi-CMOS. Further, since fluctuations and variations in channel length due to re-diffusion of the doping layers of the source / drain portions in the CMOS portion are prevented / suppressed, reliability and yield can be improved.

【0053】なお、本発明は上記実施例に限定されるも
のでなく、発明の趣旨を逸脱しない範囲でいろいろの変
形をとり得る。たとえば薄膜成長用の半導体基板とし
て、前記ではSi基板, Bi-CMOS用Si基板を例示したが、
などであってもよい。
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention. For example, as the semiconductor substrate for thin film growth, the Si substrate and the Si substrate for Bi-CMOS have been exemplified above.
And so on.

【0054】[0054]

【発明の効果】上記説明から分かるように、本発明に係
る薄膜形成手段によれば、半導体基板の薄膜成長面が容
易に清浄化され、かつその清浄面を保持した状態で所要
の薄膜が成長される。したがって、基板/成長膜界面の
汚染が抑えられた高品質の薄膜の形成が可能となり、結
果的には、高性能の半導体装置を提供し得ることにな
る。しかも、前記基板面の清浄化に当たって、高々 750
℃程度の加熱処理で足りるので、既に形成してあるドー
ビングパターンの変形、もしくはチャンネル長の変化な
どを起こす恐れもないので、歩留まりの向上など図れる
ばかりでなく、コスト低減も可能となる。
As can be seen from the above description, according to the thin film forming means of the present invention, the thin film growth surface of the semiconductor substrate can be easily cleaned, and a required thin film can be grown while maintaining the clean surface. To be done. Therefore, it is possible to form a high-quality thin film in which contamination of the substrate / growth film interface is suppressed, and as a result, a high-performance semiconductor device can be provided. Moreover, at the time of cleaning the substrate surface, at most 750
Since the heat treatment at about ℃ is sufficient, there is no fear of causing deformation of the already formed doving pattern or change of the channel length, so that not only the yield can be improved but also the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】Si基板面の自然酸化膜厚のフッ酸水溶液中にお
ける浸漬時間依存性を示す特性図。
FIG. 1 is a characteristic diagram showing the immersion time dependence of the natural oxide film thickness of a Si substrate surface in a hydrofluoric acid aqueous solution.

【図2】Si基板面に薄い酸化膜形成後における真空加熱
前後による不純物量の関係を示す特性図。
FIG. 2 is a characteristic diagram showing the relationship between the amount of impurities before and after vacuum heating after forming a thin oxide film on the surface of a Si substrate.

【図3】(a)は本発明に係る薄膜形成方法で形成した酸
化膜の破壊電界強度例を示す特性図、 (b)は従来の薄膜
形成方法で形成した酸化膜の破壊電界強度例を示す特性
図。
3A is a characteristic diagram showing an example of breakdown electric field strength of an oxide film formed by the thin film forming method according to the present invention, and FIG. 3B is an example of breakdown electric field strength of an oxide film formed by a conventional thin film forming method. FIG.

【図4】本発明に係る薄膜形成方法で形成したSi膜およ
び従来の方法で形成したSi膜について、積層欠陥密度お
よび表面不純物量の関係を比較して示す特性図。
FIG. 4 is a characteristic diagram showing a comparison between the stacking fault density and the amount of surface impurities in the Si film formed by the thin film forming method according to the present invention and the Si film formed by the conventional method.

【図5】本発明に係る薄膜形成方法に用いた薄膜形成装
置の概略構成例を示す断面図。
FIG. 5 is a sectional view showing a schematic configuration example of a thin film forming apparatus used in the thin film forming method according to the present invention.

【図6】Siイオンの射影飛程と加速エネルギーの関係を
示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the projected range of Si ions and the acceleration energy.

【図7】本発明に係る薄膜形成方法および従来の形成方
法における加熱温度と酸化膜の離脱(脱離)との関係を
比較して示す特性図。
FIG. 7 is a characteristic diagram showing a comparison between the heating temperature and the oxide film desorption (desorption) in the thin film forming method according to the present invention and the conventional forming method.

【図8】(a)は本発明に係る薄膜形成方法で形成したSi
成長膜とSi基板界面の不純物プロファイル例を示す特性
図、 (b)は従来の薄膜形成方法で形成したSi成長膜とSi
基板界面の不純物プロファイル例を示す特性図。
FIG. 8 (a) is Si formed by the thin film forming method according to the present invention.
A characteristic diagram showing an example of the impurity profile at the interface between the grown film and the Si substrate, (b) is the Si grown film and Si formed by the conventional thin film forming method.
The characteristic view which shows the example of the impurity profile of a board | substrate interface.

【図9】本発明に係る薄膜形成方法で形成した他のSi成
長膜とSi基板界面の不純物プロファイル例を示す特性図
FIG. 9 is a characteristic diagram showing an example of an impurity profile at the Si substrate interface with another Si growth film formed by the thin film forming method according to the present invention.

【図10】(a)は本発明に係る薄膜形成方法を適用して
製造した Bi-CMOSにおける清浄化の加熱前後でのチャン
ネル長の変化状態を示す模式図、 (b)は従来の薄膜形成
方法を適用して製造した Bi-CMOSにおける清浄化の加熱
前後でのチャンネル長の変化状態を示す模式図。
FIG. 10 (a) is a schematic view showing a change state of a channel length before and after heating for cleaning in a Bi-CMOS manufactured by applying the thin film forming method according to the present invention, and (b) is a conventional thin film formation. The schematic diagram which shows the change state of the channel length before and after heating of the cleaning in Bi-CMOS manufactured by applying the method.

【図11】本発明に係る薄膜形成装置の概略構成例を示
す断面図。
FIG. 11 is a sectional view showing a schematic configuration example of a thin film forming apparatus according to the present invention.

【図12】(a)は本発明に係る他の薄膜形成方法で形成
したSi成長膜とSi基板界面の不純物プロファイル例を示
す特性図、 (b), (c)は従来の互いに異なる薄膜形成方
法で形成したSi成長膜とSi基板界面の不純物プロファイ
ル例を示す特性図。
FIG. 12 (a) is a characteristic diagram showing an example of an impurity profile at the interface between a Si growth film formed by another thin film formation method according to the present invention and a Si substrate, and (b) and (c) are conventional thin film formations different from each other. The characteristic view which shows the example of the impurity profile of the Si growth film formed by the method, and the Si substrate interface.

【符号の説明】[Explanation of symbols]

1,10……ロードロック室 2,8……成長用Si基板
2a……ソース 2b……ドレイン 3……前処理室 4,7……薄膜
成長室 5……アンロード室 6……イオン注入装
置 9……加熱用ヒーター 11……ゲートバルブ
12,13……ターボ分子ポンプ 14……原料ガス導入
ノズル 15……酸化膜離脱(脱離)ノズル
1,10 …… Load lock chamber 2,8 …… Si substrate for growth
2a …… source 2b …… drain 3 …… pretreatment chamber 4,7 …… thin film growth chamber 5 …… unload chamber 6 …… ion implantation equipment 9 …… heating heater 11 …… gate valve
12, 13 …… Turbo molecular pump 14 …… Raw material gas introduction nozzle 15 …… Oxide film detachment (desorption) nozzle

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板面上に膜厚 1nm以下の酸化膜
を形成する工程と、前記酸化膜を形成した半導体基板を
高真空,水素ガス,アルゴンガス,窒素ガスなど半導体
表面の酸化よりも、実質的に表面からの酸化物の脱離の
方が速い雰囲気中で加熱する工程と、前記加熱により表
面酸化膜を脱離させて清浄な半導体表面を得る工程と、
前記清浄化した半導体表面に薄膜を形成する工程とを具
備して成ることを特徴とする薄膜形成方法。
1. A step of forming an oxide film having a film thickness of 1 nm or less on the surface of a semiconductor substrate, and a step of forming the oxide film on the semiconductor substrate by high vacuum, hydrogen gas, argon gas, nitrogen gas, etc. A step of heating in an atmosphere in which the oxide is substantially desorbed from the surface faster, and a step of desorbing the surface oxide film by the heating to obtain a clean semiconductor surface,
And a step of forming a thin film on the cleaned semiconductor surface.
【請求項2】 半導体基板面上に酸化膜を形成する工程
と、前記形成した半導体基板の酸化膜に20〜1000eVのエ
ネルギーでシリコンイオンをイオン注入する工程と、前
記イオン注入処理を施した半導体基板を高真空,水素ガ
ス,アルゴンガス,窒素ガスあるいはこれらの混合ガス
などの雰囲気中で加熱処理を施し、酸化膜を揮散・除去
して清浄な半導体表面を得る工程と、前記清浄化した半
導体表面に薄膜を形成する工程とを具備して成ることを
特徴とする薄膜形成方法。
2. A step of forming an oxide film on the surface of a semiconductor substrate, a step of implanting silicon ions into the oxide film of the formed semiconductor substrate with energy of 20 to 1000 eV, and a semiconductor subjected to the ion implantation treatment. A step of subjecting the substrate to a heat treatment in an atmosphere of high vacuum, hydrogen gas, argon gas, nitrogen gas or a mixed gas thereof to volatilize and remove the oxide film to obtain a clean semiconductor surface; and the cleaned semiconductor. And a step of forming a thin film on the surface.
【請求項3】 半導体基板をフッ化水素系溶液に浸し基
板表面の酸化膜を除去する工程と、前記酸化膜を除去し
た半導体基板表面を水素で終端化する工程と、前記表面
を水素で終端化した半導体基板を残留酸素分圧および残
留水蒸気分圧が 1×10-8Pa以下の真空中に収容・装着す
る工程と、前記真空系の酸素分圧を 1×10-6Pa〜 1×10
-3Paに制御する一方、半導体基板温度を 500〜 800℃に
制御して表面の不純物を除去した後、原料気体を導入し
て半導体基板面に薄膜を成長させる工程とを具備して成
ることを特徴とする薄膜形成方法。
3. A step of immersing a semiconductor substrate in a hydrogen fluoride-based solution to remove an oxide film on the surface of the substrate, a step of terminating the surface of the semiconductor substrate from which the oxide film has been removed with hydrogen, and a step of terminating the surface with hydrogen. Accommodating and mounting the converted semiconductor substrate in a vacuum with residual oxygen partial pressure and residual water vapor partial pressure of 1 × 10 -8 Pa or less, and the oxygen partial pressure of the vacuum system from 1 × 10 -6 Pa to 1 × Ten
-3 Pa, while controlling the semiconductor substrate temperature to 500 to 800 ° C to remove surface impurities, and then introducing a source gas to grow a thin film on the semiconductor substrate surface. And a method for forming a thin film.
【請求項4】 成長用の真空容器と、前記真空容器内を
残留酸素分圧および残留水蒸気分圧が 1×10-8Pa以下の
真空系に排気する排気機構と、前記真空容器に内装され
成長用の半導体基板を支持する基板支持機構と、前記基
板支持機構に支持される半導体基板を 500〜 800℃に加
熱する温度制御可能な基板加熱体と、前記真空容器内に
IV族元素を含む原料気体を導入する原料気体導入部と、
前記真空系の酸素分圧を 1×10-6Pa〜 1×10-3Paに制御
する酸素分圧制御部とを具備して成ることを特徴とする
薄膜形成装置。
4. A vacuum container for growth, an exhaust mechanism for exhausting the inside of the vacuum container to a vacuum system having a residual oxygen partial pressure and a residual water vapor partial pressure of 1 × 10 −8 Pa or less, and the interior of the vacuum container. A substrate support mechanism that supports the semiconductor substrate for growth, a temperature controllable substrate heater that heats the semiconductor substrate supported by the substrate support mechanism to 500 to 800 ° C.
A source gas introduction part for introducing a source gas containing a group IV element,
An apparatus for forming a thin film, comprising: an oxygen partial pressure controller for controlling the oxygen partial pressure of the vacuum system to 1 × 10 −6 Pa to 1 × 10 −3 Pa.
JP21618294A 1994-09-09 1994-09-09 Method and device for forming thin film Withdrawn JPH0883768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21618294A JPH0883768A (en) 1994-09-09 1994-09-09 Method and device for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21618294A JPH0883768A (en) 1994-09-09 1994-09-09 Method and device for forming thin film

Publications (1)

Publication Number Publication Date
JPH0883768A true JPH0883768A (en) 1996-03-26

Family

ID=16684581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21618294A Withdrawn JPH0883768A (en) 1994-09-09 1994-09-09 Method and device for forming thin film

Country Status (1)

Country Link
JP (1) JPH0883768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199271A (en) * 2010-02-26 2011-10-06 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor element, and film forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199271A (en) * 2010-02-26 2011-10-06 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor element, and film forming device

Similar Documents

Publication Publication Date Title
JP4708426B2 (en) Method for processing a semiconductor substrate
KR100202003B1 (en) Method of forming oxide film on surface of semiconductor substrate
JP3737221B2 (en) Thin film forming method and thin film forming apparatus
KR100391840B1 (en) Method and apparatus for forming an insulating film on the surface of a semiconductor substrate
US6794314B2 (en) Method of forming ultrathin oxide layer
TWI331364B (en)
JP3696119B2 (en) Semiconductor device and manufacturing method of semiconductor device
US20130068390A1 (en) Method and apparatus for cleaning a substrate surface
WO2012070368A1 (en) Method for manufacturing silicon carbide semiconductor device and apparatus for manufacturing silicon carbide semiconductor device
WO2011158557A1 (en) Method for cleaning silicon carbide semiconductor and apparatus for cleaning silicon carbide semiconductor
KR20010076979A (en) Method of manufacturing semiconductor device having a silicide layer
JP3297291B2 (en) Method for manufacturing semiconductor device
JP3324455B2 (en) Method for cleaning silicon-based semiconductor substrate
CA2778197A1 (en) Method and apparatus for manufacturing silicon carbide semiconductor device
CA2771795A1 (en) Method of cleaning silicon carbide semiconductor
JP2006196910A (en) In-situ cleaning method for semiconductor substrate, and manufacturing method of semiconductor element adopting the same
JP4330815B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JP2821264B2 (en) Gas cleaning method for silicon devices
JPH0883768A (en) Method and device for forming thin film
US20020088972A1 (en) Abrupt pn junction diode formed using chemical vapor deposition processing
JPH05326477A (en) Method for removal of halogen from semiconductor substrate surface
JPH06244174A (en) Formation of insulating oxide film
JPH06151304A (en) Compound semiconductor wafer
JPH0794678A (en) Capacitor and formation thereof
JP2875503B2 (en) Semiconductor processing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120