JPH0883721A - Three-phase transformer - Google Patents

Three-phase transformer

Info

Publication number
JPH0883721A
JPH0883721A JP21691394A JP21691394A JPH0883721A JP H0883721 A JPH0883721 A JP H0883721A JP 21691394 A JP21691394 A JP 21691394A JP 21691394 A JP21691394 A JP 21691394A JP H0883721 A JPH0883721 A JP H0883721A
Authority
JP
Japan
Prior art keywords
tank
phase transformer
magnetic
hole
magnetic shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21691394A
Other languages
Japanese (ja)
Inventor
Nobuhiko Suzuki
伸彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21691394A priority Critical patent/JPH0883721A/en
Publication of JPH0883721A publication Critical patent/JPH0883721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulation Of General Use Transformers (AREA)

Abstract

PURPOSE: To provide a three-phase transformer capable of surely converging a magnetic flux leakage by a magnetic shield so as to prevent a tank from increasing locally in temperature, low in loss, and simple in structure even if the three-phase transformer has such a structure that it is composed of the tank split into several parts in a horizontal direction, and a high-voltage lead is led out through a through-hole provided to the tank. CONSTITUTION: A three-leg iron core 1 possessed of main legs each wound with a set of a low-voltage winding wire 2 and a high-voltage winding wire 3 is housed in a tank 4, and a through-hole 8 is provided to the center of the tank wall which confronts the winding wires of three phases. A high-voltage lead 7 extending from the high-voltage winding 3 is led out of the tank 4 through the through-hole 8. Magnetic shields 5 are formed of material such as silicon steel plate which is high in permeability to a magnetic flux. The shield 5 are arranged in parallel on the inner wall of the tank 4 as separated from each other in a vertical direction avoiding the high-voltage lead 7 and the through-hole 8, aligning their axes with the arrangement direction of the windings, and keeping their axes as long as the length of a space between the ends of the windings 2 and 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、巻線からの漏れ磁束を
収束するためタンク内壁面に磁気シールドを設けた三相
変圧器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase transformer provided with a magnetic shield on the inner wall surface of a tank for converging leakage flux from a winding.

【0002】[0002]

【従来の技術】一般に変圧器が負荷をとると巻線から漏
れ磁束が発生する。図5は漏れ磁束発生の一例を示した
三相変圧器の断面図である。この三相変圧器は、三脚鉄
心1の周囲に低圧巻線2および高圧巻線3を配置し、こ
れをタンク4内に収納して構成されている。このような
三相変圧器に負荷を接続して運転した場合に、低圧巻線
2および高圧巻線3より生じた漏れ磁束が一例として図
中破線で表すように発生する。この漏れ磁束がタンク4
を構成する金属構造物に入射すると、漂遊損失の増大
や、漂遊損失により局部的な温度上昇をひきおこすこと
がある。これは、変圧器の品質、性能および信頼性を低
下させるものである。したがってこのような問題点を軽
減または除去するために、図6及び図7に示されるよう
に、タンク4の内壁面に磁気シールド5を設ける対策が
とられている。図6は従来の三相変圧器本体の断面図、
図7は従来の三相変圧器本体の平面図をそれぞれ示した
ものである。このような従来技術では、各相の高圧巻線
3に対向するタンク4内壁面上下方向に沿って、方向性
けい素鋼板のような磁束を通しやすい材質の磁気シール
ド5がそれぞれ設けられている。
2. Description of the Related Art Generally, when a transformer takes a load, a magnetic flux leaks from a winding. FIG. 5 is a sectional view of a three-phase transformer showing an example of generation of leakage magnetic flux. This three-phase transformer is configured by arranging a low voltage winding 2 and a high voltage winding 3 around a tripod core 1 and accommodating them in a tank 4. When a load is connected to such a three-phase transformer for operation, a leakage magnetic flux generated from the low voltage winding 2 and the high voltage winding 3 is generated as shown by a broken line in the figure as an example. This leakage magnetic flux is in tank 4
When incident on the metal structure that constitutes the, the stray loss may increase, and the stray loss may cause a local temperature rise. This reduces the quality, performance and reliability of the transformer. Therefore, in order to reduce or eliminate such a problem, as shown in FIGS. 6 and 7, measures are taken to provide the magnetic shield 5 on the inner wall surface of the tank 4. FIG. 6 is a sectional view of a conventional three-phase transformer body,
FIG. 7 is a plan view of a conventional three-phase transformer body. In such a conventional technique, a magnetic shield 5 made of a material such as a grain-oriented silicon steel plate through which magnetic flux easily passes is provided along the vertical direction of the inner wall surface of the tank 4 facing the high-voltage winding 3 of each phase. .

【0003】上記のような構成を有する従来の三相変圧
器に負荷を接続し運転すると、低圧巻線2と高圧巻線3
のギャップ間の漏れ磁束は、三脚鉄心1以外の部分に漂
遊するが、その中でタンク4の壁面方向に漂遊した磁束
はタンク4に入射することなしに、タンク4よりも透磁
率の大きい磁気シールド5の中を流れる。従って、タン
ク4が過熱することなく、また磁気シールド5がない場
合に比べて、発生する漂遊損失も低減できる。
When a load is connected to the conventional three-phase transformer having the above-mentioned structure and operated, the low voltage winding 2 and the high voltage winding 3 are connected.
The leakage flux between the gaps of the magnetic flux strays in the portion other than the tripod core 1, but the magnetic flux straying in the wall direction of the tank 4 therein does not enter the tank 4 and has a magnetic permeability higher than that of the tank 4. It flows in the shield 5. Therefore, the stray loss generated can be reduced as compared with the case where the tank 4 does not overheat and the magnetic shield 5 is not provided.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の三相変圧器はいくつかの問題点を有してい
た.まず、図6および図7に示されているように、各相
の巻線ごとに専用の磁気シールド5が設けられている従
来の三相変圧器の構成では、磁気シールド5は、磁束を
分断しないためにもタンク内壁面上下方向に連結したも
のとして構成されることが望ましい。しかしながら、い
わゆる図8および図9に示されるようなベル形タイプの
三相変圧器のごとくタンク4を水平方向に複数個に分割
した構成を有する三相変圧器では、タンク4の分割部6
a,6bに合わせて各相の磁気シールド5もそれぞれ分
割する必要が生じる。このため、変圧器の構成が複雑に
なるばかりでなく、磁気シールドの分割部5a,5b付
近では、磁束の一部がタンク4に入射することとなる。
この結果、磁束の集中がタンク4の局部温度上昇をひき
おこすという問題点を有していた。
However, the conventional three-phase transformer as described above has some problems. First, as shown in FIGS. 6 and 7, in the configuration of the conventional three-phase transformer in which the dedicated magnetic shield 5 is provided for each phase winding, the magnetic shield 5 divides the magnetic flux. In order not to do so, it is preferable that the tank inner wall surface is configured to be connected in the vertical direction. However, in a three-phase transformer having a configuration in which the tank 4 is horizontally divided into a plurality of parts such as a bell-type three-phase transformer as shown in FIGS.
It is necessary to divide the magnetic shield 5 of each phase in accordance with a and 6b. Therefore, not only the structure of the transformer becomes complicated, but also a part of the magnetic flux enters the tank 4 in the vicinity of the divided portions 5a and 5b of the magnetic shield.
As a result, there is a problem that the concentration of magnetic flux causes a local temperature rise of the tank 4.

【0005】また、実際に三相変圧器を製造する場合に
は、巻線のリード7を外部に引き出すため、図10およ
び図11に示すように巻線に対向するタンク4の側面に
貫通穴8を設けることが必要になることがある。磁気シ
ールド5は、漏れ磁束を収束するというそれ固有の目的
を達成するため、その取付範囲にはおのずから制約があ
る。したがって貫通穴8を避けて、しかも各巻線専用の
磁気シールド5を分離することなく配置することにはし
ばしば困難が生じるという問題点を有していた。
Further, in the case of actually manufacturing a three-phase transformer, in order to pull out the lead 7 of the winding to the outside, a through hole is formed in the side surface of the tank 4 facing the winding as shown in FIGS. It may be necessary to provide 8. Since the magnetic shield 5 achieves its unique purpose of converging the leakage magnetic flux, its mounting range is naturally limited. Therefore, it is often difficult to avoid the through hole 8 and to dispose the magnetic shield 5 dedicated to each winding without separating it.

【0006】本発明は上記のような従来技術の問題点を
解消するために考案されたものであり、その主な目的
は、磁気シールドをタンク内壁面上下方向に分離して配
置した場合であっても、漏れ磁束を磁気シールドで確実
に収束してタンクの局部温度上昇を回避することのでき
る、構造の簡単な三相変圧器を提供することである。ま
た、本発明の他の発明は、高圧リードを、タンクに設け
られた貫通穴から引き出す構成、および水平方向に分割
構成されたタンクを有する三相変圧器においても、漏れ
磁束を効果的に収束できる三相変圧器を提供することで
ある。
The present invention was devised to solve the above-mentioned problems of the prior art, and its main purpose is to arrange the magnetic shields separately in the vertical direction of the inner wall surface of the tank. Even so, it is an object of the present invention to provide a three-phase transformer having a simple structure that can surely converge the leakage magnetic flux with a magnetic shield and avoid a local temperature rise in the tank. Further, another invention of the present invention effectively converges the leakage magnetic flux in a three-phase transformer having a structure in which a high voltage lead is drawn out from a through hole provided in a tank and a tank divided in a horizontal direction. Is to provide a three-phase transformer that can.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めに、請求項1の発明は、タンク内に配置された複数の
鉄心脚の外周囲に各々巻線された巻線を収納して成る三
相変圧器において、複数の巻線が配置される方向に延び
る軸長を有し且つこの軸長が少なくとも両端に位置する
巻線の端部間の長さを有する複数の磁気シールド板を備
え、これら複数の磁気シールド板をその軸方向を巻線配
置方向に向け且つタンク内壁面上下方向に分離して並列
配置したことを特徴とする。
In order to achieve the above object, the invention of claim 1 stores windings wound around the outer circumference of a plurality of iron core legs arranged in a tank. In the three-phase transformer consisting of, a plurality of magnetic shield plates having an axial length extending in the direction in which the plurality of windings are arranged and having a length between the end portions of the windings, which axial length is at least at both ends, It is characterized in that the plurality of magnetic shield plates are arranged in parallel with their axial directions facing the winding arrangement direction and separated in the vertical direction of the inner wall surface of the tank.

【0008】請求項2の発明は、請求項1記載の三相変
圧器において、変圧器タンクがその中央部に巻線から高
圧リードを引き出すための貫通穴を備え、この貫通穴部
に合わせて磁気シールドが分離して配置されていること
を特徴とする。
According to a second aspect of the present invention, in the three-phase transformer according to the first aspect, the transformer tank is provided with a through hole in the center thereof for drawing out the high voltage lead from the winding, and the through hole portion is aligned with the through hole. It is characterized in that the magnetic shields are separately arranged.

【0009】請求項3の発明は、請求項1記載の三相変
圧器において、変圧器タンクが分割部を有し、この分割
部においてタンクが水平方向に分割構成され、タンクの
分割部と対向するタンク内壁面には磁気シールド板を配
置しないことを特徴とする。
According to a third aspect of the present invention, in the three-phase transformer according to the first aspect, the transformer tank has a divided portion, and the tank is divided horizontally in the divided portion and faces the divided portion of the tank. It is characterized in that no magnetic shield plate is arranged on the inner wall surface of the tank.

【0010】[0010]

【作用】上記のような構成を有する本発明の三相変圧器
は、以下のような作用を有する。
The three-phase transformer of the present invention having the above structure has the following functions.

【0011】三相変圧器の場合、各相の巻線に対向する
タンクの同一高位に入射する漏れ磁束は、大きさが等し
く、位相が120度ずれたものとなっている。本発明の
三相変圧器では、複数の巻線が配置される方向に延びる
軸長を有し、且つこの軸長が少なくとも両端に位置する
巻線の端部間の長さを有する複数の磁気シールド板が設
けられており、これら複数の磁気シールド板はその軸方
向を巻線配置方向に向けて配置されている。したがっ
て、タンク内壁に三相通しで取付けた磁気シールド内の
磁束は、位相の120度ずれた三相分の入射磁束を合成
することによってベクトル的に打ち消し合う。
In the case of the three-phase transformer, the leakage magnetic fluxes incident on the same high position of the tanks facing the windings of the respective phases have the same magnitude and are out of phase by 120 degrees. In the three-phase transformer of the present invention, a plurality of magnetic fields having an axial length extending in the direction in which the plurality of windings are arranged and having a length between the ends of the windings located at least at both ends are provided. A shield plate is provided, and the plurality of magnetic shield plates are arranged with their axial directions facing the winding arrangement direction. Therefore, the magnetic fluxes in the magnetic shield attached to the inner wall of the tank through the three phases cancel each other in vector by combining the incident magnetic fluxes for the three phases with the phases shifted by 120 degrees.

【0012】また、本発明の三相変圧器では磁気シール
ドがタンク内壁面上下方向に分離されて設けられてい
る。したがって、磁気シールドの分離された部分におけ
る漏れ磁束の集中は当然懸念されるところである。ここ
で、タンク内壁面上下方向のタンク内壁の入射磁束分布
を図12に示す。図中、9は入射磁束量、10はタンク
4壁面を示したもので、11が漏れ磁束分布となる。漏
れ磁束分布11より明らかなように、巻線の端部に対向
する部分で入射磁束は最大となり、タンク内壁面上下方
向の中央部分に対向する部分の入射磁束量は極めて少な
くなる。このように、タンク中央部は入射磁束が小さい
ため、この部分に限っては磁気シールドの取付が不要と
なる。したがって、前記三相分の入射磁束のキャンセル
作用と、この漏れ磁束分布による作用との組み合わせに
より、タンク内壁面上下方向に分離された磁気シールド
であっても漏れ磁束を効果的に収束できる。また、請求
項2記載の三相変圧器のようにタンク壁面の高さ方向中
央部に貫通穴が設けられてそこから高圧リードを引き出
す場合や、請求項3記載の三相変圧器のようにタンクが
水平方向に分割構成されている場合において、貫通穴お
よびタンク分割部を避けて分離された磁気シールドを設
けたとしても、前記の理由からタンクの内壁に漏れ磁束
の集中を起こすことはなく、タンクの局部的過熱が回避
される。
In the three-phase transformer of the present invention, the magnetic shields are provided separately in the vertical direction of the inner wall surface of the tank. Therefore, the concentration of the leakage magnetic flux in the separated portion of the magnetic shield is naturally a matter of concern. Here, FIG. 12 shows an incident magnetic flux distribution on the tank inner wall in the vertical direction of the tank inner wall. In the figure, 9 is the amount of incident magnetic flux, 10 is the wall surface of the tank 4, and 11 is the leakage magnetic flux distribution. As is clear from the leakage flux distribution 11, the incident magnetic flux becomes maximum at the portion facing the end of the winding, and the amount of incident magnetic flux at the portion facing the central portion in the vertical direction of the inner wall surface of the tank becomes extremely small. Thus, since the incident magnetic flux is small in the central portion of the tank, it is not necessary to attach the magnetic shield only to this portion. Therefore, due to the combination of the canceling action of the incident magnetic flux for the three phases and the action due to the leak magnetic flux distribution, the leak magnetic flux can be effectively converged even with the magnetic shields separated in the vertical direction of the inner wall surface of the tank. Further, as in the case of the three-phase transformer according to claim 2, when a through hole is provided in the center portion in the height direction of the tank wall surface and the high voltage lead is pulled out from the through hole, as in the three-phase transformer according to claim 3. In the case where the tank is divided horizontally, even if a separate magnetic shield is provided avoiding the through hole and the tank dividing part, leakage magnetic flux will not be concentrated on the inner wall of the tank for the above reason. , Local overheating of the tank is avoided.

【0013】[0013]

【実施例】以下、本発明による三相変圧器の実施例を添
付図面にしたがって具体的に説明する。なお、図1から
図12において同一部分には同一符号を付すものとす
る。 (1)第一実施例 図1に示す第一実施例は、本発明の請求項2に対応する
三相変圧器における磁気シールド取付構成を示す断面図
であり、図2はその平面図を示したものである。図1に
おいて、タンク4は、一組の低圧巻線2と高圧巻線3を
各主脚に巻装した三脚鉄心1を収納し、三相分の巻線に
対向するタンク壁の中央部にはタンク4を貫通する貫通
穴8を設けている。巻線からの高圧リード7は貫通穴8
からタンク4外部へ引き出される。また、方向性けい素
鋼板のような磁束を通しやすいと材質による磁気シール
ド5は、高圧リード7および貫通穴8を避け、低圧巻線
2と高圧巻線3の端部間の長さの軸長を有しつつその軸
方向を巻線配置方向に且つタンク内壁面上下方向に分離
して並列配置される。
Embodiments of the three-phase transformer according to the present invention will be described below in detail with reference to the accompanying drawings. 1 to 12, the same parts are designated by the same reference numerals. (1) First Embodiment A first embodiment shown in FIG. 1 is a sectional view showing a magnetic shield mounting structure in a three-phase transformer according to claim 2 of the present invention, and FIG. 2 is a plan view thereof. It is a thing. In FIG. 1, a tank 4 accommodates a tripod core 1 in which a pair of low-voltage windings 2 and high-voltage windings 3 are wound around each main landing gear, and is installed in the center of the tank wall facing the windings for three phases. Has a through hole 8 penetrating the tank 4. High voltage lead 7 from winding is through hole 8
From the tank 4 to the outside of the tank 4. In addition, the magnetic shield 5 made of a material that facilitates the passage of magnetic flux, such as a grain-oriented silicon steel plate, avoids the high voltage lead 7 and the through hole 8 and avoids the axis of the length between the ends of the low voltage winding 2 and the high voltage winding 3. While having a length, their axial directions are separated in the winding arrangement direction and in the vertical direction of the inner wall surface of the tank, and are arranged in parallel.

【0014】上記のような構成を有する三相変圧器に負
荷を接続すると、低圧巻線1と高圧巻線2の間に漏れ磁
束が生じ、三脚鉄心1以外の部分に漂遊する。タンク4
の内側に漂遊した漏れ磁束は、タンク4よりも透磁率の
高い磁気シールド5に流入する。三相変圧器の場合、同
じ高位に入射するこの3つの磁束の大きさが等しいこと
は周知のとおりであり、磁気シールド内の磁束は、位相
の120度ずれた三相分の入射磁束を合成することによ
ってベクトル的に互い相殺される。本実施例では磁気シ
ールド5はタンク内壁面上下方向に分割して設けられて
いるが、前記の理由からタンクの内壁面における部分的
な過熱を回避することができる。
When a load is connected to the three-phase transformer having the above structure, a leakage magnetic flux is generated between the low voltage winding 1 and the high voltage winding 2 and strays in a portion other than the tripod core 1. Tank 4
Leakage magnetic flux straying inside the tank flows into the magnetic shield 5 having a higher magnetic permeability than the tank 4. In the case of a three-phase transformer, it is well known that these three magnetic fluxes that are incident at the same high level have the same magnitude, and the magnetic fluxes in the magnetic shield combine the incident magnetic fluxes for three phases that are 120 degrees out of phase. By doing so, they cancel each other in a vector manner. In the present embodiment, the magnetic shield 5 is provided separately in the vertical direction on the inner wall surface of the tank, but it is possible to avoid partial overheating on the inner wall surface of the tank for the above reason.

【0015】また、本実施例における磁気シールド5
は、タンク4内壁の貫通穴8を除く上半部および下半部
に相当するの磁束量の大きい部位にしか取り付けられて
いない。しかしながら、タンク4内壁に設けてある貫通
穴8は、タンク内壁面上下方向の中央部に対向する位置
に設けているために入射磁束量が小さい。さらに磁気シ
ールド5は、三相分の巻線端部間に相当する長さを有
し、かつ水平方向に設けられている。したがって、問題
とされる漏れ磁束を十分収束し、かつ磁気シールド5の
非設置部分に対向するタンク4内壁の局部的な過熱を引
き起こすことはない。
Further, the magnetic shield 5 in the present embodiment.
Are attached only to the upper half and the lower half of the inner wall of the tank 4 excluding the through holes 8 where the amount of magnetic flux is large. However, since the through hole 8 provided in the inner wall of the tank 4 is provided at a position facing the central portion in the vertical direction of the inner wall surface of the tank, the amount of incident magnetic flux is small. Further, the magnetic shield 5 has a length corresponding to the winding end portions for three phases and is provided in the horizontal direction. Therefore, the problematic leakage flux is sufficiently converged, and local overheating of the inner wall of the tank 4 facing the non-installed portion of the magnetic shield 5 is not caused.

【0016】このように本実施例の三相変圧器では、磁
気シールド取り付けの際に貫通穴を障害としない実用的
かつ低損失で構造の簡単な変圧器を提供することができ
る。
As described above, in the three-phase transformer of the present embodiment, it is possible to provide a practical transformer with a low loss and a simple structure that does not obstruct the through hole when attaching the magnetic shield.

【0017】(2)第二実施例 図3に示す第二実施例は、本発明の請求項3に対応する
三相変圧器における磁気シールド取付構成を示す断面図
であり、図4はその平面図を示したものである。図3に
おいて、タンク4は分割部6a,6bで接続され、一組
の低圧巻線2と高圧巻線3を各主脚に巻装した三脚鉄心
1を収納している。このタンク4内壁の巻線に対向する
部分において、タンク4の継ぎ目に相当する分割部6
a,6bを避けた部位に磁気シールド5が取り付けてあ
る。
(2) Second Embodiment A second embodiment shown in FIG. 3 is a sectional view showing a magnetic shield mounting structure in a three-phase transformer corresponding to claim 3 of the present invention, and FIG. 4 is a plan view thereof. The figure is shown. In FIG. 3, a tank 4 is connected by split portions 6a and 6b, and accommodates a tripod core 1 in which a pair of low-voltage winding 2 and high-voltage winding 3 are wound around each main leg. In the portion of the inner wall of the tank 4 facing the winding, the dividing portion 6 corresponding to the joint of the tank 4
The magnetic shield 5 is attached to a portion avoiding a and 6b.

【0018】このような構成を有する本実施例における
三相変圧器では、第一実施例と同様、タンク4内側を漂
遊した磁束は、磁気シールド5内でベクトル的に三相分
が打ち消し合う。よって、タンク4の継ぎ目に相当する
分割部6a,6bに対向するタンクの局部的な過熱は起
こらない。したがって、従来の三相変圧器例のように巻
線の高さ方向に連続して磁気シールドを取り付けること
なく、低損失で構造も簡単な三相変圧器を提供すること
ができる。
In the three-phase transformer of this embodiment having such a configuration, the magnetic fluxes straying inside the tank 4 cancel each other in three vectors in the magnetic shield 5 in the same manner as in the first embodiment. Therefore, local overheating of the tank facing the divided portions 6a and 6b corresponding to the joint of the tank 4 does not occur. Therefore, unlike the conventional three-phase transformer, it is possible to provide a three-phase transformer having a low loss and a simple structure without continuously attaching a magnetic shield in the height direction of the winding.

【0019】(3)その他の実施例 なお、本発明は以上のような実施例に限定されるもので
はなく、各構成で用いられる部材の材質および形状は適
宜変更可能である。例えば、貫通穴はタンク内壁におい
てタンク内壁面上下方向に関して中央部に相当する位置
であれば良く、その数および位置は問わない。したがっ
て、タンク両壁面に貫通穴を設けることも可能である。
また、タンクは、水平方向に複数個に分割できる構造し
た場合でも、継ぎ目の両側に三相通しの磁気シールドを
取り付けることで上記と同様の効果を得ることが可能で
ある。さらに、請求項3と請求項4の構造を合わせ持つ
タンクにおいても同様である。
(3) Other Embodiments The present invention is not limited to the above embodiments, and the materials and shapes of the members used in each configuration can be changed as appropriate. For example, the through holes may be located in the inner wall of the tank at positions corresponding to the central portion in the vertical direction of the inner wall surface of the tank, and the number and position of the through holes do not matter. Therefore, it is possible to provide through holes on both wall surfaces of the tank.
Further, even when the tank has a structure that can be divided into a plurality of parts in the horizontal direction, it is possible to obtain the same effect as above by attaching the three-phase magnetic shields on both sides of the joint. Further, the same applies to a tank having the structures of claims 3 and 4.

【0020】[0020]

【発明の効果】以上の通り、本発明によれば、磁気シー
ルドがタンク内壁面上下方向に分離して並列配置された
三相変圧器、例えば高圧リードをタンクに設けられた貫
通穴から引き出したり、水平方向に分割構成されたタン
クを有する三相変圧器においても、漏れ磁束を磁気シー
ルドで確実に収束してタンクの局部温度上昇を回避する
ことを可能とし、低損失かつ実用的で構造の簡単な三相
変圧器を提供することができる。
As described above, according to the present invention, a three-phase transformer in which magnetic shields are vertically arranged in parallel in the inner wall surface of a tank, for example, a high voltage lead is pulled out from a through hole provided in the tank. Even in a three-phase transformer having a horizontally divided tank, the leakage flux can be reliably converged by the magnetic shield to avoid the local temperature rise of the tank, and the structure is low loss and practical. It is possible to provide a simple three-phase transformer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例の三相変圧器の磁気シール
ド部分の断面図。
FIG. 1 is a sectional view of a magnetic shield portion of a three-phase transformer according to a first embodiment of the present invention.

【図2】本発明の第一実施例の三相変圧器の磁気シール
ド部分の平面図。
FIG. 2 is a plan view of a magnetic shield portion of the three-phase transformer of the first embodiment of the present invention.

【図3】本発明の第二実施例の三相変圧器の磁気シール
ド部分の断面図。
FIG. 3 is a sectional view of a magnetic shield portion of a three-phase transformer according to a second embodiment of the present invention.

【図4】本発明の第二実施例の三相変圧器の磁気シール
ド部分の平面図。
FIG. 4 is a plan view of a magnetic shield portion of a three-phase transformer according to a second embodiment of the present invention.

【図5】磁気シールドを持たない一般の変圧器断面の漏
れ磁束図。
FIG. 5 is a leakage flux diagram of a general transformer cross section without a magnetic shield.

【図6】従来の三相変圧器における磁気シールド取付構
造の一例を示す断面図。
FIG. 6 is a sectional view showing an example of a magnetic shield mounting structure in a conventional three-phase transformer.

【図7】図6の平面図。FIG. 7 is a plan view of FIG.

【図8】従来の三相変圧器タンクが分割された変圧器に
おける磁気シールド取付構造の断面図。
FIG. 8 is a sectional view of a magnetic shield mounting structure in a transformer in which a conventional three-phase transformer tank is divided.

【図9】図8の平面図。9 is a plan view of FIG.

【図10】従来の高圧リード引き出し用の貫通穴を有す
る三相変圧器における磁気シールド取付構造の断面図。
FIG. 10 is a cross-sectional view of a magnetic shield mounting structure in a conventional three-phase transformer having a through hole for leading out a high voltage lead.

【図11】図10の平面図。11 is a plan view of FIG.

【図12】磁気シールドを持たない一般の変圧器のタン
ク壁の漏れ磁束分布図。
FIG. 12 is a leakage magnetic flux distribution map of a tank wall of a general transformer having no magnetic shield.

【符号の説明】[Explanation of symbols]

1…三脚鉄心 2…低圧巻線 3…高圧巻線 4…タンク 5…磁気シールド 6a、6b…分割部 7…高圧リード 8…貫通穴 9…入射磁束量 10…タンク壁面 11…漏れ磁束分布 DESCRIPTION OF SYMBOLS 1 ... Tripod core 2 ... Low voltage winding 3 ... High voltage winding 4 ... Tank 5 ... Magnetic shield 6a, 6b ... Dividing part 7 ... High voltage lead 8 ... Through hole 9 ... Incident magnetic flux amount 10 ... Tank wall surface 11 ... Leakage magnetic flux distribution

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タンク内に配置された複数の鉄心脚の外
周囲に各々巻線された巻線を収納して成る三相変圧器に
おいて、 前記複数の巻線が配置される方向に延びる軸長を有し且
つこの軸長が少なくとも両端に位置する巻線の端部間の
長さを有する複数の磁気シールド板を備え、これら複数
の磁気シールド板をその軸方向を前記巻線配置方向に向
け且つ前記タンク内壁面上下方向に分離して並列配置し
たことを特徴とする三相変圧器。
1. A three-phase transformer comprising windings wound around the outer circumference of a plurality of iron core legs arranged in a tank, wherein a shaft extending in a direction in which the plurality of windings are arranged. A plurality of magnetic shield plates each having a length and an axial length of at least both ends of a winding located between the end portions of the winding, A three-phase transformer, characterized in that the three-phase transformer is placed in parallel with being separated in the vertical direction of the inner wall surface of the tank.
【請求項2】 前記変圧器タンクがその中央部に巻線か
ら高圧リードを引き出すための貫通穴を備え、この貫通
穴部に合わせて前記複数の磁気シールドが分離して配置
されていることを特徴とする請求項1記載の三相変圧
器。
2. The transformer tank is provided with a through hole for pulling out a high voltage lead from a winding in a central portion thereof, and the plurality of magnetic shields are separately arranged in accordance with the through hole portion. The three-phase transformer according to claim 1, which is characterized in that.
【請求項3】 前記変圧器タンクが分割部を有し、この
分割部において前記タンクが水平方向に分割構成され、
前記タンクの分割部と対向するタンク内壁面には前記磁
気シールド板を配置しないことを特徴とする請求項1記
載の三相変圧器。
3. The transformer tank has a dividing portion, and the tank is divided horizontally in the dividing portion,
The three-phase transformer according to claim 1, wherein the magnetic shield plate is not arranged on the inner wall surface of the tank facing the divided portion of the tank.
JP21691394A 1994-09-12 1994-09-12 Three-phase transformer Pending JPH0883721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21691394A JPH0883721A (en) 1994-09-12 1994-09-12 Three-phase transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21691394A JPH0883721A (en) 1994-09-12 1994-09-12 Three-phase transformer

Publications (1)

Publication Number Publication Date
JPH0883721A true JPH0883721A (en) 1996-03-26

Family

ID=16695888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21691394A Pending JPH0883721A (en) 1994-09-12 1994-09-12 Three-phase transformer

Country Status (1)

Country Link
JP (1) JPH0883721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010055B1 (en) * 2011-05-25 2012-08-29 三菱電機株式会社 Transformer
CN105185553A (en) * 2015-09-14 2015-12-23 广东新昇电业科技股份有限公司 Three-phase pancake inversion transformer for balancing leakage inductance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010055B1 (en) * 2011-05-25 2012-08-29 三菱電機株式会社 Transformer
US8928446B2 (en) 2011-05-25 2015-01-06 Mitsubishi Electric Corporation Transformer
CN105185553A (en) * 2015-09-14 2015-12-23 广东新昇电业科技股份有限公司 Three-phase pancake inversion transformer for balancing leakage inductance

Similar Documents

Publication Publication Date Title
KR0165948B1 (en) Choke coil
US10410778B2 (en) Magnetic circuit component
US5793273A (en) Choke coil for suppressing common-mode noise and normal-mode noise
JPH0114685B2 (en)
JPH0883721A (en) Three-phase transformer
JP3646595B2 (en) Static induction machine
JP2008103416A (en) Stationary inductive electric apparatus
US3967226A (en) Electrical inductive apparatus having magnetic shielding cores and a gapped main core structure
JPH0423294Y2 (en)
JP6594597B1 (en) Stationary induction equipment
JP2008258339A (en) Static induction electrical apparatus
JPH04155807A (en) Electromagnetic induction equipment
JPH08124767A (en) Stationary induction electric apparatus
JPH05114522A (en) Zero phase current transformer
JP2634411B2 (en) Electromagnetic induction equipment
JPS6057911A (en) Stationary induction electrical apparatus
JP2000311825A (en) Zero-phase current transformer
JPS5823727B2 (en) iron core reactor
JPS5828354Y2 (en) Air core reactor device
JP3638972B2 (en) Static induction machine
JPS59181514A (en) Stationary induction electric apparatus
JPS5839004A (en) Stationary induction apparatus
KR930006939B1 (en) Flyback fransformer
JPS6134248B2 (en)
JPH0878248A (en) Gapped iron core reactor