JPH0883591A - Charged beam radiating device and radiating method - Google Patents

Charged beam radiating device and radiating method

Info

Publication number
JPH0883591A
JPH0883591A JP22009794A JP22009794A JPH0883591A JP H0883591 A JPH0883591 A JP H0883591A JP 22009794 A JP22009794 A JP 22009794A JP 22009794 A JP22009794 A JP 22009794A JP H0883591 A JPH0883591 A JP H0883591A
Authority
JP
Japan
Prior art keywords
magnetic field
correction
fluctuation
measuring
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22009794A
Other languages
Japanese (ja)
Other versions
JP3378369B2 (en
Inventor
Hitoshi Sunaoshi
仁 砂押
Kazuo Tsuji
和夫 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibaura Machine Co Ltd
Original Assignee
Toshiba Corp
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Machine Co Ltd filed Critical Toshiba Corp
Priority to JP22009794A priority Critical patent/JP3378369B2/en
Publication of JPH0883591A publication Critical patent/JPH0883591A/en
Application granted granted Critical
Publication of JP3378369B2 publication Critical patent/JP3378369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To enhance accuracy of exposure, and simplify device constitution by performing feedback to a deflecting system through a correcting circuit so as to correct a moving distance of a charged beam radiating position on the basis of the size of a change in a measured magnetic field. CONSTITUTION: A uniaxial magnetic field measuring probe contained in a magnetic field measuring unit 1 is arranged after the largest place and the largest direction in the correlation between a change in a magnetic field and a change in a beam position are judged by an evaluating circuit 5. A magnetic field changing signal from an output circuit of the measuring unit 1 is inputted to a correcting circuit 2, and is converted into a correction signal branched off into two systems to correct the (x) axis and the (y) axis, and is supplied to a beam position deflecting system 3 arranged in an exposure device. A signal and a stage position from the measuring unit 1 and a detecting signal from a beam position detector 112 are inputted to the evaluating circuit 5, and a correction quantity is determined from measurement of the correlation between both. A correction quantity of a change in the beam position and the correcting direction are determined by the correcting circuit 2 on the basis of this evaluated result, and are outputted to the deflecting system 3 in an electric current or voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、露光装置や電子顕微鏡
等に利用できる荷電ビーム照射装置と照射方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged beam irradiation apparatus and an irradiation method applicable to an exposure apparatus, an electron microscope and the like.

【0002】[0002]

【従来の技術】近年、半導体集積回路の高密度化,微細
化の進歩は目覚ましく、今世紀中には最小線幅0.15
μmの1GビットDRAMが、また21世紀には最小線
幅0.1μm以下のULSIが開発されると予想されて
いる。現在、このような微細なULSIのパターンを形
成するための有力な技術の一つとして、電子ビームを用
いた露光方法がある。
2. Description of the Related Art In recent years, the progress of high density and miniaturization of semiconductor integrated circuits has been remarkable, and a minimum line width of 0.15 has been reached in this century.
It is expected that μm 1G bit DRAM and ULSI with a minimum line width of 0.1 μm or less will be developed in the 21st century. At present, there is an exposure method using an electron beam as one of the influential techniques for forming such a fine ULSI pattern.

【0003】図4は、従来用いられてきた電子ビーム露
光装置を示す概略構成図である。電子銃101から放射
された電子ビームは、コンデンサレンズ102によりビ
ーム成形第1アパーチャ103に照射される。この第1
アパーチャ103の像は、投影レンズ104によってビ
ーム成形第2アパーチャ105の上に結像される。ビー
ム寸法は、ビーム成形偏向器106によって2つのアパ
ーチャ103,105の重なりの程度を制御することに
より変えることができる。アパーチャ103,105の
重なりによる像は、縮小レンズ107及び対物レンズ1
08によって縮小されて試料109上に結像される。そ
して、試料面上のビーム位置は、主偏向器110によっ
て0.01μm程度の分解能で制御される(例えば、J.
Vac.Sci.Technol.B11 (1994)2309)。
FIG. 4 is a schematic diagram showing a conventionally used electron beam exposure apparatus. The electron beam emitted from the electron gun 101 is applied to the beam shaping first aperture 103 by the condenser lens 102. This first
The image of the aperture 103 is formed on the beam forming second aperture 105 by the projection lens 104. The beam size can be changed by controlling the degree of overlap between the two apertures 103 and 105 by the beam shaping deflector 106. The image resulting from the overlapping of the apertures 103 and 105 is the reduction lens 107 and the objective lens 1
The image is reduced by 08 and imaged on the sample 109. The beam position on the sample surface is controlled by the main deflector 110 with a resolution of about 0.01 μm (for example, J.
Vac.Sci.Technol.B11 (1994) 2309).

【0004】このような装置により極微細なパターンを
形成する場合には、各種制御系の精度と安定性が必要不
可欠であるが、露光装置の分解能が良くなり露光する最
小線幅が小さくなるにつれ、装置の設置環境、例えば外
部磁場や室温、装置冷却水の温度等の変動が装置の性能
に大きく影響を与えることがある。
When forming an extremely fine pattern with such an apparatus, the precision and stability of various control systems are indispensable, but as the resolution of the exposure apparatus improves and the minimum line width for exposure becomes smaller. A change in the installation environment of the device, such as an external magnetic field, room temperature, or the temperature of the device cooling water, can greatly affect the performance of the device.

【0005】特に、外部磁場の変動がビームの照射位置
に与える影響は大きく、例えば50keVの電子ビーム
は、光軸と垂直方向に10-7Tの磁場が存在すると、空
間を5cm進む間に、磁場と垂直方向に約0.02μm
のずれを生じることになる。磁気シールドを用いない日
常の空間では、地磁気の変動や電車等の都市交通によっ
て発生する変動磁場、送配電線から漏洩する磁場等が存
在し、その変動の大きさは10-7〜10-6Tである。
0.01μmの分解能を持つ電子ビーム露光装置にとっ
て、このような変動(外乱)はビームの照射位置変動と
なり、精度悪化の原因となる。
Particularly, the fluctuation of the external magnetic field has a great influence on the irradiation position of the beam. For example, in the case of a 50 keV electron beam, when a magnetic field of 10 −7 T is present in the direction perpendicular to the optical axis, while traveling 5 cm in space, About 0.02μm in the direction perpendicular to the magnetic field
Will result in a deviation. In everyday space without magnetic shields, there are magnetic fields that fluctuate due to geomagnetic fluctuations and urban traffic such as trains, and magnetic fields that leak from transmission and distribution lines. The magnitude of fluctuations is 10 -7 to 10 -6. T.
For an electron beam exposure apparatus having a resolution of 0.01 μm, such a variation (disturbance) causes a variation in the irradiation position of the beam, which causes deterioration in accuracy.

【0006】露光装置において磁場変動の影響を防ぐた
めに、大きく分けて3つの手段が存在する。第1の手段
は、高透磁率材料を用いた磁気シールドを用いて露光装
置内部への外部磁場の侵入を防ぐ方法である(例えば、
J.Vac.Sci.Technol.B11(6)2309や、特開平4−2643
39号公報)。この場合、シールドを幾重にもすること
で高い遮蔽効果を得ることができるが、それだけ厚みや
重量が増し、また作業性や排気・空調設備等の構造上の
制約が多く存在する。さらに、シールドされた内部で発
生した磁場変動の影響は避けることができないという問
題がある。
In order to prevent the influence of magnetic field fluctuations in the exposure apparatus, there are roughly three means. The first means is a method of preventing an external magnetic field from entering the exposure apparatus by using a magnetic shield made of a high magnetic permeability material (for example,
J.Vac.Sci.Technol.B11 (6) 2309 and JP-A-4-2643.
39 publication). In this case, a high shielding effect can be obtained by using multiple shields, but the thickness and weight increase correspondingly, and there are many structural restrictions such as workability and exhaust / air conditioning equipment. Further, there is a problem that the influence of magnetic field fluctuations generated inside the shield cannot be avoided.

【0007】第2の手段は、露光装置全体を囲むように
大型のヘルムホルツコイルを設置して外部磁場を打ち消
す方法である(例えば、特開平4−370638号公
報)。この場合、大型のコイルを用いるので精度良く設
置することが難しく、変動の周波数が高いときに追従が
難しくなると考えられる。以上の2つの手段は、設備と
しても大きなものであり、また多額の費用がかかる。
A second means is a method of installing a large Helmholtz coil so as to surround the entire exposure apparatus to cancel the external magnetic field (for example, Japanese Patent Laid-Open No. 4-370638). In this case, since a large coil is used, it is difficult to install it with high accuracy, and it is considered that it is difficult to follow up when the frequency of fluctuation is high. The above-mentioned two means are large facilities and are expensive.

【0008】第3の手段として、磁場変動によって変動
したビーム位置を、偏向器を使って変動分だけ補正する
方法がある(例えば、特開昭62−216324号公
報)。この方法は、露光装置近傍の磁界変動を2個のコ
イル(x軸用,y軸用)によって検知し、電磁誘導によ
ってコイルに発生した電流を増幅器を介して偏向器に入
力し、変動したビーム位置を補正するものである。前記
2つの方法に比べて簡便に実現できるが、現実の設置環
境では建物或いは装置の構造で磁場が一様でない問題が
あり、十分な効果が得られない。
As a third means, there is a method of correcting the beam position, which has been changed due to the magnetic field change, by using the deflector by the changed amount (for example, Japanese Patent Laid-Open No. 62-216324). This method detects magnetic field fluctuations near the exposure apparatus with two coils (for the x-axis and y-axis), inputs the current generated in the coil by electromagnetic induction to the deflector via an amplifier, and changes the beam. The position is corrected. It can be realized more easily than the above two methods, but in the actual installation environment, there is a problem that the magnetic field is not uniform in the structure of the building or the device, so that a sufficient effect cannot be obtained.

【0009】[0009]

【発明が解決しようとする課題】このように従来の電子
ビーム露光装置では、最小寸法の微細化を目指すに当た
り、磁場変動によってビームの照射位置が変動するとい
う問題が発生し、前項の従来技術に挙げたような手段で
その問題に対処してきた。しかし、磁気シールドを用い
て外部磁場を消去するには、装置の構造が複雑であり作
業性が悪くなるといった問題が、また磁場による変動分
を補正する方法では、測定地点と鏡筒内の磁場の向きが
異なるといった問題が発生し、十分な効果が得られない
ことが分かった。
As described above, in the conventional electron beam exposure apparatus, when aiming at the miniaturization of the minimum size, there is a problem that the irradiation position of the beam changes due to the change of the magnetic field. I have dealt with the problem by the means mentioned above. However, in order to erase the external magnetic field using a magnetic shield, there is a problem that the structure of the device is complicated and workability deteriorates. It was found that there was a problem that the orientations of the two were different, and a sufficient effect could not be obtained.

【0010】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、簡便でしかも現実の建
屋・装置の構造に対応して、磁場変動に伴う荷電ビーム
の照射位置変動を補正することができ、露光の高精度化
及び装置構成の簡略化をはかり得る荷電ビーム照射装置
と照射方法を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to change the irradiation position of the charged beam due to the magnetic field change, which is simple and corresponds to the actual structure of the building / apparatus. SUMMARY OF THE INVENTION It is an object of the present invention to provide a charged beam irradiation apparatus and an irradiation method which can correct the exposure error and can improve the accuracy of exposure and simplify the apparatus configuration.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明は、次のような構成を採用している。即ち、本
発明(請求項1)は、試料上に荷電ビームを照射する荷
電ビーム照射装置において、外部磁場による磁場変動の
大きさと方向を測定する磁場測定手段と、この磁場測定
手段により測定された磁場変動量に対応する補正量を出
力する補正手段と、この補正手段により出力された補正
量に対応して荷電ビームを偏向するビーム偏向手段と、
試料上のビーム位置を測定するビーム位置測定手段と、
各測定手段により測定された磁場変動量とビーム位置に
基づいて補正手段による補正量を決定し、該補正手段に
最適な補正量を与える評価手段とを具備してなることを
特徴とする。
In order to solve the above problems, the present invention employs the following configurations. That is, the present invention (Claim 1) is a charged particle beam irradiation apparatus for irradiating a sample with a charged particle beam, and a magnetic field measuring means for measuring the magnitude and direction of a magnetic field fluctuation due to an external magnetic field, and the magnetic field measuring means. Correction means for outputting a correction amount corresponding to the magnetic field fluctuation amount, and beam deflection means for deflecting the charged beam in accordance with the correction amount output by the correction means,
Beam position measuring means for measuring the beam position on the sample,
It is characterized by comprising an evaluation means for determining a correction amount by the correction means on the basis of the magnetic field fluctuation amount measured by each measuring means and the beam position, and for giving the optimum correction amount to the correction means.

【0012】また、本発明(請求項5)は、試料上の所
定位置に荷電ビームを照射する荷電ビーム照射方法にお
いて、外部磁場による磁場変動の大きさと方向を測定す
る磁場測定プローブを、該プローブで測定される磁場変
動とビーム位置変動の相関が最も大きくなる位置でかつ
磁場変動とビーム変動の相関が最も大きくなる方向に設
置し、プローブで測定された磁場変動量に応じて荷電ビ
ームを偏向し、偏向されたビーム位置を測定し、測定ビ
ーム位置と磁場変動量との関係から磁場変動量に対する
最適なビーム偏向補正量を決定することを特徴とする。
Further, the present invention (claim 5) is a charged beam irradiation method for irradiating a predetermined position on a sample with a charged beam, comprising a magnetic field measuring probe for measuring the magnitude and direction of a magnetic field fluctuation due to an external magnetic field. Installed in a position where the correlation between the magnetic field fluctuation and the beam position fluctuation measured at is the largest and in the direction where the correlation between the magnetic field fluctuation and the beam fluctuation is the largest, and the charged beam is deflected according to the magnetic field fluctuation amount measured by the probe. Then, the deflected beam position is measured, and the optimum beam deflection correction amount for the magnetic field fluctuation amount is determined from the relationship between the measured beam position and the magnetic field fluctuation amount.

【0013】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 磁場測定手段は、磁場の大きさと方向の測定が可能
な磁場測定プローブを、磁場変動とビーム変動の相関が
最も大きくなる位置に、かつ磁場変動とビーム変動の相
関が最も大きくなる方向に設置してなるものである。 (2) 磁場測定手段は、磁場の大きさと方向の測定が可能
な磁場測定プローブを、荷電ビーム照射装置本体を囲む
磁気シールドの外側に設置してなるものである。 (3) 磁場測定手段は、1軸方向の磁場測定が可能な磁場
測定プローブ、又は3軸方向の磁場測定が可能な磁場測
定プローブであること。 (4) 評価手段は、各々測定された磁場変動量とビーム位
置との間の相関関係を求め、この相関関係に基づいて磁
場変動量に対する最適なビームの補正方向及び補正量を
決定するものである。 (5) 磁場の変動量を入力とし、変動量に対応する補正信
号を、少なくとも1組の直交する2軸(X方向,Y方
向)の偏向手段に供給すること。偏向手段は、鏡筒内に
予め設けられている偏向器でもよいし、新たに専用の補
正用偏向器を設けてもよい。 (6) 補正信号の位相を、変動成分の位相に対し任意の角
度に合わせて出力すること。 (7) 磁場変動の周波数を弁別し、任意の周波数の補正信
号を選択して出力すること。 (8) 補正回路が出力した補正信号に対し、電磁コイル又
は静電偏向器を用いてビーム位置を偏向すること。 (9) ビーム位置を偏向する偏向器を、磁場変動の影響を
受けやすい位置に設置すること。 (10)磁場変動とビーム位置の相関測定に対応して、磁場
の適切な検出方向及び検出位置を評価、判断できるこ
と。 (11)磁場変動を検出し荷電ビーム装置に取り付けた偏向
器に、検出した磁場変動の影響を補正する信号を供給す
ること。 (12)磁場の変動量とビーム位置の測定を行い、両者の相
関を求めて相関がなくなるように補正量と補正方向を決
定すること。
The preferred embodiments of the present invention are as follows. (1) The magnetic field measuring means is a magnetic field measuring probe capable of measuring the magnitude and direction of the magnetic field, and is placed at the position where the correlation between the magnetic field fluctuation and the beam fluctuation is maximized and in the direction where the correlation between the magnetic field fluctuation and the beam fluctuation is maximized. It is installed in. (2) The magnetic field measuring means comprises a magnetic field measuring probe capable of measuring the magnitude and direction of the magnetic field, which is installed outside the magnetic shield surrounding the main body of the charged beam irradiation apparatus. (3) The magnetic field measuring means is a magnetic field measuring probe capable of uniaxial magnetic field measurement or a magnetic field measuring probe capable of triaxial magnetic field measurement. (4) The evaluation means obtains the correlation between each measured magnetic field fluctuation amount and the beam position, and determines the optimum beam correction direction and correction amount for the magnetic field fluctuation amount based on this correlation. is there. (5) The amount of variation of the magnetic field is input, and a correction signal corresponding to the amount of variation is supplied to at least one pair of orthogonal two-axis (X-direction, Y-direction) deflection means. The deflecting means may be a deflector provided in advance in the lens barrel, or a dedicated correcting deflector may be newly provided. (6) The phase of the correction signal should be output at an arbitrary angle with respect to the phase of the fluctuation component. (7) Discriminate the frequency of magnetic field fluctuation and select and output the correction signal of any frequency. (8) The beam position is deflected using an electromagnetic coil or an electrostatic deflector with respect to the correction signal output by the correction circuit. (9) Install a deflector that deflects the beam position at a position that is easily affected by magnetic field fluctuations. (10) Appropriate detection direction and detection position of the magnetic field can be evaluated and judged corresponding to the correlation measurement of the magnetic field fluctuation and the beam position. (11) Supplying a signal for detecting the magnetic field fluctuation and for correcting the influence of the detected magnetic field fluctuation to the deflector attached to the charged beam apparatus. (12) Measure the amount of change in the magnetic field and the beam position, find the correlation between the two, and determine the correction amount and correction direction so that the correlation disappears.

【0014】[0014]

【作用】本発明によれば、磁場変動によって変動する荷
電ビームの照射位置は、磁場変動の大きさを測定し、そ
の結果に基づいて照射位置の移動分を補正するように補
正回路を介して偏向系にフィードバックしている。これ
によって、荷電ビームを使った露光を行う際の照射位置
の変動を防ぐことができるようになり、磁場変動によっ
て制限されていた露光の際の最小線幅や分解能等の性能
が向上し、露光装置を用いた半導体集積回路の製作が極
めて容易となる。
According to the present invention, the irradiation position of the charged beam which fluctuates due to the magnetic field fluctuation is measured via the correction circuit so as to measure the magnitude of the magnetic field fluctuation and correct the movement amount of the irradiation position based on the result. It feeds back to the deflection system. This makes it possible to prevent fluctuations in the irradiation position when performing exposure using a charged beam, improving performance such as minimum line width and resolution during exposure that was limited by magnetic field fluctuations. Manufacturing of a semiconductor integrated circuit using the device becomes extremely easy.

【0015】特に本発明では、ビーム位置のX方向及び
Y方向の変動が共に外部磁場の変動の大きさに比例する
ことを見出し、ビーム位置変動と最も相関のある磁場変
動方向を検出して補正しているので、磁場変動に伴うビ
ーム位置の補正プロセスが容易となり、実用性大なる利
点がある。さらに、磁場変動を測定する手段として1軸
の磁場測定プローブを用いることにより、磁場変動に伴
うビーム位置の補正プロセスが更に容易となる。また本
発明は、従来技術を用いた場合より簡便に実現でき、し
かも現実の建屋・装置の構造に対応しており、操作性や
補正の信頼性も向上する。
In particular, in the present invention, it has been found that the fluctuations of the beam position in the X and Y directions are both proportional to the fluctuations of the external magnetic field, and the magnetic field fluctuation direction that is most correlated with the beam position fluctuation is detected and corrected. Therefore, the process of correcting the beam position due to the magnetic field fluctuation becomes easy, and there is an advantage of great practicality. Further, by using the uniaxial magnetic field measurement probe as a means for measuring the magnetic field fluctuation, the process of correcting the beam position due to the magnetic field fluctuation is further facilitated. Further, the present invention can be realized more easily than in the case of using the prior art, and moreover, corresponds to the actual structure of the building / apparatus, and the operability and the reliability of correction are improved.

【0016】[0016]

【実施例】以下、本発明の詳細を図示の実施例によって
説明する。図1は、本発明の一実施例に係わり、電子ビ
ーム露光装置にビーム照射位置補正機構を組み込んだも
のである。なお、図4と同一部分には同一符号を付し
て、その詳しい説明は省略する。
The details of the present invention will be described below with reference to the illustrated embodiments. FIG. 1 relates to an embodiment of the present invention and is a device in which a beam irradiation position correction mechanism is incorporated in an electron beam exposure apparatus. The same parts as those in FIG. 4 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0017】磁場の測定器1は、ホール効果を利用した
1軸方向の磁場を検出できる磁場測定プローブと、この
プローブの信号を入力として測定結果を出力する出力回
路とから構成されている。磁場測定プローブは、後述す
るように磁場変動とビーム位置変動の相関が最も大きい
場所で、かつ最も大きい向きに設置する。これにより、
空間磁場の方向と露光装置内の磁場の方向が異なる場合
でも補正をすることが可能となる。
The magnetic field measuring device 1 is composed of a magnetic field measuring probe capable of detecting a magnetic field in the uniaxial direction utilizing the Hall effect, and an output circuit for outputting a measurement result by using a signal of the probe as an input. As will be described later, the magnetic field measurement probe is installed at a location where the correlation between the magnetic field variation and the beam position variation is the largest and in the direction in which the correlation is largest. This allows
The correction can be performed even when the direction of the spatial magnetic field and the direction of the magnetic field in the exposure apparatus are different.

【0018】測定器1から出力された磁場変動の信号
は、補正回路2と評価回路5に入力される。補正回路2
に入力された磁場変動信号は、x軸補正用とy軸補正用
の2系統に分岐して偏向器を制御するための補正信号に
変換して出力され、露光装置内に設置されたビーム位置
偏向器3に供給される。偏向器3は電磁コイル又は静電
偏向器で、x軸方向とy軸方向の2次元でビーム位置を
制御できる。なお、この偏向器3は必ずしも補正用に新
たに設ける必要はなく、鏡筒内に既設されている各種の
偏向器を用いてもよい。
The magnetic field fluctuation signal output from the measuring device 1 is input to the correction circuit 2 and the evaluation circuit 5. Correction circuit 2
The magnetic field fluctuation signal input to is converted into a correction signal for controlling the deflector by branching into two systems for x-axis correction and y-axis correction, and the converted signal is output. It is supplied to the deflector 3. The deflector 3 is an electromagnetic coil or an electrostatic deflector, and can control the beam position two-dimensionally in the x-axis direction and the y-axis direction. The deflector 3 does not necessarily have to be newly provided for correction, and various deflectors already installed in the lens barrel may be used.

【0019】111はx,y方向に移動可能な可動ステ
ージで、ビーム位置測定用のマーク台及び試料109な
どを設置し、ビーム位置測定手段4として使用する。ス
テージ位置及びビーム位置検出器112の検出信号は、
磁場変動信号と共に評価回路5に入力されて、両者の相
関測定や補正量の決定などが行われる。
A movable stage 111 is movable in x and y directions, and is used as a beam position measuring means 4 on which a mark stand for beam position measurement, a sample 109 and the like are installed. The detection signals of the stage position and beam position detector 112 are
It is input to the evaluation circuit 5 together with the magnetic field fluctuation signal, and the correlation between the two is measured and the correction amount is determined.

【0020】図2は、磁場変動とビーム位置変動との相
関を表わす図で、補正機能は使用していない従来の例で
ある。この図ではx方向とy方向の位相が180°逆に
なっていることが分かる。図3は、本実施例による補正
機構を用いてビーム位置の補正を行ったときの、磁場変
動とビーム照射位置の相関を表わす図である。図2と図
3のスケールは同一であり、各図において、(a)は磁
場変動、(b)はx方向のビーム位置変動、(c)はy
方向のビーム位置変動を示している。図3では図2に比
べて、磁場変動の大きさは略同じであるが、ビーム位置
との相関がなくなっており、補正の効果が得られている
ことが分かる。
FIG. 2 is a diagram showing the correlation between the magnetic field fluctuation and the beam position fluctuation, which is a conventional example in which the correction function is not used. In this figure, it can be seen that the phases in the x and y directions are 180 ° opposite. FIG. 3 is a diagram showing the correlation between the magnetic field fluctuation and the beam irradiation position when the beam position is corrected using the correction mechanism according to the present embodiment. 2 and 3 have the same scale. In each figure, (a) is a magnetic field variation, (b) is a beam position variation in the x direction, and (c) is y.
The beam position variation in the direction is shown. In FIG. 3, the magnitude of the magnetic field fluctuation is substantially the same as that in FIG. 2, but the correlation with the beam position disappears, and it can be seen that the correction effect is obtained.

【0021】前述したように、一般に電子ビームに影響
を与える磁場のビーム軸上での向きは、露光装置を構成
する各種構造物の存在によって磁路が変化し、磁場測定
プローブを設置する場所の磁場の向きと異なっている。
しかしながら、磁場変動の大きさは、両者の位置で比例
関係にあると考えられる。そのため、x軸,y軸の両方
のビーム位置に強く相関がある方向を評価回路5によっ
て判断し、磁場測定プローブの向きを決定する。より簡
便には磁場測定プローブを、該プローブによる測定磁場
が最も大きくなる位置で、かつ測定磁場が最も大きくな
る方向に設置すればよい。
As described above, the direction of the magnetic field on the beam axis, which generally affects the electron beam, changes the magnetic path due to the presence of various structures that make up the exposure apparatus, and the direction of the location where the magnetic field measurement probe is installed is changed. The direction of the magnetic field is different.
However, it is considered that the magnitude of the magnetic field fluctuation is proportional to the positions of the two. Therefore, the evaluation circuit 5 determines the direction in which the beam positions of both the x-axis and the y-axis have a strong correlation, and determines the orientation of the magnetic field measurement probe. More simply, the magnetic field measurement probe may be installed at a position where the measurement magnetic field by the probe becomes maximum and in a direction where the measurement magnetic field becomes maximum.

【0022】磁場測定プローブの設置位置については、
磁場検出精度を良くするために磁場変動の大きさが大き
い場所を評価回路5によって判断し、その位置にプロー
ブを設置する。特に、磁気シールドが存在する場合に
は、磁気シールドの外側にプローブを設置して測定を行
うと検出信号が大きくなり、補正精度の向上に効果があ
る。
Regarding the installation position of the magnetic field measurement probe,
In order to improve the magnetic field detection accuracy, the evaluation circuit 5 determines a location where the magnitude of the magnetic field fluctuation is large, and the probe is installed at that location. In particular, when a magnetic shield is present, if a probe is installed outside the magnetic shield and measurement is performed, the detection signal becomes large, which is effective in improving the correction accuracy.

【0023】磁場測定プローブの向きを選択する際、測
定を3軸同時に行うことで、容易に空間磁場の向きを判
断することができる。この手段によって、空間磁場の向
きを判断した上で、前述の1軸プローブを用いた方法に
よって補正を行うことができる。また、3軸同時に測定
を行い、3軸の測定値のベクトル和を空間磁場の大きさ
として、補正回路2と評価回路5への入力信号として用
いることができる。
When the orientation of the magnetic field measuring probe is selected, the orientation of the spatial magnetic field can be easily determined by simultaneously performing measurement on three axes. By this means, the direction of the spatial magnetic field can be determined and then the correction can be performed by the method using the above-mentioned uniaxial probe. Further, it is possible to simultaneously measure the three axes and use the vector sum of the measured values of the three axes as the magnitude of the spatial magnetic field as an input signal to the correction circuit 2 and the evaluation circuit 5.

【0024】ビーム位置に影響を与える磁場変動の原因
が複数存在する場合は、少なくとも1個以上のプローブ
を設置し、ビーム位置変動と相関がある各プローブ位置
と方向を評価回路5によって判断し、最終的にビーム位
置変動がなくなるように、複数の磁場変動信号の重ね合
わせによって補正を行うことができる。
When there are a plurality of causes of the magnetic field fluctuation which influences the beam position, at least one or more probes are installed and each probe position and direction correlated with the beam position fluctuation are judged by the evaluation circuit 5, The correction can be performed by superimposing a plurality of magnetic field fluctuation signals so that the beam position fluctuation finally disappears.

【0025】ビーム位置変動の補正量と補正方向の決定
は、評価回路5による磁場変動とビーム位置変動の相関
測定評価結果に基づいて、補正回路2によって行われ
る。偏向器3に与えられる補正信号は補正回路2の中に
あるアンプの増幅度を変化させることによって適切な補
正量を得ることができる。補正方向はビーム位置測定が
x,y独立に行うことができるため、補正についても1
方向ずつ独立に行うことができる。補正回路2の出力
は、偏向器3が電磁コイルの場合は電流で、また静電偏
向器の場合は電圧で出力することができる。
The correction amount and the correction direction of the beam position fluctuation are determined by the correction circuit 2 based on the correlation measurement evaluation result of the magnetic field fluctuation and the beam position fluctuation by the evaluation circuit 5. The correction signal provided to the deflector 3 can be obtained with an appropriate correction amount by changing the amplification degree of the amplifier in the correction circuit 2. Since the beam position can be measured independently in x and y in the correction direction
It can be done independently for each direction. The output of the correction circuit 2 can be output as a current when the deflector 3 is an electromagnetic coil, and as a voltage when the deflector 3 is an electrostatic deflector.

【0026】また、補正回路2に周波数弁別機能を持た
せ、任意の周波数を持つ磁場変動成分を選択的に補正す
るようにしてもよい。さらに、補正信号の出力位相は、
180°反転の他、任意の位相で出力することができ
る。この場合、補正回路2の周波数及び位相の選択は、
評価回路5の評価結果に基づいて行われる。
The correction circuit 2 may be provided with a frequency discriminating function to selectively correct the magnetic field fluctuation component having an arbitrary frequency. Furthermore, the output phase of the correction signal is
In addition to 180 ° inversion, it can be output in any phase. In this case, the selection of the frequency and phase of the correction circuit 2 is
This is performed based on the evaluation result of the evaluation circuit 5.

【0027】図1に示した実施例では、アパーチャ10
3,105の光学的重なりによる像は、縮小レンズ10
7によって縮小されており、磁場変動による影響を受け
やすい縮小レンズ107と試料面109との間、対物レ
ンズ108付近にビーム位置偏向器3が取り付けられて
いる。また、偏向器3は前記の位置に限らず、高い補正
感度が得られる位置に組み入れて使用する。さらに、磁
場変動の原因が複数存在する場合は、各原因に対応して
少なくとも1個以上の偏向器を設置して補正を行うこと
ができる。
In the embodiment shown in FIG. 1, the aperture 10
The image due to the optical overlap of 3,105 is the reduction lens 10
The beam position deflector 3 is attached near the objective lens 108 between the reduction lens 107 and the sample surface 109, which is reduced by 7 and is easily affected by the magnetic field fluctuation. Further, the deflector 3 is not limited to the above-mentioned position, but is incorporated in a position where a high correction sensitivity can be obtained and used. Further, when there are a plurality of causes of the magnetic field variation, at least one deflector can be installed for each cause to perform the correction.

【0028】このように本実施例によれば、1軸の磁場
測定プローブを用い、その出力を偏向器3にフィードバ
ックすることにより、磁場変動によって変動する電子ビ
ームの照射位置を補正することができ、電子ビーム露光
を行う際の照射位置の変動を防止することができる。こ
のため、磁場変動によって制限されていた露光の際の最
小線幅や分解能等の性能が向上し、露光装置を用いた半
導体集積回路の製作が極めて容易となる。特に、1軸の
磁場測定プローブの出力からその比例関係でx方向及び
y方向の補正を行うことができるので、磁場変動に伴う
ビーム位置の補正プロセスが容易となる実用性大なる利
点がある。
As described above, according to this embodiment, by using the uniaxial magnetic field measuring probe and feeding back the output to the deflector 3, the irradiation position of the electron beam which fluctuates due to the fluctuation of the magnetic field can be corrected. Further, it is possible to prevent the irradiation position from varying when the electron beam exposure is performed. For this reason, performances such as the minimum line width and resolution at the time of exposure which are limited by the magnetic field fluctuation are improved, and the manufacture of a semiconductor integrated circuit using the exposure apparatus becomes extremely easy. In particular, since it is possible to correct the x-direction and the y-direction from the output of the uniaxial magnetic field measurement probe in a proportional relationship, there is a great advantage that the process of correcting the beam position due to the magnetic field variation becomes easy.

【0029】なお、本発明は上述した実施例に限定され
るものではない。実施例では、電子ビーム露光装置につ
いて説明したが、これに限らずイオンビーム露光装置に
適用適用することもできる。さらに、露光装置に限らず
電子顕微鏡に適用することも可能であり、要は試料上に
荷電ビームを照射する装置であれば適用することができ
る。その他、本発明の要旨を逸脱しない範囲で、種々変
形して実施することができる。
The present invention is not limited to the above embodiment. In the embodiment, the electron beam exposure apparatus has been described, but the present invention is not limited to this and can be applied to an ion beam exposure apparatus. Further, the invention can be applied not only to the exposure device but also to an electron microscope, and in short, any device that irradiates a sample with a charged beam can be applied. In addition, various modifications can be made without departing from the scope of the present invention.

【0030】[0030]

【発明の効果】以上詳述したように本発明によれば、外
部磁場変動の大きさと方向を磁場測定プローブで測定
し、磁場変動量に対応する補正信号を偏向器に供給しビ
ーム位置を偏向することによって、磁場変動によって変
動した荷電ビームの位置を、磁場変動のないときと同じ
位置に補正することができる。これにより、簡便でしか
も現実の建物・装置の構造に対応して、露光の高精度化
及び装置構成の簡略化をはかることが可能となる。
As described in detail above, according to the present invention, the magnitude and direction of the external magnetic field fluctuation are measured by the magnetic field measuring probe, and a correction signal corresponding to the magnetic field fluctuation amount is supplied to the deflector to deflect the beam position. By doing so, it is possible to correct the position of the charged beam that has changed due to the magnetic field fluctuation to the same position as when there was no magnetic field fluctuation. As a result, it is possible to make the exposure highly accurate and simplify the device configuration in a simple and corresponding manner to the actual structure of the building / device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するためのもので、電
子ビーム露光装置にビーム照射位置補正機構を組み込ん
だ例を示す図。
FIG. 1 is a view for explaining an embodiment of the present invention, showing an example in which a beam irradiation position correction mechanism is incorporated in an electron beam exposure apparatus.

【図2】補正を行う前の磁場変動とビーム位置変動の相
関を表わす図。
FIG. 2 is a diagram showing a correlation between a magnetic field fluctuation and a beam position fluctuation before correction.

【図3】補正を行った場合の磁場変動とビーム照射位置
の相関を表わす図。
FIG. 3 is a diagram showing a correlation between a magnetic field fluctuation and a beam irradiation position when correction is performed.

【図4】従来の電子ビーム露光装置の光学系を示す概略
構成図。
FIG. 4 is a schematic configuration diagram showing an optical system of a conventional electron beam exposure apparatus.

【符号の説明】[Explanation of symbols]

1…磁場測定器 2…補正回路 3…偏向器 4…ビーム位置測定手段 5…評価回路 101…電子銃 102…コンデンサレンズ 103…ビーム成形第1アパーチャ 104…投影レンズ 105…ビーム成形第2アパーチャ 106…ビーム成形偏向器 107…縮小レンズ 108…対物レンズ 109…試料面 110…主偏向器 111…可動ステージ 112…ビーム位置検出器 DESCRIPTION OF SYMBOLS 1 ... Magnetic field measuring device 2 ... Correction circuit 3 ... Deflector 4 ... Beam position measuring means 5 ... Evaluation circuit 101 ... Electron gun 102 ... Condenser lens 103 ... Beam shaping first aperture 104 ... Projection lens 105 ... Beam shaping second aperture 106 Beam shaping deflector 107 Reduction lens 108 Objective lens 109 Sample surface 110 Main deflector 111 Movable stage 112 Beam position detector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/027 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 21/027

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】試料上に荷電ビームを照射する荷電ビーム
照射装置において、外部磁場による磁場変動の大きさと
方向を測定する磁場測定手段と、この磁場測定手段によ
り測定された磁場変動量に対応する補正量を出力する補
正手段と、この補正手段により出力された補正量に対応
して荷電ビームを偏向するビーム偏向手段と、前記試料
上のビーム位置を測定するビーム位置測定手段と、前記
各測定手段により測定された磁場変動量とビーム位置に
基づいて前記補正手段による補正量を決定し、該補正手
段に最適な補正量を与える評価手段とを具備してなるこ
とを特徴とする荷電ビーム照射装置。
1. A charged beam irradiation apparatus for irradiating a sample with a charged beam, which corresponds to magnetic field measuring means for measuring the magnitude and direction of magnetic field fluctuation due to an external magnetic field, and magnetic field fluctuation amount measured by the magnetic field measuring means. Correction means for outputting a correction amount, beam deflection means for deflecting the charged beam corresponding to the correction amount output by the correction means, beam position measurement means for measuring the beam position on the sample, and each of the measurements Charged beam irradiation, characterized in that it comprises an evaluation means for determining the correction amount by the correction means on the basis of the magnetic field fluctuation amount measured by the means and the beam position, and for giving the optimum correction amount to the correction means. apparatus.
【請求項2】前記磁場測定手段は、磁場の大きさと方向
の測定が可能な磁場測定プローブを、磁場変動とビーム
位置変動の相関が最も大きくなる位置に、かつ磁場変動
とビーム位置変動の相関が最も大きくなる方向に設置し
てなることを特徴とする請求項1記載の荷電ビーム照射
装置。
2. The magnetic field measuring means uses a magnetic field measuring probe capable of measuring the magnitude and direction of a magnetic field at a position where the correlation between the magnetic field fluctuation and the beam position fluctuation is maximized, and the correlation between the magnetic field fluctuation and the beam position fluctuation. The charged particle beam irradiation apparatus according to claim 1, wherein the charged beam irradiation apparatus is installed in a direction that maximizes
【請求項3】前記磁場測定手段は、磁場の大きさと方向
の測定が可能な磁場測定プローブを、荷電ビーム照射装
置本体を囲む磁気シールドの外側に設置してなることを
特徴とする請求項1又は2に記載の荷電ビーム照射装
置。
3. The magnetic field measuring means comprises a magnetic field measuring probe capable of measuring the magnitude and direction of the magnetic field, which is installed outside a magnetic shield surrounding the main body of the charged beam irradiation apparatus. Or the charged beam irradiation apparatus as described in 2.
【請求項4】前記評価手段は、各々測定された磁場変動
量とビーム位置との間の相関関係を求め、この相関関係
に基づいて磁場変動量に対する最適なビームの補正方向
及び補正量を決定することを特徴とする請求項1記載の
荷電ビーム照射装置。
4. The evaluation means obtains a correlation between each measured magnetic field fluctuation amount and the beam position, and determines an optimum beam correction direction and correction amount for the magnetic field fluctuation amount based on this correlation. The charged particle beam irradiation apparatus according to claim 1, wherein:
【請求項5】試料上の所定位置に荷電ビームを照射する
荷電ビーム照射方法において、外部磁場による磁場変動
の大きさと方向を測定する磁場測定プローブを、該プロ
ーブで測定される磁場変動とビーム位置変動の相関が最
も大きくなる位置でかつ磁場変動量が最も大きくなる方
向に設置し、前記プローブで測定された磁場変動量に応
じて荷電ビームを偏向し、偏向されたビーム位置を測定
し、測定ビーム位置と磁場変動量との関係から磁場変動
量に対する最適なビーム偏向補正量を決定することを特
徴とする荷電ビーム照射方法。
5. In a charged beam irradiation method for irradiating a predetermined position on a sample with a charged beam, a magnetic field measuring probe for measuring a magnitude and a direction of a magnetic field fluctuation due to an external magnetic field is provided, and the magnetic field fluctuation and the beam position measured by the probe. It is installed at the position where the correlation of fluctuations is the largest and in the direction where the magnetic field fluctuation is the largest, the charged beam is deflected according to the magnetic field fluctuation measured by the probe, and the deflected beam position is measured and measured. A charged beam irradiation method, characterized in that an optimum beam deflection correction amount for a magnetic field fluctuation amount is determined from the relationship between the beam position and the magnetic field fluctuation amount.
JP22009794A 1994-09-14 1994-09-14 Charged beam irradiation device and irradiation method Expired - Fee Related JP3378369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22009794A JP3378369B2 (en) 1994-09-14 1994-09-14 Charged beam irradiation device and irradiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22009794A JP3378369B2 (en) 1994-09-14 1994-09-14 Charged beam irradiation device and irradiation method

Publications (2)

Publication Number Publication Date
JPH0883591A true JPH0883591A (en) 1996-03-26
JP3378369B2 JP3378369B2 (en) 2003-02-17

Family

ID=16745882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22009794A Expired - Fee Related JP3378369B2 (en) 1994-09-14 1994-09-14 Charged beam irradiation device and irradiation method

Country Status (1)

Country Link
JP (1) JP3378369B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284219A (en) * 2000-03-30 2001-10-12 Toshiba Corp Charged particle beam device and sample chamber therefor
US6452172B1 (en) 1998-05-19 2002-09-17 Seiko Instruments Inc. Composite charged particle beam apparatus
WO2008114422A1 (en) * 2007-03-20 2008-09-25 Pioneer Corporation Beam drawing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452172B1 (en) 1998-05-19 2002-09-17 Seiko Instruments Inc. Composite charged particle beam apparatus
JP2001284219A (en) * 2000-03-30 2001-10-12 Toshiba Corp Charged particle beam device and sample chamber therefor
WO2008114422A1 (en) * 2007-03-20 2008-09-25 Pioneer Corporation Beam drawing device
JPWO2008114422A1 (en) * 2007-03-20 2010-07-01 パイオニア株式会社 Beam drawing device
JP5166400B2 (en) * 2007-03-20 2013-03-21 株式会社ニューフレアテクノロジー Beam drawing device

Also Published As

Publication number Publication date
JP3378369B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
US4967088A (en) Method and apparatus for image alignment in ion lithography
Maile et al. Sub-10 nm linewidth and overlay performance achieved with a fine-tuned EBPG-5000 TFE electron beam lithography system
EP0752715B1 (en) Charged particle beam apparatus
US10014153B2 (en) Electron microscope and method of aberration measurement
JP4273141B2 (en) Focused ion beam device
US7411192B2 (en) Focused ion beam apparatus and focused ion beam irradiation method
US4443703A (en) Method and apparatus of deflection calibration for a charged particle beam exposure apparatus
JP2015130309A (en) Charged particle beam device
US20040251428A1 (en) Charged-particle-beam mapping projection-optical systems and methods for adjusting same
EP3113206B1 (en) X-ray generator and adjustment method therefor
US6891167B2 (en) Apparatus and method for applying feedback control to a magnetic lens
JP2001052642A (en) Scanning electron microscope and micro-pattern measuring method
JP3378369B2 (en) Charged beam irradiation device and irradiation method
JP6408116B2 (en) Charged particle beam equipment
JPH03265120A (en) Beam irradiation method and electron beam drawing method, and beam irradiation device and electron beam drawing device
US4164658A (en) Charged-particle beam optical apparatus for imaging a mask on a specimen
JP6153988B2 (en) Method for operating charged particle beam device and charged particle beam device
Schmid et al. Correction and alignment strategies for the beam separator of the photoemission electron microscope 3 (PEEM3)
JPS6142132A (en) Charged beam exposure apparatus
US8922774B2 (en) Method of manufacturing device, and substrate
JP2003068603A (en) Charged particle beam exposure system
JPH0282612A (en) Apparatus and method of correcting external magnetism of electron beam lithography equipment
US5268579A (en) Monopole magnetic lens field
US11276545B1 (en) Compensating for an electromagnetic interference induced deviation of an electron beam
JP6563576B2 (en) Charged particle beam equipment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees