JPH0883355A - Graphic processor - Google Patents

Graphic processor

Info

Publication number
JPH0883355A
JPH0883355A JP6217152A JP21715294A JPH0883355A JP H0883355 A JPH0883355 A JP H0883355A JP 6217152 A JP6217152 A JP 6217152A JP 21715294 A JP21715294 A JP 21715294A JP H0883355 A JPH0883355 A JP H0883355A
Authority
JP
Japan
Prior art keywords
value
error value
minimum element
elements
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6217152A
Other languages
Japanese (ja)
Inventor
Suguru Goto
英 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6217152A priority Critical patent/JPH0883355A/en
Publication of JPH0883355A publication Critical patent/JPH0883355A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To exactly perform an error correction by detecting a minimum element from the elements divided by an intersected point division means and determining an error value change means defining the value calculated from the value of the detected minimum element as an allowable error value. CONSTITUTION: By starting a solid model preparation command, using an input part 1 from a CAD system and performing a rectangular designation of a trihedral drawing, the reading of the shape data, etc., of the trihedral drawing is performed by a trihedral drawing input means 4. Next, the shape data of the trihedral drawing read by an intersected point division means 5 is divided at all the intersected points. Next, the smallest element of the graphic elements for which the intersected point division is performed is detected by a minimum element detection means 6. Next, an allowable error value is changed based on the length of the minimum element detected by an error value change means 7. Based on the changed allowable error, the element is converted into a solid model by a solid model conversion means 8. Thus, an optimum error correction can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は図形処理装置、特にCo
mputer Aided Design(以下CAD
と略す)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphic processing device, especially Co
mputer Aided Design (hereinafter CAD
Abbreviated).

【0002】[0002]

【従来の技術】近年、図形処理装置において、2次元の
3面図で描かれた図面で各面図間の図形要素の整合又は
合致を調整し、立体図面であるソリッドモデルの作成が
行われている。
2. Description of the Related Art In recent years, in a graphic processing apparatus, the matching or matching of graphic elements between each drawing is adjusted in a drawing drawn in a two-dimensional three-dimensional drawing to create a solid model which is a three-dimensional drawing. ing.

【0003】以下に従来の図形処理装置について、図面
を参照しながら説明する。図12は従来の図形処理装置
の機能ブロック図である。10はキーボード,タブレッ
ト,マウス等から構成され文字,数値,図形要素,位置
等のデータを入力する入力部、11はディスプレイ(以
下CRTと略す),液晶ディスプレイ(以下LCDと略
す)等からなり入力部10で入力された文字,数値,図
形要素,位置等を表示する表示部、12はフロッピーデ
ィスク,磁気ディスク等からなり表示部11の表示画面
上で作成された図面の形状データ等を記憶する記憶部、
13は入力部10で指定された3面図の形状データ等を
入力する3面図入力手段、14は3面図入力手段13で
入力された3面図の形状データを全ての交点で分割する
交点分割手段、15は交点分割手段14で分割された各
要素を許容誤差値をもとにして各ビュー原点からの距離
を3次元的に整合させソリッドモデルを復元するソリッ
ドモデル変換手段、16は中央演算処理装置(以下CP
Uと略す)等からなり装置全体の制御を行う制御部であ
る。
A conventional graphic processing apparatus will be described below with reference to the drawings. FIG. 12 is a functional block diagram of a conventional graphic processing device. Reference numeral 10 is an input unit configured by a keyboard, tablet, mouse, etc. for inputting data such as characters, numerical values, graphic elements, positions, etc. 11 is a display (hereinafter abbreviated as CRT), a liquid crystal display (hereinafter abbreviated as LCD), etc. A display unit for displaying characters, numerical values, graphic elements, positions, etc. input in the unit 10, and a storage unit 12 made up of a floppy disk, a magnetic disk, etc. for storing the shape data and the like of the drawing created on the display screen of the display unit 11. Storage,
Reference numeral 13 is a three-view drawing input means for inputting shape data and the like of the three-view drawing designated by the input unit 10, and 14 is dividing the shape data of the three-view drawing input by the three-view drawing input means 13 at all intersections. An intersection dividing means, 15 is a solid model converting means for three-dimensionally matching the distances from the view origins of the respective elements divided by the intersection dividing means 14 based on the allowable error values, and a solid model converting means, 16 is Central processing unit (hereinafter CP
A control unit for controlling the entire apparatus.

【0004】以上のように構成された従来の図形処理装
置について、以下にその動作を説明する。図13は従来
の図形処理装置のフローチャートであり、図14(a)
は従来の図形処理装置の変換前の3面図の一例を示す図
であり、図14(b)は従来の図形処理装置の変換後の
ソリッドモデルの一例を示す図である。まず、図14
(a)に示すように、使用者はソリッドモデルを作成す
る前準備として、入力部10を用いて2次元で描かれて
いる3面図に各ビューの原点を設定する(S1)。ここ
で、各ビューの原点は各面図に設定する副座標軸の原点
であり、3次元のソリッドモデルの原点となるように設
定する。次に、3面図入力手段13によって、S1でビ
ューの原点を設定された3面図の読み込みを行う(S
2)。次に、交点分割手段14によってS2で読み込ま
れた3面図の形状データを各線分の交点で分割する(S
3)。次に、S3で交点分割された要素の3次元的な位
置を推測するために3面図に描かれた各ビュー原点から
各要素までの距離を算出する(S4)。次に、入力部1
0によってワイヤーフレーム作成時に要素間の誤差を修
正する際に用いる許容誤差値を入力する(S5)。ここ
で、入力されなかった場合は、記憶部12に予め記憶さ
れたデフォルト値を使用する。次に、S4で算出された
各ビューの原点から各要素までの距離とS5で入力され
た許容誤差値をもとにして各要素を3次元的に組み合わ
せてワイヤーフレームを作成する(S6)。次に、ソリ
ッドモデル変換手段15によってS6で作成されたワイ
ヤーフレームに面を張りソリッドモデルを作成する(S
7)。
The operation of the conventional graphic processing apparatus configured as described above will be described below. FIG. 13 is a flowchart of the conventional graphic processing apparatus, and FIG.
FIG. 14 is a diagram showing an example of a three-view drawing of a conventional graphic processing device before conversion, and FIG. 14B is a diagram showing an example of a solid model after conversion of the conventional graphic processing device. First, FIG.
As shown in (a), the user sets the origin of each view on a three-dimensional drawing drawn two-dimensionally by using the input unit 10 as a preparation for creating a solid model (S1). Here, the origin of each view is the origin of the sub-coordinate axis set in each plan, and is set to be the origin of the three-dimensional solid model. Next, the three-view drawing input means 13 reads the three-view drawing with the view origin set in S1 (S).
2). Next, the shape data of the three views read by the intersection dividing means 14 in S2 is divided at the intersections of the respective line segments (S).
3). Next, in order to estimate the three-dimensional position of the element divided by the intersection in S3, the distance from each view origin drawn in the three-view drawing to each element is calculated (S4). Next, the input unit 1
The value of 0 is used to input the allowable error value used when correcting the error between elements when creating the wire frame (S5). If no input is made here, the default value stored in advance in the storage unit 12 is used. Next, a wire frame is created by three-dimensionally combining each element based on the distance from the origin of each view calculated in S4 to each element and the allowable error value input in S5 (S6). Next, the solid model converting means 15 attaches a surface to the wire frame created in S6 to create a solid model (S).
7).

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、3面図中において要素が非常に近接し、許
容誤差内に2以上の要素が含まれる場合には、整合性を
とる為に誤差の修正を行うと近接する要素が削除され
て、3次元的に対応する要素が不足し、3次元のソリッ
ドモデルを復元することができず信頼性に欠けるという
問題点があった。また、正確な誤差修正を行うには使用
者の経験や勘に頼らなくてはならず修正作業に時間がか
かり作業性に欠けるという問題点があった。
However, in the above conventional structure, when the elements are very close to each other in the three views and two or more elements are included in the allowable error, the error for the consistency is obtained. However, there is a problem in that the adjacent elements are deleted, the elements corresponding three-dimensionally become insufficient, and the three-dimensional solid model cannot be restored, resulting in lack of reliability. Further, in order to accurately correct the error, it is necessary to rely on the experience and intuition of the user, and there is a problem that the correction work takes time and the workability is poor.

【0006】本発明は上記従来の問題点を解決するもの
で、許容誤差値を交点分割した要素のうち最小要素の長
さ以下に設定し、許容誤差内に2以上の要素が含有され
て要素が削除されるのを防止することにより正確な誤差
修正を行うことができ信頼性に優れている。また、正確
に誤差修正を行うことにより使用者の経験や勘を頼りに
せずに容易に許容誤差値を設定することができ修正作業
時間を短縮できる作業性に優れた図形処理装置を提供す
ることを目的とする。
The present invention solves the above-mentioned conventional problems. The allowable error value is set to be equal to or less than the length of the minimum element among the elements obtained by dividing the intersection, and two or more elements are included within the allowable error. It is possible to perform accurate error correction by preventing the deletion of the, and it is highly reliable. Also, by providing an accurate error correction, an allowable error value can be easily set without relying on the experience and intuition of the user, and a correction work time can be shortened to provide a graphic processing device with excellent workability. With the goal.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の請求項1に記載の図形処理装置は、文字,数
値,図形要素,位置等の入力,指定を行う入力部と、入
力部で入力,指定された文字,数値,図形要素,位置等
を表示する表示部と、表示部の表示画面上で作成された
3図面の形状データ等を記憶する記憶部と、入力部で指
定された3面図の形状データ等を入力する3面図入力手
段と、3面図入力手段で入力された3面図の形状データ
を各線分が交わる交点で分割する交点分割手段と、交点
分割手段で分割された各要素を記憶部に記憶された許容
誤差値をもとに合致させ3次元のソリッドモデルを作成
するソリッドモデル変換手段と、を有する制御部とを備
えた図形処理装置であって、制御部が、交点分割手段で
分割された要素から最小要素を検出する最小要素検出手
段と、最小要素検出手段で検出された最小要素の値から
算出された値を許容誤差値とする誤差値変更手段と、を
備えている構成を有し、請求項2に記載の図形処理装置
は、最小要素の値から最小要素の値の1/10の値を引
いた値を新たな許容誤差値とする誤差値変換手段を備え
ている構成を有している。
To achieve this object, a graphic processing apparatus according to claim 1 of the present invention comprises an input section for inputting and designating characters, numerical values, graphic elements, positions, etc., and an input. Designated by the input section, a display section that displays the characters, numerical values, graphic elements, positions, etc. input and designated by the section, a storage section that stores the shape data of the three drawings created on the display screen of the display section, and the like. 3D drawing input means for inputting the shape data of the 3D drawing and the intersection dividing means for dividing the 3D shape data inputted by the 3D drawing input means at the intersections where the line segments intersect, and the intersection dividing A graphic processing device comprising: a solid-model conversion unit that creates a three-dimensional solid model by matching each element divided by the unit based on a permissible error value stored in a storage unit. Is the element divided by the intersection dividing means? A minimum element detecting unit for detecting the minimum element; and an error value changing unit for setting a value calculated from the value of the minimum element detected by the minimum element detecting unit as an allowable error value, The graphic processing device according to Item 2 has a configuration including error value conversion means for setting a value obtained by subtracting 1/10 of the value of the minimum element from the value of the minimum element as a new allowable error value. There is.

【0008】ここで、許容誤差値としては、交点分割手
段で分割された要素のうち最小要素の長さから最小要素
の長さの1/10の値を引いた値を好適に用いることも
できるが、許容誤差値内に2以上の要素が含有されない
値であれば他の値を用いることもできる。
Here, as the allowable error value, a value obtained by subtracting 1/10 of the length of the minimum element from the length of the minimum element among the elements divided by the intersection dividing means can be preferably used. However, other values may be used as long as the allowable error value does not include two or more elements.

【0009】[0009]

【作用】この構成によって、制御部の最小要素検出手段
が交点分割手段で分割された要素から最小要素を検出
し、誤差値変更手段が最小要素検出手段で検出された最
小要素の値から算出された値を許容誤差値とするため
に、許容誤差値内に2以上の要素が含有されることがな
いので、各要素が削除されることなく正確に誤差修正を
行うことができる。誤差値変換手段が最小要素の値から
最小要素の値の1/10の値を引いた値を新たな許容誤
差値とするために、許容誤差値が長すぎて最小要素を認
識できなかったり、許容誤差値が短すぎて3面図におけ
る各面図を合致させる際に、修正を行う範囲が狭まり、
自動的に合致させる機能を失わせることもなく、最適な
誤差修正を行うことができる。
With this configuration, the minimum element detecting means of the control section detects the minimum element from the elements divided by the intersection dividing means, and the error value changing means calculates from the value of the minimum element detected by the minimum element detecting means. Since two or more elements are not included in the allowable error value in order to set the above value as the allowable error value, the error correction can be accurately performed without deleting each element. Since the error value conversion means sets a value obtained by subtracting 1/10 of the value of the minimum element from the value of the minimum element as a new allowable error value, the allowable error value is too long to recognize the minimum element, or Tolerance value is too short, the range of correction is narrowed when matching each drawing in 3 views,
Optimal error correction can be performed without losing the function of automatically matching.

【0010】[0010]

【実施例】以下に本発明の一実施例における図形処理装
置について、図面を参照しながら説明する。図1は本発
明の一実施例における図形処理装置の機能ブロック図で
ある。1は入力部、2は表示部、3は記憶部、4は3面
図入力手段、5は交点分割手段、8はソリッドモデル変
換手段、9は制御部であり従来と同様なものなので説明
を省略する。6は前記交点分割手段5で交点分割した要
素のうち最も小さな要素を検出する最小要素検出手段、
7は前記最小要素検出手段6で検出された要素をもとに
許容誤差値を変更する誤差値変更手段である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A graphic processing apparatus according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a functional block diagram of a graphic processing apparatus according to an embodiment of the present invention. Reference numeral 1 is an input unit, 2 is a display unit, 3 is a storage unit, 4 is a three-view drawing input unit, 5 is an intersection dividing unit, 8 is a solid model conversion unit, and 9 is a control unit, which are the same as conventional ones. Omit it. Reference numeral 6 is a minimum element detecting means for detecting the smallest element among the elements divided by the intersection dividing means 5.
Reference numeral 7 is an error value changing means for changing the allowable error value based on the element detected by the minimum element detecting means 6.

【0011】以上のように構成された本発明の一実施例
における図形処理装置について、以下にその動作を説明
する。図2は本発明の一実施例における図形処理装置の
全体フローチャートであり、図3は本発明の一実施例に
おける図形処理装置の交点分割のフローチャートであ
り、図4は本発明の一実施例における図形処理装置の最
小要素検出のフローチャートであり、図5は本発明の一
実施例における図形処理装置の許容誤差値変更のフロー
チャートであり、図6(a)は本発明の一実施例におけ
る図形処理装置の変換前の3面図の一例を示す図であ
り、図6(b)は本発明の一実施例における図形処理装
置の変換後のソリッドモデルの一例を示す図である。図
7は本発明の一実施例における図形処理装置の図形要素
の一例を示す図であり、図8は本発明の一実施例におけ
る図形処理装置の図形要素の全交点の一例を示す図であ
り、図9は本発明の一実施例における図形処理装置の図
形要素の交点分割後の一例を示す図であり、図10は本
発明の一実施例における図形処理装置のX軸,Y軸に平
行な図形要素の一例を示す図であり、図11は本発明の
一実施例における図形処理装置のX軸,Y軸に平行でな
い図形要素の一例を示す図である。図7においてA乃至
Fは読み込まれた形状データを構成する要素であり、図
8においてG乃至Nは各要素が交差する交点であり、図
9においてO乃至Xは各交点で分割された要素である。
ここでは、図6(a)に示すような3面図の形状データ
を図6(b)に示すような3次元のソリッドモデルに変
換する場合について説明する。まず、ソリッドモデル作
成コマンドを起動させてCADシステム上から入力部1
を用いて3面図を矩形指定することにより3面図入力手
段4によって3面図の形状データ等の読み込みを行う
(S8)。次に、交点分割手段5によってS8で読み込
まれた3面図の形状データを全交点で分割する(S
9)。交点分割の詳細は後述する。次に、最小要素検出
手段6によって交点分割された図形要素のうち最も小さ
な要素を検出する(S10)。最小要素検出の詳細は後
述する。次に、誤差値変更手段7によってS10で検出
された最小要素の長さをもとに許容誤差値を変更する
(S11)。許容誤差値の変更の詳細は後述する。次
に、ソリッドモデル変換手段8によってS11で変更さ
れた許容誤差をもとにソリッドモデルに変換する(S1
2)。
The operation of the graphic processing apparatus having the above-described structure according to the embodiment of the present invention will be described below. 2 is an overall flowchart of the graphic processing apparatus according to the embodiment of the present invention, FIG. 3 is a flowchart of intersection division of the graphic processing apparatus according to the embodiment of the present invention, and FIG. 4 is a flowchart of the embodiment of the present invention. 6 is a flow chart for detecting the minimum element of the graphic processing apparatus, FIG. 5 is a flow chart for changing the allowable error value of the graphic processing apparatus in one embodiment of the present invention, and FIG. 6 (a) is a graphic processing in one embodiment of the present invention. It is a figure which shows an example of the three-dimensional view before a conversion of an apparatus, and FIG.6 (b) is a figure which shows an example of the solid model after conversion of the figure processing apparatus in one Example of this invention. FIG. 7 is a diagram showing an example of a graphic element of the graphic processing device according to the embodiment of the present invention, and FIG. 8 is a diagram showing an example of all intersections of the graphic element of the graphic processing device according to the embodiment of the present invention. FIG. 9 is a diagram showing an example of the graphic processing device according to the embodiment of the present invention after the intersection of the graphic elements, and FIG. 10 is parallel to the X axis and the Y axis of the graphic processing device according to the embodiment of the present invention. FIG. 11 is a diagram showing an example of a graphic element, and FIG. 11 is a diagram showing an example of a graphic element which is not parallel to the X axis and the Y axis of the graphic processing apparatus according to the embodiment of the present invention. In FIG. 7, A to F are elements forming the read shape data, G to N in FIG. 8 are intersections where the elements intersect, and O to X in FIG. 9 are elements divided at each intersection. is there.
Here, a case will be described in which the shape data of a three-view drawing as shown in FIG. 6A is converted into a three-dimensional solid model as shown in FIG. 6B. First, start the solid model creation command and enter the input section 1 from the CAD system.
The three-view drawing input means 4 reads the shape data of the three-view drawing by designating the three-view drawing in a rectangular shape using (S8). Next, the intersection dividing means 5 divides the shape data of the three views read in S8 at all intersections (S).
9). Details of the intersection division will be described later. Next, the smallest element of the graphic elements divided by the intersections by the minimum element detecting means 6 is detected (S10). Details of the minimum element detection will be described later. Next, the error value changing means 7 changes the allowable error value based on the length of the minimum element detected in S10 (S11). Details of changing the allowable error value will be described later. Next, the solid model converting means 8 converts the solid model based on the allowable error changed in S11 (S1).
2).

【0012】ここで、S9の交点分割の詳細について図
3を参照しながら説明する。まず、図7に示すように、
図形要素が3面図の内の1つとして入力される(S1
3)。次に、図8に示すように各要素が交わるGからN
の8つの交点を探し出す(S14)。次に、AからFの
6つの要素をS14で検出されたGからNの8つの交点
で分割し、図9に示すようなOからXの10個の要素に
分割する(S15)。
The details of the intersection division in S9 will be described with reference to FIG. First, as shown in FIG.
A graphic element is input as one of the three views (S1
3). Next, as shown in FIG. 8, G to N at which each element intersects
8 intersections are searched for (S14). Next, the six elements A to F are divided at the eight intersections G to N detected in S14, and are divided into ten elements O to X as shown in FIG. 9 (S15).

【0013】ここで、S10の最小要素検出の詳細につ
いて図4を参照しながら説明する。まず、S9で分割さ
れた要素のうち、1つの要素を読み込む(S16)。次
に、読み込んだ要素が図10の(a)に示すようにX軸
に平行であるか判断する(S17)。Yesである場合
はXの長さを測定値とし(S18)、S25へジャンプ
し、Noである場合はY軸に平行であるか判断する(S
19)。Yesである場合はYの長さを測定値とし(S
20)、S25へジャンプし、Noである場合はX軸及
びY軸の相対長さを測定する(S21)。次に、Y軸の
相対長さよりX軸の相対長さの方が長いか判定する(S
22)。Yesである場合、即ちX軸の相対長さが長い
場合にはY軸の相対長さを測定値とし(S23)、No
である場合、即ちY軸の相対長さが長い場合にはX軸の
相対長さを測定値とする(S24)。次に、測定値が読
み込まれた要素のうち長さが最小であるか判断する(S
25)。Noである場合はS27にジャンプし、Yes
である場合は最小値を許容誤差値として保存する(S2
6)。次に、処理を終了してよいか判断する為に全ての
要素が読み込まれたか判定する(S27)。Noである
場合、即ち要素が残っている場合はS16へジャンプ
し、Yesである場合、即ち全て読み込まれた場合は終
了する。
Details of the minimum element detection in S10 will be described with reference to FIG. First, one of the elements divided in S9 is read (S16). Next, it is determined whether the read element is parallel to the X axis as shown in (a) of FIG. 10 (S17). If Yes, the length of X is set as a measurement value (S18), and the process jumps to S25. If No, it is determined whether or not it is parallel to the Y axis (S18).
19). If Yes, the length of Y is used as the measured value (S
20), jump to S25, and if No, measure the relative lengths of the X-axis and the Y-axis (S21). Next, it is determined whether the relative length of the X axis is longer than the relative length of the Y axis (S
22). If Yes, that is, if the relative length of the X axis is long, the relative length of the Y axis is set as the measured value (S23), No.
If, that is, if the relative length of the Y axis is long, the relative length of the X axis is used as the measurement value (S24). Next, it is determined whether or not the length of the elements from which the measured values are read is the minimum (S
25). If No, jump to S27, Yes
If it is, the minimum value is saved as an allowable error value (S2
6). Next, it is determined whether or not all the elements have been read in order to determine whether or not the processing may be ended (S27). If No, that is, if there are remaining elements, jump to S16, and if Yes, that is, if all elements have been read, end.

【0014】ここで、S11の許容誤差値変更の詳細に
ついて図5を参照しながら説明する。まず、S10で検
出された最小要素の長さを読み込む(S28)。次に、
S28で読み込まれた最小要素の値から最小要素の1/
10の値を引き、その値を許容誤差値とする(S2
9)。
Details of the change of the allowable error value in S11 will be described with reference to FIG. First, the length of the minimum element detected in S10 is read (S28). next,
From the value of the minimum element read in S28, 1 / of the minimum element
The value of 10 is subtracted, and the value is set as the allowable error value (S2
9).

【0015】尚、本実施例では、許容誤差値として分割
された要素のうち最小の要素の値から最小値の1/10
の値を引いた値を用いたが、許容誤差値内に2つ以上の
要素が含有されない値であれば他の値を用いることもで
きる。
In the present embodiment, the value of the smallest element among the elements divided as the permissible error value is calculated to be 1/10 of the smallest value.
Although the value obtained by subtracting the value of is used, another value may be used as long as the allowable error value does not include two or more elements.

【0016】[0016]

【発明の効果】以上のように本発明は、制御部の最小要
素検出手段が交点分割手段で分割された要素から最小要
素を検出し、誤差値変更手段が最小要素検出手段で検出
された最小要素の値から算出された値を許容誤差値とす
るために、許容誤差値内に2以上の要素が含有されるこ
とがないので、各要素が削除されることなく正確に誤差
修正を行うことができ、誤差値変換手段が最小要素の値
から最小要素の値の1/10の値を引いた値を新たな許
容誤差値とするために、許容誤差値が長すぎて最小要素
を認識できなかったり、許容誤差値が短すぎて3面図に
おける各面図を合致させる際に、修正を行う範囲が狭ま
り、自動的に合致させる機能を失わせることもなく、最
適な誤差修正を行うことができるので、使用者の経験や
勘に頼ることなく容易に許容誤差値を設定し誤差修正を
行うことができ、誤差修正時間も短縮することができる
信頼性,作業性に優れた図形処理装置を実現できるもの
である。
As described above, according to the present invention, the minimum element detecting means of the control unit detects the minimum element from the elements divided by the intersection dividing means, and the error value changing means detects the minimum element by the minimum element detecting means. Since the value calculated from the element value is used as the allowable error value, no more than two elements are included in the allowable error value. Therefore, correct the error without deleting each element. Since the error value converting means sets a value obtained by subtracting 1/10 of the value of the minimum element from the value of the minimum element as a new allowable error value, the allowable error value is too long and the minimum element can be recognized. If there is not, or the allowable error value is too short, the range of correction is narrowed when matching each drawing in the three-view drawing, and the function of automatically matching is not lost, and the optimum error correction is performed. Can be done without relying on the experience or intuition of the user. Easy to can be set to error correct the allowable error value, in which reliability can be shortened error correction time, an excellent graphic processing apparatus workability can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における図形処理装置の機能
ブロック図
FIG. 1 is a functional block diagram of a graphic processing device according to an embodiment of the present invention.

【図2】本発明の一実施例における図形処理装置の全体
フローチャート
FIG. 2 is an overall flowchart of a graphic processing device according to an embodiment of the present invention.

【図3】本発明の一実施例における図形処理装置の交点
分割のフローチャート
FIG. 3 is a flowchart of intersection division of the graphic processing device according to the embodiment of the present invention.

【図4】本発明の一実施例における図形処理装置の最小
要素検出のフローチャート
FIG. 4 is a flowchart of minimum element detection of the graphic processing apparatus according to the embodiment of the present invention.

【図5】本発明の一実施例における図形処理装置の許容
誤差値変更のフローチャート
FIG. 5 is a flowchart for changing an allowable error value of the graphic processing apparatus according to the embodiment of the present invention.

【図6】(a)本発明の一実施例における図形処理装置
の変換前の3面図の一例を示す図 (b)本発明の一実施例における図形処理装置の変換後
のソリッドモデルの一例を示す図
FIG. 6 (a) is a diagram showing an example of a three-view drawing before conversion of the graphic processing device according to the embodiment of the present invention. (B) An example of a solid model after conversion of the graphic processing device according to the embodiment of the present invention. Showing

【図7】本発明の一実施例における図形処理装置の図形
要素の一例を示す図
FIG. 7 is a diagram showing an example of a graphic element of the graphic processing apparatus according to the embodiment of the present invention.

【図8】本発明の一実施例における図形処理装置の図形
要素の全交点の一例を示す図
FIG. 8 is a diagram showing an example of all intersections of graphic elements of the graphic processing apparatus according to the embodiment of the present invention.

【図9】本発明の一実施例における図形処理装置の図形
要素の交点分割後の一例を示す図
FIG. 9 is a diagram showing an example of the graphic processing device according to the embodiment of the present invention after the intersection of the graphic elements is divided.

【図10】本発明の一実施例における図形処理装置のX
軸,Y軸に平行な図形要素の一例を示す図
FIG. 10 is an X of the graphic processing apparatus according to the embodiment of the present invention.
The figure which shows an example of the graphic element parallel to the axis and the Y-axis

【図11】本発明の一実施例における図形処理装置のX
軸,Y軸に平行でない図形要素の一例を示す図
FIG. 11 is an X diagram of a graphic processing apparatus according to an embodiment of the present invention.
The figure which shows an example of the graphic element which is not parallel to the axis and the Y-axis

【図12】従来の図形処理装置の機能ブロック図FIG. 12 is a functional block diagram of a conventional graphic processing device.

【図13】従来の図形処理装置のフローチャートFIG. 13 is a flowchart of a conventional graphic processing device.

【図14】(a)従来の図形処理装置の変換前の3面図
の一例を示す図 (b)従来の図形処理装置の変換後のソリッドモデルの
一例を示す図
14A is a diagram showing an example of a three-view drawing of a conventional graphic processing device before conversion, and FIG. 14B is a diagram showing an example of a solid model after conversion of the conventional graphic processing device.

【符号の説明】[Explanation of symbols]

1,10 入力部 2,11 表示部 3,12 記憶部 4,13 3面図入力手段 5,14 交点分割手段 6 最小要素検出手段 7 誤差値変更手段 8,15 ソリッドモデル変換手段 9,16 制御部 1, 10 Input section 2, 11 Display section 3, 12 Storage section 4, 13 3 View input means 5, 14 Intersection dividing means 6 Minimum element detecting means 7 Error value changing means 8, 15 Solid model converting means 9, 16 Control Department

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】文字,数値,図形要素,位置等の入力,指
定を行う入力部と、前記入力部で入力,指定された文
字,数値,図形要素,位置等を表示する表示部と、前記
表示部の表示画面上で作成された3図面の形状データ等
を記憶する記憶部と、前記入力部で指定された3面図の
形状データ等を入力する3面図入力手段と、前記3面図
入力手段で入力された3面図の形状データを各線分が交
わる交点で分割する交点分割手段と、前記交点分割手段
で分割された各要素を前記記憶部に記憶された許容誤差
値をもとに合致させ3次元のソリッドモデルを作成する
ソリッドモデル変換手段と、を有する制御部を備えた図
形処理装置であって、前記制御部が、前記交点分割手段
で分割された要素から最小要素を検出する最小要素検出
手段と、前記最小要素検出手段で検出された最小要素の
値から算出された値を許容誤差値とする誤差値変更手段
と、を備えていることを特徴とする図形処理装置。
1. An input unit for inputting and specifying characters, numerical values, graphic elements, positions, etc .; a display unit for displaying the characters, numerical values, graphic elements, positions, etc. input and specified by the input unit; A storage unit that stores shape data and the like of the three drawings created on the display screen of the display unit, a three-view drawing input unit that inputs shape data and the like of the three views specified by the input unit, and the three surfaces An intersection dividing unit that divides the shape data of the three views input by the diagram input unit at an intersection where each line segment intersects, and an allowable error value stored in the storage unit for each element divided by the intersection dividing unit. And a solid model conversion means for creating a three-dimensional solid model in accordance with the above, wherein the control portion selects a minimum element from the elements divided by the intersection dividing means. Minimum element detecting means for detecting, Graphic processing apparatus characterized by comprising a an error value changing means for the tolerance value a value calculated from the value of the detected smallest element by the detection means.
【請求項2】前記最小要素の値から最小要素の値の1/
10の値を引いた値を新たな許容誤差値とする誤差値変
換手段を備えていることを特徴とする請求項1に記載の
図形処理装置。
2. The value of the minimum element to 1 / of the value of the minimum element
The graphic processing apparatus according to claim 1, further comprising error value conversion means for setting a value obtained by subtracting the value of 10 as a new allowable error value.
JP6217152A 1994-09-12 1994-09-12 Graphic processor Pending JPH0883355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6217152A JPH0883355A (en) 1994-09-12 1994-09-12 Graphic processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6217152A JPH0883355A (en) 1994-09-12 1994-09-12 Graphic processor

Publications (1)

Publication Number Publication Date
JPH0883355A true JPH0883355A (en) 1996-03-26

Family

ID=16699678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6217152A Pending JPH0883355A (en) 1994-09-12 1994-09-12 Graphic processor

Country Status (1)

Country Link
JP (1) JPH0883355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112252A (en) * 2006-10-30 2008-05-15 Yamazaki Mazak Corp Method for converting two-dimensional drawing into three-dimensional solid model, and method for converting attribute

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112252A (en) * 2006-10-30 2008-05-15 Yamazaki Mazak Corp Method for converting two-dimensional drawing into three-dimensional solid model, and method for converting attribute

Similar Documents

Publication Publication Date Title
US20200033109A1 (en) Workpiece measurement device, workpiece measurement method and non-transitory computer readable medium recording a program
JPH03264215A (en) Numerical control unit for electric discharge machine
US5548695A (en) Image figure editing system for manipulating figure elements given in terms of image data
JP3332476B2 (en) Graphic correction method and information processing apparatus for implementing the method
JPH0883355A (en) Graphic processor
JP2662540B2 (en) 3D distance measuring device
JP2947367B2 (en) Inspection drawing display method and device
JP2912132B2 (en) Dimension line entry method
US20030187541A1 (en) Design supporting program, design supporting method, design supporting apparatus and computer-readable recording medium recorded with design supporting program
JP2002324090A (en) Producing method and apparatus for three-dimensional model
JP3433486B2 (en) Geometric deviation calculator
JPH0619992A (en) Cad system
JPH0581391A (en) Straight line drawing method having inclination
JPH1145107A (en) Measuring method for calculating virtual pin corner position at curved surface corner part
JP3327734B2 (en) Graphic processing method and apparatus
JPH06325115A (en) Microroute search assistance system and its profile chart generating method
JPH08147463A (en) Figure generating device
JPH096811A (en) Area arithmetic unit
JPS6371778A (en) Three-dimensional shape data input device
JPH04248677A (en) Method and device for drawing wall or beam in building drawing or the like
JPH0554086A (en) Drawing data extracting device
JPH036671A (en) Production system for parts diagram
JP2916534B2 (en) Table output device
JPH0664589B2 (en) Drawing method in CAD system
JPH06266848A (en) Method for finding out tangent of measured characteristic curve