JPH0882663A - Analytical method of target motion - Google Patents

Analytical method of target motion

Info

Publication number
JPH0882663A
JPH0882663A JP21870994A JP21870994A JPH0882663A JP H0882663 A JPH0882663 A JP H0882663A JP 21870994 A JP21870994 A JP 21870994A JP 21870994 A JP21870994 A JP 21870994A JP H0882663 A JPH0882663 A JP H0882663A
Authority
JP
Japan
Prior art keywords
target
state quantity
coordinate system
amount
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21870994A
Other languages
Japanese (ja)
Other versions
JP2739054B2 (en
Inventor
Sumio Harada
澄夫 原田
Yoshio Okita
芳雄 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Oki Electric Industry Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Oki Electric Industry Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Oki Electric Industry Co Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP6218709A priority Critical patent/JP2739054B2/en
Publication of JPH0882663A publication Critical patent/JPH0882663A/en
Application granted granted Critical
Publication of JP2739054B2 publication Critical patent/JP2739054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE: To obtain an analytical method in which the convergence time of a solution is shortened when a target motion is analyzed. CONSTITUTION: A signal IN in which a sound radiated from a target has been received by means of a wave-receiver-sensor array for a cruising body is inputted to a direction- information computation part 12 and a frequency-information computation part 13 via an input terminal 11. The direction-information computation part 12 computes the observation value S12 of the azimuth angle of the target, and the frequency- information computation part 13 computes the observation value S13 of the frequency component of the target. An initial-value computation part 14 finds the initial value S14 of the motion analysis of the target in an X-Y coordinate system so as to be outputted to a coordinate transformation part 15. The coordinate transformation part 15 finds the initial value S15 of an internal-state amount in an analytical coordinate system so as to be outputted to an internal-state-amount estimation part 16A. The internal-state-amount estimation part 16A finds the estimation amount S16A of the internal-state amount by making use of the initial value S15 as the initial value of the motion analysis so as to be outputted to a coordinate transformation part 17. The coordinate transformation part 17 finds the estimation amount S17 of the position vector of the target 2 as the internal-state amount of a target motion, and its result is outputted from an output terminal 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、目標から放射される音
を、運動可能な艦船等の航走体に取り付けた受波器セン
サアレイで受信し、雑音に乱された観測量から、移動し
ている目標の位置及び速度に関する内部状態量の推定を
行う目標運動解析方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention receives a sound radiated from a target by a receiver sensor array attached to a moving body such as a ship that can move, and moves it from an observation amount disturbed by noise. The present invention relates to a target motion analysis method for estimating an internal state quantity relating to the position and speed of a target being operated.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば次のようなものがあった。図2は、従来の目標運
動解析方法における観測系及び運動系を示す幾何学的説
明図である。この図2において、(X,Y)は原点Oの
固定座標系であり、1は航走体、2は目標である。vx
1 (t)(但し、vはベクトルの意味)は時刻tにおけ
る航走体1の位置ベクトル、vx2 (t)は時刻tにお
ける目標2の位置ベクトルである。又、r(t)は時刻
tにおける航走体1と目標2との間の距離‖vx
2 (t)−vx1 (t)‖(但し、‖ ‖はベクトルの
ノルムを表す)、θ(t)は時刻tにおける航走体1か
ら見たY軸を基準とする目標2の方位角である。目標運
動解析は、目標が等速直線運動を行っていると仮定し、
雑音に乱された目標音源の方位角及び周波数の観測量の
時系列から、目標の位置と速度とを同定するものであ
る。従来技術の説明に先立ち、目標運動解析方法の動作
原理について説明する。時刻tにおける方位角θ(t)
の観測値β(t)及び音源の第k周波数成分(但し、
k;任意の自然数)fk の観測値νk (t)を次の
(1)式のように表す。
2. Description of the Related Art Conventionally, techniques in such a field include:
For example, there was the following. FIG. 2 is a geometrical explanatory view showing an observation system and a motion system in a conventional target motion analysis method. In FIG. 2, (X, Y) is a fixed coordinate system of the origin O, 1 is a moving body, and 2 is a target. vx
1 (t) (where v means a vector) is the position vector of the vehicle 1 at time t, and vx 2 (t) is the position vector of the target 2 at time t. In addition, r (t) is the distance between the vehicle 1 and the target 2 at time t ‖vx
2 (t) -vx 1 (t) ‖ (where ‖ ‖ represents the norm of the vector), θ (t) is the azimuth angle of the target 2 with respect to the Y axis at the time t as seen from the navigation vehicle 1. Is. The target motion analysis assumes that the target is performing a uniform linear motion,
The target position and velocity are identified from the time series of the azimuth angle and frequency observation amount of the target sound source disturbed by noise. Prior to the description of the conventional technique, the operation principle of the desired motion analysis method will be described. Azimuth θ (t) at time t
Observation value β (t) and the k-th frequency component of the sound source (however,
k; arbitrary natural number) The observed value ν k (t) of f k is expressed as in the following equation (1).

【0003】[0003]

【数1】 但し、 n(t);平均値が0で、かつ時刻tにおける分散がσ
2 (t)である観測雑音 ηk (t);平均値が0で、かつ時刻tにおける分散が
σk 2 (t)なる観測雑音 c;音速 ・;時間微分 次に、目標2に対する観測者から見た相対位置ベクトル
を次の(2)式のように表す。 vx(t)=vx2 (t)−vx1 (t) =[rx (t) ry (t)]T ・・・(2) 但し、 T;転置 時刻tにおける内部状態量vX(t)を次の(3)式の
ように表す。
[Equation 1] However, n (t); the average value is 0, and the variance at time t is σ
2 (t) Observation noise η k (t); Observation noise whose mean value is 0 and whose variance at time t is σ k 2 (t) c; Sound velocity; The relative position vector viewed from is expressed by the following equation (2). vx (t) = vx 2 ( t) -vx 1 (t) = [r x (t) r y (t)] T ··· (2) where, T; internal state vX in transposed time t (t ) Is expressed by the following equation (3).

【数2】 但し、 p;周波数成分の個数 時刻t=t0 における内部状態量をvX0 =vX
(t0 )とするとき、時刻t=t1 ,・・・,tn にお
いて、時系列的に表される観測量β(t),νk (t)
の組から評価関数L(vX0 )を次の(4)式のように
表す。
[Equation 2] Where p is the number of frequency components, and the internal state quantity at time t = t 0 is vX 0 = vX
(T 0 ), at time t = t 1 , ..., T n , the observed quantities β (t), ν k (t)
The evaluation function L (vX 0 ) is represented by the following equation (4).

【0004】[0004]

【数3】 次の(5)式を用いて、内部状態量vX(t)の推定を
行い、このL(vX0)が最小になるvX0 を求めるこ
とによって、この内部状態量vX(t)の最適値を求め
る。
(Equation 3) The optimum value of the internal state quantity vX (t) is obtained by estimating the internal state quantity vX (t) using the following equation (5) and finding vX 0 that minimizes this L (vX 0 ). Ask for.

【0005】[0005]

【数4】 L(vX0 )が最小になるvX0 を求める場合は、次の
(6)式で表される非線形方程式を解く必要がある。 ∂L(vX0 )/∂vX0 =0 ・・・(6) この場合、(1)式において(雑音成分)n(t)及び
ηk (t)を0とし、次の(7)式で表される線形方程
式を解いて、解析の初期値#(vX0 )を定める方法が
ある。
[Equation 4] In order to find vX 0 that minimizes L (vX 0 ), it is necessary to solve the non-linear equation represented by the following equation (6). ∂L (vX 0 ) / ∂vX 0 = 0 (6) In this case, (noise component) n (t) and η k (t) are set to 0 in the formula (1), and the following formula (7) is used. There is a method of solving the linear equation represented by and determining the initial value # (vX 0 ) of the analysis.

【0006】[0006]

【数5】 図3は、従来の目標運動解析方法を実施するための目標
運動解析装置の機能ブロック図である。この図を参照し
つつ従来の目標運動解析方法を説明する。この目標運動
解析装置は、図2中の航走体1に取り付けられた図示し
ない受波器センサアレイからの信号INを入力する入力
端子11を有している。入力端子11は、方位情報算出
部12の入力側に接続されると共に、周波数情報算出部
13の入力側にも接続されている。方位情報算出部12
は、信号INを入力して図2中の目標2の方位角の観測
量S12を時系列的に算出する手段である。同様に、周
波数情報算出部13も、信号INを入力して図2中の目
標2から放射される音の周波数成分の観測量S13を時
系列的に算出する手段である。方位情報算出部12の出
力側及び周波数情報算出部13の出力側は、初期値算出
部14の入力側に接続されている。初期値算出部14
は、方位角の観測量S12及び周波数の観測量S13の
時系列から、X−Y座標系における目標2の位置、速
度、及び目標2から放射される音の周波数又はその逆数
を、目標2の運動を解析するための初期状態量S14と
して算出する手段である。初期値算出部14の出力側
は、内部状態量推定部16の入力側に接続されている。
内部状態量推定部16は、初期状態量S14を目標2の
運動を解析するための初期値とし、内部状態量の推定量
S16を求める手段である。内部状態量推定部16の出
力側は、推定量S16を目標運動解析結果として出力す
る出力端子18に接続されている。
(Equation 5) FIG. 3 is a functional block diagram of a desired motion analysis device for implementing a conventional desired motion analysis method. A conventional desired motion analysis method will be described with reference to this figure. This target motion analysis device has an input terminal 11 for inputting a signal IN from a wave receiver sensor array (not shown) attached to the vehicle 1 in FIG. The input terminal 11 is connected to the input side of the azimuth information calculation unit 12 and also to the input side of the frequency information calculation unit 13. Direction information calculation unit 12
Is a means for inputting the signal IN and calculating the observed amount S12 of the azimuth angle of the target 2 in FIG. 2 in time series. Similarly, the frequency information calculation unit 13 is also means for inputting the signal IN and calculating the observed amount S13 of the frequency component of the sound radiated from the target 2 in FIG. 2 in time series. The output side of the azimuth information calculation unit 12 and the output side of the frequency information calculation unit 13 are connected to the input side of the initial value calculation unit 14. Initial value calculation unit 14
From the time series of the azimuth observation amount S12 and the frequency observation amount S13, the position and velocity of the target 2 in the XY coordinate system, and the frequency of the sound radiated from the target 2 or its reciprocal, This is means for calculating the initial state quantity S14 for analyzing the motion. The output side of the initial value calculation unit 14 is connected to the input side of the internal state quantity estimation unit 16.
The internal state quantity estimating unit 16 is means for obtaining the estimated quantity S16 of the internal state quantity by using the initial state quantity S14 as an initial value for analyzing the motion of the target 2. The output side of the internal state quantity estimation unit 16 is connected to an output terminal 18 that outputs the estimated quantity S16 as a target motion analysis result.

【0007】次に、この目標運動解析装置の動作を説明
する。受波器センサアレイで受信された信号源からの信
号INが、入力端子11に入力し、方位情報算出部12
及び周波数情報算出部13に入力される。受信信号IN
が方位情報算出部12に入力されると、方位角θ(t)
の観測量S12=β(t)を算出する。又、受信信号I
Nが周波数情報算出部13に入力されると、第k周波数
成分(但し、k;1 ,・・・,p )fk の観測量S13
=νk (t)を算出する。t=t1 ,・・・,tn にお
けるn組の方位角θ(t)の観測量β(t)及び第k周
波数成分fk の観測量νk (t)が時系列的に初期値算
出部14に入力されると、初期値算出部14は、(7)
式に基づいて運動解析の初期状態量S14=#(v
0 )を求め、その結果を内部状態量推定部16へ出力
する。内部状態量推定部16は、初期状態量#(v
0 )を運動解析の初期値として(6)式の非線形方程
式を解き、目標運動の内部状態量である目標2の位置ベ
クトル
Next, the operation of the desired motion analysis device will be described. The signal IN from the signal source received by the receiver sensor array is input to the input terminal 11, and the azimuth information calculation unit 12
And the frequency information calculation unit 13. Received signal IN
Is input to the azimuth information calculation unit 12, the azimuth angle θ (t)
The observed amount S12 = β (t) is calculated. Also, the received signal I
When N is input to the frequency information calculation unit 13, the observed amount S13 of the k-th frequency component (however, k; 1, ..., P) f k
= V k (t) is calculated. The observed amount β (t) of the n sets of azimuth angles θ (t) and the observed amount ν k (t) of the k-th frequency component f k at t = t 1 , ..., T n are initial values in time series. When input to the calculation unit 14, the initial value calculation unit 14 (7)
Initial state quantity S14 = # (v
X 0 ), and outputs the result to the internal state quantity estimating unit 16. The internal state quantity estimation unit 16 uses the initial state quantity # (v
X 0 ) is the initial value of the motion analysis and the non-linear equation (6) is solved to obtain the position vector of the target 2 which is the internal state quantity of the target motion.

【数6】 を求め、その結果を出力端子18から出力する。(Equation 6) Is obtained and the result is output from the output terminal 18.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
目標運動解析装置では、次のような問題点があった。即
ち、相対方位角の観測量β(t)及び周波数成分の観測
量ν(t)と内部状態量とが非線形の関係にあるため、
目標2の運動解析の解が収束するまでに時間がかかると
いう問題点があった。本発明は、運動解析の結果を得る
ために時間がかかるという問題を解決するために、目標
2の運動を解析するための初期状態量をX−Y座標系を
用いて算出した後、この初期状態量を方位角の観測量β
(t)及び周波数成分の観測量ν(t)と内部状態量と
が線形の関係にある解析座標系に変換して運動解析を行
う方法を提供するものである。
However, the above target motion analysis device has the following problems. That is, since the observed amount β (t) of the relative azimuth angle and the observed amount ν (t) of the frequency component and the internal state amount have a non-linear relationship,
There is a problem that it takes time for the solution of the motion analysis of the goal 2 to converge. In order to solve the problem that it takes time to obtain the result of the motion analysis, the present invention calculates the initial state quantity for analyzing the motion of the target 2 using the XY coordinate system, and then calculates the initial state quantity. State quantity is observed quantity of azimuth β
It is intended to provide a method of performing a motion analysis by converting (t) and an observed amount ν (t) of a frequency component and an internal state quantity into an analytical coordinate system having a linear relationship.

【0009】[0009]

【課題を解決するための手段】第1の発明では、前記課
題を解決するために、目標から放射される音を、運動可
能な航走体に取り付けた受波器センサアレイで受信して
該目標の方位角を測定し、その方位角の測定結果である
相対方位角の観測量の時系列から目標の状態量を推定す
る目標運動解析方法において、次のような手段を講じて
いる。即ち、受波器センサアレイで受信した信号を入力
して相対方位角の観測量を時系列的に算出する方位情報
算出処理と、相対方位角の観測量の時系列から、X−Y
座標系における前記目標の位置及び速度を該目標の運動
を解析するための初期状態量として算出する初期値算出
処理と、この初期状態量を、相対方位角の観測量と目標
の状態量とが線形の関係にある解析座標系における状態
量に変換する座標変換処理と、解析座標系における状態
量を目標の運動を解析するための初期値とし、目標の状
態量の推定量を解析座標系において求める内部状態量推
定処理とを、順に施すようにしている。
In order to solve the above-mentioned problems, in the first invention, the sound radiated from a target is received by a receiver sensor array attached to a movable flying body, and In the target motion analysis method for measuring the target azimuth and estimating the target state quantity from the time series of the observed amount of the relative azimuth, which is the measurement result of the azimuth, the following means are taken. That is, from the azimuth information calculation process of inputting the signal received by the receiver sensor array to calculate the observation amount of the relative azimuth in time series, and the time series of the observation amount of the relative azimuth angle, XY
An initial value calculation process for calculating the position and velocity of the target in the coordinate system as an initial state amount for analyzing the motion of the target, and this initial state amount is calculated by the observation amount of the relative azimuth angle and the target state amount. Coordinate conversion processing that converts the state quantity in the linear analysis coordinate system, and the state quantity in the analysis coordinate system as the initial value for analyzing the target motion, and the estimated quantity of the target state quantity in the analysis coordinate system The internal state quantity estimating process to be obtained is sequentially performed.

【0010】第2の発明では、第1の発明の目標運動解
析方法において、解析座標系における状態量は、目標の
相対方位、目標の相対方位の変化率、目標と航走体との
距離の逆数、及びその距離に対する距離変化率の割合と
している。第3の発明では、目標から放射される音を、
運動可能な航走体に取り付けた受波器センサアレイで受
信して該目標の方位角及び周波数をそれぞれ測定し、そ
の方位角及び周波数の測定結果である相対方位角の観測
量及び周波数の観測量の時系列から目標の状態量を推定
する目標運動解析方法において、次のような手段を講じ
ている。即ち、受波器センサアレイで受信した信号を入
力して方位角の観測量及び周波数の観測量を時系列的に
算出する方位情報算出処理及び周波数情報算出処理と、
相対方位角の観測量及び周波数の観測量の時系列から、
X−Y座標系における前記目標の位置、速度、及び目標
から放射される音の周波数又はその逆数を該目標の運動
を解析するための初期状態量として算出する初期値算出
処理と、この初期状態量を、相対方位角の観測量及び周
波数の観測量と目標の状態量とが線形の関係にある解析
座標系における状態量に変換する座標変換処理と、解析
座標系における状態量を目標の運動を解析するための初
期値とし、目標の状態量の推定量を解析座標系において
求める内部状態量推定処理とを、順に施すようにしてい
る。第4の発明では、第3の発明の目標運動解析方法に
おいて、解析座標系における状態量は、目標の方位、目
標の方位の変化率、目標と航走体との距離の逆数、その
距離に対する距離の変化率の割合、及び目標から放射さ
れる音の周波数又はその逆数としている。
In a second aspect of the present invention, in the target motion analysis method of the first aspect, the state quantity in the analysis coordinate system is the relative direction of the target, the change rate of the relative direction of the target, and the distance between the target and the vehicle. It is the reciprocal and the ratio of the distance change rate to the distance. In the third invention, the sound emitted from the target is
Measurement of the azimuth and frequency of the target received by the wave receiver sensor array attached to the movable body, and observation of the relative azimuth observation amount and frequency, which are the measurement results of the azimuth and frequency. The following measures are taken in the target motion analysis method for estimating the target state quantity from the time series of quantity. That is, an azimuth information calculation process and a frequency information calculation process of inputting a signal received by the receiver sensor array and calculating the azimuth angle observation amount and the frequency observation amount in time series,
From the time series of relative azimuth and frequency observations,
An initial value calculation process for calculating the position and velocity of the target in the XY coordinate system, and the frequency of the sound emitted from the target or the reciprocal thereof as an initial state amount for analyzing the motion of the target, and the initial state. Coordinate conversion processing that converts the quantity into the quantity of state in the analysis coordinate system in which the quantity of observation of the relative azimuth and the quantity of observation of the frequency and the state quantity of the target have a linear relationship, and the state quantity in the analysis coordinate system Is used as an initial value for the analysis, and an internal state quantity estimation process for obtaining an estimated quantity of the target state quantity in the analysis coordinate system is sequentially performed. In the fourth invention, in the target motion analysis method of the third invention, the state quantity in the analysis coordinate system is the target direction, the rate of change of the target direction, the reciprocal of the distance between the target and the vehicle, and the distance. The rate of change in distance and the frequency of the sound radiated from the target or its reciprocal.

【0011】[0011]

【作用】第1の発明によれば、以上のように目標運動解
析方法を構成したので、方位情報算出処理により、受波
器センサアレイで受信した信号を入力して目標の方位角
の観測量を時系列的に算出する。初期値算出処理によ
り、目標の相対方位角の観測量の時系列から、X−Y座
標系における目標の位置及び速度を該目標の運動を解析
するための初期状態量として算出する。次に、座標変換
処理により、この初期状態量を、目標の相対方位角の観
測量と該目標の状態量とが線形の関係にある解析座標系
における初期状態量に変換する。更に、内部状態量推定
処理により、目標の状態量の推定量を解析座標系におい
て求める。第2の発明によれば、第1の発明の相対方位
角の観測量は、解析座標系における状態量である目標の
方位、目標の方位の変化率、目標と航走体との距離の逆
数、及びその距離に対する距離変化率の割合と線形の関
係になる。第3の発明によれば、方位情報算出処理及び
周波数情報算出処理により、受波器センサアレイで受信
した信号を入力して目標の相対方位角の観測量及び周波
数の観測量を時系列的に算出する。初期値算出処理によ
り、目標の相対方位角の観測量及び周波数の観測量の時
系列から、X−Y座標系における該目標の位置、速度、
及び目標から放射される音の周波数又はその逆数を該目
標の運動を解析するための初期状態量として算出する。
次に、座標変換処理により、この初期状態量を、目標の
相対方位角の観測量及び周波数の観測量と目標の状態量
とが線形の関係にある解析座標系における初期状態量に
変換する。更に、内部状態量推定処理により、目標の状
態量の推定量を解析座標系において求める。第4の発明
によれば、第3の発明の相対方位角の観測量及び周波数
の観測量は、解析座標系における状態量である目標の方
位、目標の方位の変化率、目標と航走体との距離の逆
数、その距離に対する距離変化率の割合、及び目標から
放射される音の周波数又はその逆数と線形の関係にな
る。従って、前記課題を解決できるのである。
According to the first aspect of the present invention, since the target motion analysis method is configured as described above, the signal received by the receiver sensor array is input by the azimuth information calculation process to observe the target azimuth angle. Is calculated in time series. By the initial value calculation process, the position and speed of the target in the XY coordinate system are calculated as the initial state quantity for analyzing the motion of the target from the time series of the observed amount of the relative azimuth angle of the target. Next, by coordinate conversion processing, this initial state quantity is converted into an initial state quantity in an analytical coordinate system in which the observed quantity of the target relative azimuth angle and the target quantity of state have a linear relationship. Further, the estimated amount of the target state quantity is obtained in the analysis coordinate system by the internal state quantity estimation processing. According to the second invention, the observation amount of the relative azimuth angle of the first invention is the reciprocal of the target azimuth, the rate of change of the target azimuth, which is the state quantity in the analysis coordinate system, and the distance between the target and the vehicle. , And the ratio of the distance change rate to the distance, have a linear relationship. According to the third invention, the signal received by the receiver sensor array is input by the azimuth information calculation process and the frequency information calculation process, and the observed amount of the target relative azimuth angle and the observed amount of the frequency are time-series. calculate. By the initial value calculation process, from the time series of the observed amount of the target relative azimuth and the observed amount of the frequency, the position and speed of the target in the XY coordinate system,
And the frequency of the sound emitted from the target or its reciprocal is calculated as the initial state quantity for analyzing the motion of the target.
Next, by coordinate conversion processing, this initial state quantity is converted into an initial state quantity in the analysis coordinate system in which the observed quantity of the target relative azimuth angle and the observed quantity of frequency and the target quantity of state have a linear relationship. Further, the estimated amount of the target state quantity is obtained in the analysis coordinate system by the internal state quantity estimation processing. According to the fourth invention, the observed amount of the relative azimuth angle and the observed amount of the frequency of the third invention are the target azimuth, the rate of change of the target azimuth, the target and the spacecraft, which are state quantities in the analysis coordinate system. Has a linear relationship with the reciprocal of the distance to the distance, the ratio of the distance change rate to the distance, and the frequency of the sound emitted from the target or the reciprocal thereof. Therefore, the above problem can be solved.

【0012】[0012]

【実施例】先ず、本実施例の基礎となっている原理を説
明する。従来のX−Y座標系における目標2の内部状態
量vX(t)を、解析座標系である修正極座標における
内部状態量vY(t)として表すと、次の(8)式のよ
うになる。
First, the principle underlying the present embodiment will be described. When the internal state quantity vX (t) of the target 2 in the conventional XY coordinate system is expressed as the internal state quantity vY (t) in the corrected polar coordinates which is the analysis coordinate system, the following equation (8) is obtained.

【0013】[0013]

【数7】 vY(t)は、X−Y座標系における内部状態量vX
(t)を用いると、次の(9)式のようになる。
(Equation 7) vY (t) is the internal state quantity vX in the XY coordinate system.
When (t) is used, the following expression (9) is obtained.

【0014】[0014]

【数8】 従って、t=t1 ・・・tn における観測データから
(9)式を解いて、初期値#(vX0 )を定めた後、
(8)式及び(9)式を用いて初期値#(vY0 )=#
{vY(t0 )}に変換し、これを初期値として次の
(10)式、(11),(12)式及び(13)式に示
す非線形方程式を解く。
[Equation 8] Therefore, after solving the equation (9) from the observation data at t = t 1 ... t n and determining the initial value # (vX 0 ),
Initial value # (vY 0 ) = # using equations (8) and (9)
It is converted into {vY (t 0 )}, and this is used as an initial value to solve the nonlinear equations shown in the following equations (10), (11), (12), and (13).

【0015】[0015]

【数9】 目標の方位角の観測量及び周波数の観測量と目標の内部
状態量との関係が線形なので、(10)式、(11)式
及び(12),(13)式を解けば、X−Y座標系のま
まで内部状態量を推定する場合に比べて、収束時間が短
縮される。このとき、vX(t)は、vY(t)を用い
て次の(14)式のようになる。
[Equation 9] Since the relationship between the target azimuth angle observation amount and frequency observation amount and the target internal state amount is linear, XY can be solved by solving equations (10), (11), (12), and (13). The convergence time is shortened as compared with the case where the internal state quantity is estimated in the coordinate system. At this time, vX (t) is expressed by the following equation (14) using vY (t).

【数10】 図1は、本発明の実施例の目標運動解析方法を実施する
ための目標運動解析装置の機能ブロック図であり、従来
の図3と共通の要素には共通の符号が付されている。こ
の目標運動解析装置では、従来の図3中の初期値算出部
14の出力側に、座標変換部15の入力側が接続されて
いる。座標変換部15は、初期値算出部14で算出され
た初期状態量S14を、X−Y座標系から方位角の観測
量S12及び周波数の観測量S13と目標2の内部状態
量とが線形の関係にある解析座標系に変換する手段であ
る。この解析座標系における状態量は、目標2と航走体
1との相対方位角θ(t)、目標2と航走体1との相対
方位角の時間的変化率dθ(t)/dt、目標2と航走
体1との距離の逆数1/r(t)、距離r(t)に対す
る距離の時間的変化率d{r(t)}/dtの割合、及
び目標2から放射される音の周波数f又はその逆数1/
fである。座標変換部15の出力側には、内部状態量推
定部16Aの入力側が接続されている。内部状態量推定
部16Aは、解析座標系に変換された座標変換部15か
らの初期状態量S15を目標2の運動を解析するための
初期値とし、目標2の状態量の推定量S16Aを解析座
標系において求める手段である。内部状態量推定部16
Aの出力側には、座標変換部17の入力側が接続されて
いる。座標変換部17は、解析座標系で求められた目標
の運動の解析結果である推定量S16AをX−Y座標系
に変換する手段である。座標変換部17の出力側は、X
−Y座標系に変換された解析結果を目標運動解析結果と
して出力する出力端子18に接続されている。
[Equation 10] FIG. 1 is a functional block diagram of a desired motion analysis apparatus for carrying out a desired motion analysis method according to an embodiment of the present invention, and elements common to those in FIG. 3 of the related art are denoted by common reference numerals. In this target motion analysis device, the input side of the coordinate conversion unit 15 is connected to the output side of the conventional initial value calculation unit 14 in FIG. The coordinate conversion unit 15 uses the initial state quantity S14 calculated by the initial value calculation section 14 as a linear measurement of the azimuth angle observation amount S12, the frequency observation amount S13, and the internal state amount of the target 2 from the XY coordinate system. It is a means for converting into a related analysis coordinate system. The state quantity in this analysis coordinate system is the relative azimuth angle θ (t) between the target 2 and the vehicle 1, the temporal change rate dθ (t) / dt of the relative azimuth angle between the target 2 and the vehicle 1, It is radiated from the reciprocal 1 / r (t) of the distance between the target 2 and the vehicle 1, the ratio of the temporal change rate d {r (t)} / dt of the distance to the distance r (t), and the target 2. Frequency f of sound or its reciprocal 1 /
f. The input side of the internal state quantity estimation unit 16A is connected to the output side of the coordinate conversion unit 15. The internal state quantity estimating unit 16A uses the initial state quantity S15 from the coordinate transforming unit 15 converted into the analysis coordinate system as an initial value for analyzing the motion of the target 2, and analyzes the estimated quantity S16A of the target 2 state quantity. It is a means for obtaining in the coordinate system. Internal state quantity estimation unit 16
The input side of the coordinate conversion unit 17 is connected to the output side of A. The coordinate conversion unit 17 is means for converting the estimated amount S16A, which is the analysis result of the target motion obtained in the analysis coordinate system, into the XY coordinate system. The output side of the coordinate conversion unit 17 is X
It is connected to the output terminal 18 which outputs the analysis result converted into the −Y coordinate system as the target motion analysis result.

【0016】次に、図1の動作を説明する。受波器セン
サアレイで受信された信号源からの受信信号INが、入
力端子11を経て方位情報算出部12及び周波数情報算
出部13に入力する。方位情報算出部12は、受信信号
INを入力して方位角θ(t)の観測量S12=β
(t)を算出する。又、周波数情報算出部13は、受信
信号INを入力して第k周波数成分(但し、k;1 ,・
・・,p )fk の観測量S13=νk (t)を算出す
る。初期値算出部14が、t=t1 ,・・・,tn にお
けるn組の方位角の観測量S12=β(t)及び周波数
成分の観測量S13=ν(t)を入力し、(7)式に基
づいて運動解析の初期値S14=#(vX0 )を求め、
その結果を座標変換部15へ出力する。座標変換部15
は、X−Y座標系で求められた運動解析の初期値S14
=#(vX0 )を入力し、(9)式に基づいて修正極座
標系における内部状態量の初期値S15=#(vY0
を求め、その結果を内部状態量推定部16Aへ出力す
る。内部状態量推定部16Aは、初期値S15=#(v
0 )を運動解析の初期値として(10)〜(13)式
の非線形方程式を解き、内部状態量vY(t)の推定量
S16A=#{vY(t)}を求め、その結果を座標変
換部17へ出力する。座標変換部17は、(12),
(13)式、(14)式、及び(2)式を用いて目標運
動の内部状態量である目標2の位置ベクトル
Next, the operation of FIG. 1 will be described. The received signal IN from the signal source received by the receiver sensor array is input to the azimuth information calculation unit 12 and the frequency information calculation unit 13 via the input terminal 11. The azimuth information calculation unit 12 inputs the received signal IN and observes the azimuth angle θ (t) S12 = β.
Calculate (t). Further, the frequency information calculation unit 13 receives the received signal IN and receives the kth frequency component (where k; 1, ...
.., p) f k The observed amount S13 = ν k (t) is calculated. The initial value calculation unit 14 inputs n sets of azimuth observation amounts S12 = β (t) and frequency component observation amounts S13 = ν (t) at t = t 1 , ..., T n , The initial value S14 = # (vX 0 ) of the motion analysis is obtained based on the equation 7),
The result is output to the coordinate conversion unit 15. Coordinate conversion unit 15
Is the initial value S14 of the motion analysis obtained in the XY coordinate system.
= # (VX 0 ), and based on the equation (9), the initial value S15 = # (vY 0 ) of the internal state quantity in the modified polar coordinate system.
And outputs the result to the internal state quantity estimating unit 16A. The internal state quantity estimation unit 16A uses the initial value S15 = # (v
Y 0 ) is the initial value of the motion analysis and the nonlinear equations (10) to (13) are solved to obtain the estimated amount S16A = # {vY (t)} of the internal state amount vY (t), and the result is coordinated. Output to the conversion unit 17. The coordinate conversion unit 17 uses (12),
Position vector of target 2, which is the internal state quantity of the target motion, using equations (13), (14), and (2)

【数11】 を求め、その結果を出力端子18から出力する。[Equation 11] Is obtained and the result is output from the output terminal 18.

【0017】以上のように、本実施例では、初期値算出
部14は、X−Y座標系における目標2の位置、速度、
及び目標から放射される音の周波数又はその逆数を目標
の運動を解析するための初期値#(vX0 )として算出
する。更に、座標変換部15が、この初期値#(v
0 )を、目標の相対方位角の観測量β(t)及び周波
数の観測量ν(t)と目標2の内部状態量vY(t)と
が線形の関係にある解析座標系における状態量である目
標の相対方位θ(t)、目標の相対方位の変化率d{r
(t)}/dt、目標と航走体との距離の逆数1/r
(t)、その距離r(t)に対する距離の変化率d{r
(t)}/dtの割合、及び目標2から放射される音の
周波数f又はその逆数1/fに変換する。内部状態量推
定部16Aは、その結果で目標2の運動解析を行うよう
にしたので、X−Y座標系のみ或いは解析座標系のみを
用いた目標運動解析方法に比べて、解析結果を得るため
の演算時間を短縮できる。
As described above, in this embodiment, the initial value calculation unit 14 determines the position and speed of the target 2 in the XY coordinate system.
And the frequency of the sound radiated from the target or its reciprocal is calculated as the initial value # (vX 0 ) for analyzing the motion of the target. Further, the coordinate conversion unit 15 causes the initial value # (v
X 0 ) is the state quantity in the analysis coordinate system in which the observed quantity β (t) of the target relative azimuth and the observed quantity ν (t) of the frequency and the internal state quantity vY (t) of the target 2 are in a linear relationship. Target relative azimuth θ (t) and target relative azimuth change rate d {r
(T)} / dt, the reciprocal of the distance between the target and the vehicle 1 / r
(T), the rate of change of distance d {r with respect to the distance r (t)
(T)} / dt and the frequency f of the sound emitted from the target 2 or its inverse 1 / f. Since the internal state quantity estimation unit 16A is configured to perform the motion analysis of the target 2 based on the result, in order to obtain the analysis result as compared with the target motion analysis method using only the XY coordinate system or the analysis coordinate system. The calculation time of can be shortened.

【0018】[0018]

【発明の効果】以上詳細に説明したように、第1の発明
によれば、X−Y座標系における目標の位置及び速度を
目標の運動を解析するための初期状態量として算出し、
この初期状態量を、目標の相対方位角の観測量と目標の
内部状態量とが線形の関係にある解析座標系における状
態量に変換して目標の運動解析を行うようにしたので、
X−Y座標系のみ或いは解析座標系のみを用いた目標運
動解析方法に比べて、解析結果を得るための演算時間を
短縮できる。第2の発明によれば、第1の発明の解析座
標系における状態量を、目標の相対方位、目標の相対方
位の変化率、目標と航走体との距離の逆数、及びその距
離に対する距離変化率の割合としたので、X−Y座標系
のみ或いは解析座標系のみを用いた目標運動解析方法に
比べて、解析結果を得るための演算時間を短縮できる。
第3の発明によれば、X−Y座標系における目標の位
置、速度、及び目標から放射される音の周波数又はその
逆数を目標の運動を解析するための初期状態量として算
出し、この初期状態量を、目標の相対方位角の観測量及
び周波数の観測量と目標の内部状態量とが線形の関係に
ある解析座標系における状態量に変換して目標の運動解
析を行うようにしたので、X−Y座標系のみ或いは解析
座標系のみを用いた目標運動解析方法に比べて、解析結
果を得るための演算時間を短縮できる。第4の発明によ
れば、第3の発明の解析座標系における状態量を、目標
の相対方位、目標の相対方位の変化率、目標と航走体と
の距離の逆数、その距離に対する距離の変化率の割合、
及び目標から放射される音の周波数又はその逆数とした
ので、X−Y座標系のみ或いは解析座標系のみを用いた
目標運動解析方法に比べて、解析結果を得るための演算
時間を短縮できる。
As described in detail above, according to the first invention, the position and velocity of the target in the XY coordinate system are calculated as the initial state quantity for analyzing the motion of the target,
Since this initial state quantity is converted into the state quantity in the analysis coordinate system in which the observed amount of the target relative azimuth angle and the target internal state quantity have a linear relationship, the target motion analysis is performed.
Compared with the target motion analysis method using only the XY coordinate system or only the analysis coordinate system, the calculation time for obtaining the analysis result can be shortened. According to the second invention, the state quantity in the analytic coordinate system of the first invention is calculated as follows: the relative direction of the target, the change rate of the relative direction of the target, the reciprocal of the distance between the target and the vehicle, and the distance with respect to the distance. Since the rate of change is set, the calculation time for obtaining the analysis result can be shortened as compared with the target motion analysis method using only the XY coordinate system or only the analysis coordinate system.
According to the third aspect of the invention, the position and velocity of the target in the XY coordinate system, and the frequency of the sound radiated from the target or the reciprocal thereof are calculated as the initial state quantity for analyzing the motion of the target. Since the state quantity is converted into the state quantity in the analysis coordinate system in which the observed quantity of the target relative azimuth and the observed quantity of the frequency and the internal quantity of the target have a linear relationship, the target motion analysis is performed. , The calculation time for obtaining the analysis result can be shortened as compared with the target motion analysis method using only the XY coordinate system or only the analysis coordinate system. According to the fourth aspect of the invention, the state quantity in the analytical coordinate system of the third aspect of the invention is calculated as follows: the target relative direction, the rate of change of the target relative direction, the reciprocal of the distance between the target and the vehicle, Rate of change,
Since the frequency of the sound radiated from the target or the reciprocal thereof is used, the calculation time for obtaining the analysis result can be shortened as compared with the target motion analysis method using only the XY coordinate system or the analysis coordinate system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の目標運動解析方法を実施する
ための目標運動解析装置の機能ブロック図である。
FIG. 1 is a functional block diagram of a target motion analysis device for carrying out a target motion analysis method according to an embodiment of the present invention.

【図2】目標運動解析方法における観測系及び運動系を
示す幾何学的説明図である。
FIG. 2 is a geometrical explanatory diagram showing an observation system and a motion system in the target motion analysis method.

【図3】従来の目標運動解析方法を実施するための目標
運動解析装置の機能ブロック図である。
FIG. 3 is a functional block diagram of a desired motion analysis device for carrying out a conventional desired motion analysis method.

【符号の説明】[Explanation of symbols]

12 方位情報算出
部 13 周波数情報算
出部 14 初期値算出部 15,17 座標変換部 16,16A 内部状態量推
定部
12 azimuth information calculation unit 13 frequency information calculation unit 14 initial value calculation unit 15, 17 coordinate conversion unit 16, 16A internal state amount estimation unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 目標から放射される音を、運動可能な航
走体に取り付けた受波器センサアレイで受信して該目標
の方位角を測定し、該方位角の測定結果である相対方位
角の観測量の時系列から該目標の状態量を推定する目標
運動解析方法において、 前記受波器センサアレイで受信した信号を入力して前記
相対方位角の観測量を時系列的に算出する方位情報算出
処理と、 前記相対方位角の観測量の時系列から、X−Y座標系に
おける前記目標の位置及び速度を該目標の運動を解析す
るための初期状態量として算出する初期値算出処理と、 前記初期状態量を、前記相対方位角の観測量と前記目標
の状態量とが線形の関係にある解析座標系における状態
量に変換する座標変換処理と、 前記解析座標系における状態量を前記目標の運動を解析
するための初期値とし、該目標の状態量の推定量を該解
析座標系において求める内部状態量推定処理とを、 順に施すことを特徴とする目標運動解析方法。
1. A sound bearing emitted from a target is received by a receiver sensor array attached to a movable vehicle to measure an azimuth angle of the target, and a relative azimuth which is a measurement result of the azimuth angle. In a target motion analysis method for estimating a state quantity of the target from a time series of angle observation amounts, a signal received by the receiver sensor array is input to calculate the relative azimuth angle observation amount in time series. An azimuth information calculation process and an initial value calculation process for calculating the position and velocity of the target in the XY coordinate system from the time series of the observed amount of the relative azimuth as an initial state amount for analyzing the motion of the target. A coordinate conversion process of converting the initial state quantity into a state quantity in an analytical coordinate system in which the observed quantity of the relative azimuth and the target state quantity have a linear relationship, and a state quantity in the analytical coordinate system. To analyze the movement of the target And the initial value, the target motion analysis method comprising applying an estimate of the state of the target and the internal state quantity estimation processing for obtaining in said analyzing coordinate system, in order.
【請求項2】 請求項1の目標運動解析方法において、 前記解析座標系における状態量は、前記目標の相対方
位、該目標の相対方位の変化率、該目標と前記航走体と
の距離の逆数、及び該距離に対する該距離変化率の割合
であることを特徴とする目標運動解析方法。
2. The target motion analysis method according to claim 1, wherein the state quantity in the analysis coordinate system includes a relative direction of the target, a change rate of the relative direction of the target, and a distance between the target and the vehicle. A target motion analysis method, which is a reciprocal and a ratio of the distance change rate to the distance.
【請求項3】 目標から放射される音を、運動可能な航
走体に取り付けた受波器センサアレイで受信して該目標
の方位角及び周波数をそれぞれ測定し、該方位角及び周
波数の測定結果である相対方位角の観測量及び周波数の
観測量の時系列から該目標の状態量を推定する目標運動
解析方法において、 前記受波器センサアレイで受信した信号を入力して前記
相対方位角の観測量及び周波数の観測量を時系列的に算
出する方位情報算出処理及び周波数情報算出処理と、 前記相対方位角の観測量及び周波数の観測量の時系列か
ら、X−Y座標系における前記目標の位置、速度、及び
該目標から放射される音の周波数又はその逆数を該目標
の運動を解析するための初期状態量として算出する初期
値算出処理と、 前記初期状態量を、前記相対方位角の観測量及び周波数
の観測量と前記目標の状態量とが線形の関係にある解析
座標系における状態量に変換する座標変換処理と、 前記解析座標系における状態量を前記目標の運動を解析
するための初期値とし、該目標の状態量の推定量を該解
析座標系において求める内部状態量推定処理とを、 順に施すことを特徴とする目標運動解析方法。
3. A sound emitted from a target is received by a receiver sensor array attached to a movable vehicle and the azimuth and frequency of the target are measured, and the azimuth and frequency are measured. In the target motion analysis method for estimating the state quantity of the target from the time series of the observed amount of relative azimuth and the observed amount of frequency, the relative azimuth angle is obtained by inputting the signal received by the receiver sensor array. From the time series of the azimuth information calculation process and the frequency information calculation process of calculating the observed amount and the observed amount of the frequency in time series, and the time series of the observed amount of the relative azimuth angle and the observed amount of the frequency, An initial value calculation process for calculating the position and velocity of the target, and the frequency of the sound emitted from the target or its reciprocal as the initial state amount for analyzing the motion of the target; View of the corner A coordinate conversion process of converting the amount of measurement of the surveying and the frequency and the state quantity of the target into a state quantity in the analysis coordinate system having a linear relationship, and for analyzing the movement of the target in the state quantity in the analysis coordinate system. A target motion analysis method, which is performed by sequentially performing an internal state quantity estimation process of obtaining an estimated quantity of the target state quantity in the analysis coordinate system as an initial value.
【請求項4】 請求項3の目標運動解析方法において、 前記解析座標系における状態量は、前記目標の相対方
位、該目標の相対方位の変化率、該目標と前記航走体と
の距離の逆数、該距離に対する該距離変化率の割合、及
び該目標から放射される音の周波数又はその逆数である
ことを特徴とする目標運動解析方法。
4. The target motion analysis method according to claim 3, wherein the state quantity in the analysis coordinate system includes a relative azimuth of the target, a change rate of the relative azimuth of the target, and a distance between the target and the vehicle. A target motion analysis method, which is an inverse number, a ratio of the distance change rate to the distance, and a frequency of a sound emitted from the target or an inverse number thereof.
JP6218709A 1994-09-13 1994-09-13 Target motion analysis method Expired - Lifetime JP2739054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6218709A JP2739054B2 (en) 1994-09-13 1994-09-13 Target motion analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6218709A JP2739054B2 (en) 1994-09-13 1994-09-13 Target motion analysis method

Publications (2)

Publication Number Publication Date
JPH0882663A true JPH0882663A (en) 1996-03-26
JP2739054B2 JP2739054B2 (en) 1998-04-08

Family

ID=16724206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6218709A Expired - Lifetime JP2739054B2 (en) 1994-09-13 1994-09-13 Target motion analysis method

Country Status (1)

Country Link
JP (1) JP2739054B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249593A (en) * 2009-04-14 2010-11-04 Hitachi Ltd Target motion analysis method, target motion analysis system, and program
CN105116377A (en) * 2015-08-18 2015-12-02 西安电子科技大学 An FDOA positioning method based on an HHT instantaneous energy spectrum
CN112816937A (en) * 2020-12-23 2021-05-18 中国船舶重工集团有限公司第七一0研究所 Helicopter scale estimation method and device based on fundamental frequency line spectrum azimuth angle change rate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228705A (en) * 1988-07-18 1990-01-30 Oki Electric Ind Co Ltd Object tracking system
JPH04198882A (en) * 1990-11-29 1992-07-20 Hitachi Ltd Analysis of target motion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228705A (en) * 1988-07-18 1990-01-30 Oki Electric Ind Co Ltd Object tracking system
JPH04198882A (en) * 1990-11-29 1992-07-20 Hitachi Ltd Analysis of target motion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249593A (en) * 2009-04-14 2010-11-04 Hitachi Ltd Target motion analysis method, target motion analysis system, and program
CN105116377A (en) * 2015-08-18 2015-12-02 西安电子科技大学 An FDOA positioning method based on an HHT instantaneous energy spectrum
CN112816937A (en) * 2020-12-23 2021-05-18 中国船舶重工集团有限公司第七一0研究所 Helicopter scale estimation method and device based on fundamental frequency line spectrum azimuth angle change rate

Also Published As

Publication number Publication date
JP2739054B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
Friemel et al. Relative performance of two-dimensional speckle-tracking techniques: normalized correlation, non-normalized correlation and sum-absolute-difference
JP4269623B2 (en) Blood flow visualization diagnostic device
EP2508915A2 (en) System, method, and filter for target tracking in cartesian space
CN110716203A (en) Time-frequency analysis and tracking method of passive sonar target
JPH0882663A (en) Analytical method of target motion
Cho et al. Modified gain pseudo-measurement filter design for radar target tracking with range rate measurement
CN112666519A (en) High-precision underwater target positioning method based on generalized second-order time delay difference
JP2003329771A (en) Tracking apparatus and tracking processing method
JPH03217901A (en) Identification device for system
JP3097471B2 (en) Tracking device
JPH10319108A (en) Bias error estimation device of sensor posture and position
JP2004144566A (en) Position measurement method for mobile station
JPH09133750A (en) Target motion analysis method
JP5012168B2 (en) Target state quantity estimation method
CN110749879B (en) Distributed target tracking method based on multi-observer speed measurement information
JPH07209068A (en) Sound source probing device
JPH07306251A (en) Target motion analyzing method
KR940007544A (en) Target prediction method
JP3333131B2 (en) Tracking device
JP2018063142A (en) Motion parameter estimation device, motion parameter estimation method and program
JPH1062508A (en) Target motion analysis method
JP3129388B2 (en) Target motion analysis method
JP3323415B2 (en) Target tracking apparatus and target tracking method
JP2004239678A (en) Apparatus and method for analyzing track of moving body
EP1216422A1 (en) Method and apparatus for extracting physical parameters from an acoustic signal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970415

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term