JPH0881818A - Polyvinyl alcohol-based fiber subject to ready fibrillation - Google Patents
Polyvinyl alcohol-based fiber subject to ready fibrillationInfo
- Publication number
- JPH0881818A JPH0881818A JP22033594A JP22033594A JPH0881818A JP H0881818 A JPH0881818 A JP H0881818A JP 22033594 A JP22033594 A JP 22033594A JP 22033594 A JP22033594 A JP 22033594A JP H0881818 A JPH0881818 A JP H0881818A
- Authority
- JP
- Japan
- Prior art keywords
- pva
- fiber
- graft copolymer
- degree
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、新規な容易にフィブリ
ル化可能なポリビニルアルコール(以下PVAと略す)
系繊維に関するものであり、1.0〜50mmに切断さ
れた後水中で容易にフィブリル化してパルプ状になり、
石綿代替としてセメント製品等の補強繊維として利用さ
れるほか、合繊紙原料として単独または木材パルプと混
抄されて良質な合繊紙を製造しうるPVA系易フィブリ
ル化繊維に関するものである。FIELD OF THE INVENTION The present invention relates to a novel easily fibrillizable polyvinyl alcohol (hereinafter abbreviated as PVA).
The present invention relates to a system fiber, and after being cut to 1.0 to 50 mm, it is easily fibrillated in water to form a pulp,
The present invention relates to a PVA-based easily fibrillated fiber which can be used as a reinforcing fiber for a cement product or the like as a substitute for asbestos, and can be used as a synthetic fiber raw material alone or mixed with wood pulp to produce a high quality synthetic fiber.
【0002】[0002]
【従来の技術】近年、地球環境の保全や天然資源の保護
のために、木材パルプの大量消費が考え直され、古紙の
再利用や合成パルプの利用が進められて、PVA繊維で
あるビニロンや、レーヨン、ポリプロピレン、ポリエス
テル、ポリエチレン等の合繊紙の需要は増大している。
また石綿の肺ガン原因説により石綿の使用制限が厳しく
なって、代替合成繊維であるビニロンやアクリル繊維の
需要も増大している。2. Description of the Related Art In recent years, in order to protect the global environment and protect natural resources, mass consumption of wood pulp has been reconsidered, recycled paper and recycled pulp have been promoted, and PVA fibers such as vinylon and Demand for synthetic paper such as rayon, polypropylene, polyester, polyethylene is increasing.
In addition, restrictions on the use of asbestos have become stricter due to the theory of lung cancer in asbestos, and demand for alternative synthetic fibers such as vinylon and acrylic fibers is also increasing.
【0003】しかし、これらの合成短繊維は天然の木材
パルプや石綿に比べて太すぎるため、紙の地合い(表面
性状)が悪かったり、スレートのグリーン(生)強度が
弱すぎるために、現在では木材パルプを混合するか、ま
たは特殊紙としての用途に限定されており、極細のフィ
ブリル化可能な合成繊維の開発が望まれている。However, since these synthetic short fibers are too thick as compared with natural wood pulp and asbestos, the texture of the paper (surface texture) is poor, and the green (raw) strength of the slate is too weak. The use of wood pulp is limited or its use as special paper is limited, and development of ultrafine fibrillizable synthetic fibers is desired.
【0004】合繊紙の品質向上のために合成繊維をフィ
ブリル化しようとする試みは古くから検討されており、
その中でも特にポリマーアロイの相分離挙動を利用して
フィブリル化を容易に行わしめる技術はよく知られてい
る。例えば特公昭49−10617号、特公昭50−3
2326号、特公昭51−17608号、特公昭51−
17609号等の各公報には、ポリアクリロニトリル
(以下PANと略す)を連続相とし、PVAにアクリロ
ニトリル(以下ANと略す)をグラフト共重合したもの
を独立相として繊維軸方向に配向させた繊維状物を切断
し、水分散系にて叩解した時、親水性のPVA部分の水
膨潤性により容易にフィブリル化が可能となり、良好な
合繊紙が得られる技術が開示されている。しかし、これ
らの一連の技術は、例えば特公昭51−17609号公
報中(第8頁第23行)に、「かかる一連の操作によっ
て得られる糸条は、PVA部分が島状となって、海成分
のAN系重合体中にスジ状に分散した2相構造繊維糸条
となる。」と明記されているように、AN系重合体を連
続相とする合成繊維の改質技術であり、繊維中に含まれ
るPVAの含有量がある値以上になると得られる繊維の
耐水性が低下したり、単糸間の膠着が生じ、さらに得ら
れた合繊紙の不透明性を損ない、抄紙時にはPVAの溶
出によって水系スラリーが起泡したり、廃水の汚染につ
ながる等の不都合な点が指摘されている。これらの現象
は、延伸、熱処理などの操作で繊維を構成するポリマー
の配向結晶化を進める工程において、連続相を形成する
ポリマーでは配向結晶化した高次構造は発現しやすい
が、独立相を形成するポリマーの配向結晶化は生じ難い
傾向にあり、基本的に水溶性であるPVAの結晶化が進
まずに水に溶出するためと推察される。Attempts to fibrillate synthetic fibers in order to improve the quality of synthetic paper have been studied for a long time.
Among them, a technique for facilitating fibrillation by utilizing the phase separation behavior of a polymer alloy is well known. For example, Japanese Patent Publication No. 49-10617 and Japanese Patent Publication No. 50-3
No. 2326, Japanese Patent Publication No. 17-17608, Japanese Patent Publication No. 51-
In each publication such as 17609, polyacrylonitrile (hereinafter abbreviated as PAN) is used as a continuous phase, and PVA is graft-copolymerized with acrylonitrile (hereinafter abbreviated as AN) as an independent phase and oriented in the fiber axis direction. A technique is disclosed in which, when a material is cut and beaten in an aqueous dispersion system, fibrillation can be easily performed due to the water swelling property of the hydrophilic PVA portion, and a good synthetic fiber can be obtained. However, a series of these techniques is disclosed in, for example, Japanese Patent Publication No. 51-17609 (page 8, line 23), "The yarn obtained by such a series of operations has an island-shaped PVA part, It is a technique for modifying synthetic fibers in which an AN polymer is used as a continuous phase. When the content of PVA contained in the fiber is more than a certain value, the water resistance of the obtained fiber is lowered, the single yarns are stuck together, and the opacity of the obtained synthetic fiber is impaired. It has been pointed out that there are inconveniences such as foaming of the aqueous slurry and pollution of wastewater. These phenomena are such that in the process of promoting oriented crystallization of the polymer that constitutes the fiber by operations such as drawing and heat treatment, the oriented phase crystallized higher-order structure easily appears in the polymer forming the continuous phase, but the independent phase is formed. It tends to be difficult for oriented crystallization of the polymer to occur, and it is presumed that the crystallization of PVA, which is basically water-soluble, does not proceed and elutes in water.
【0005】一方、PVAを連続相とする繊維におい
て、より水に膨潤しやすい成分を繊維中に独立相として
分散させておいて、切断された繊維を水中分散させて叩
解し、PVA系ミクロフィブリルを得る方法も古くから
知られている。例えば特公昭47−31376号公報に
おいては、完全ケン化PVAと部分ケン化PVAとを一
定の比率で混合し、通常の水溶液からの湿式紡糸によっ
て繊維化した後切断し、水中分散させて叩解してPVA
系フィブリルを得る方法が開示されている。該発明は二
種類のPVAのケン化度の違いによる水膨潤性の差を利
用したものであるが、実際には多量の部分ケン化PVA
を含有するために繊維からのPVAの溶出が問題とな
り、叩解、抄紙工程での泡立ちのために工業化は出来な
かった。On the other hand, in a fiber having PVA as a continuous phase, a component more swellable in water is dispersed as an independent phase in the fiber, and the cut fiber is dispersed in water and beaten to obtain PVA-based microfibrils. The method of obtaining is also known for a long time. For example, in Japanese Examined Patent Publication No. 47-31376, fully saponified PVA and partially saponified PVA are mixed at a fixed ratio, fiberized by wet spinning from an ordinary aqueous solution, then cut, dispersed in water and beaten. PVA
Methods for obtaining system fibrils are disclosed. The invention utilizes the difference in water swelling property due to the difference in saponification degree between two types of PVA, but in reality, a large amount of partially saponified PVA is used.
However, since PVA was contained in the fiber, elution of PVA from the fiber became a problem, and industrialization could not be achieved due to beating and foaming in the papermaking process.
【0006】[0006]
【発明が解決しようとする課題】合成繊維の中でもPV
A系繊維は親水基を有していて、天然のパルプである石
綿や木材パルプに近い優れた数々の特性を持ち、容易に
フィブリル化可能なPVA系繊維の出現が強く望まれて
いる。しかし現在ではPVAを連続相とするフィブリル
化繊維への要求は高まってきているが、PVA系易フィ
ブリル化繊維を得るには、上記の一連の発明において、
単に該グラフト共重合体にPVAをブレンドしたりし
て、PANに対するPVAの含有率を増大させて連続相
と独立相を逆転させるのみでは目的とする易フィブリル
化繊維を得ることができない。すなわち、ただ単にPV
Aを連続相とし、PANを独立相とするのみでは、PA
N相が水膨潤性に乏しいためにフィブリル化は容易では
ない。[Problems to be Solved by the Invention] PV among synthetic fibers
Since the A-based fibers have a hydrophilic group and have various excellent properties close to those of natural pulp such as asbestos and wood pulp, the appearance of PVA-based fibers that can be easily fibrillated is strongly desired. However, at present, the demand for fibrillated fibers containing PVA as a continuous phase is increasing, but in order to obtain PVA-based easily fibrillated fibers, in the above series of inventions,
The desired easily fibrillated fiber cannot be obtained simply by blending PVA with the graft copolymer to increase the content of PVA with respect to PAN to reverse the continuous phase and the independent phase. That is, just PV
If A is the continuous phase and PAN is the independent phase,
Fibrillation is not easy because the N phase is poor in water swelling.
【0007】以上のような状況に鑑み、本発明者らはP
VAを連続相とし、水中分散系での叩解によって容易に
フィブリルを形成し、しかも繊維中から水中に溶出する
成分がなくて起泡などの後工程上のトラブルのないPV
A系易フィブリル化繊維を開発すべく鋭意努力した結
果、本発明に至った。In view of the above situation, the present inventors
PV is used as a continuous phase with VA as a continuous phase to easily form fibrils by beating in a dispersion system in water, and there is no component that elutes from the fiber into water, so that there is no trouble in the subsequent process such as foaming.
As a result of earnest efforts to develop an A-based easily fibrillated fiber, the present invention has been achieved.
【0008】[0008]
【課題を解決するための手段】かくして本発明は、
(A)重合度1200以上、ケン化度90モル%以上の
PVA、(B)ポリアクリロニトリル系重合体および
(C)PVAにアクリロニトリルがグラフト共重合した
グラフト共重合体からなり、全重合体中のグラフト共重
合体(C)の割合が5〜50重量%であり、かつPVA
(A)とグラフト共重合体(C)中のPVA成分の和が
50〜90重量%であることを特徴とする繊維であり、
またグラフト共重合体(C)中のPVA成分が9〜67
重量%であるとより好ましく、さらにPVAを主成分と
する連続相の中にポリアクリロニトリルを主成分とする
独立相が均一に微分散されており、さらにポリアクリロ
ニトリルを主成分とする独立相中にPVAを主成分とす
る第三相が均一に分散されていて、少なくとも三相以上
の構造を形成していることを特徴とするPVA系易フィ
ブリル化繊維である。The present invention thus provides
(A) PVA having a polymerization degree of 1200 or more and a saponification degree of 90 mol% or more, (B) a polyacrylonitrile-based polymer, and (C) a graft copolymer in which acrylonitrile is graft-copolymerized with PVA. The proportion of the graft copolymer (C) is 5 to 50% by weight, and PVA
A fiber characterized in that the sum of (A) and the PVA component in the graft copolymer (C) is 50 to 90% by weight,
Further, the PVA component in the graft copolymer (C) is 9 to 67.
% Is more preferable, and the independent phase containing polyacrylonitrile as the main component is uniformly finely dispersed in the continuous phase containing PVA as the main component, and further, in the independent phase containing polyacrylonitrile as the main component. The PVA-based easily fibrillated fiber is characterized in that a third phase containing PVA as a main component is uniformly dispersed to form a structure having at least three phases.
【0009】上記組成からなり、上記構造を有する本発
明繊維は、切断された後水中分散させて叩解操作で容易
にフィブリル化が可能であり、しかも水中への溶出成分
がなくて起泡などのトラブルもなく、良質なパルプ状物
質を得ることができる。かかるパルプ状物質は微細でか
つ高強度であり、合繊紙やスレートなどのセメント製品
の補強繊維としての石綿や木材パルプの良好な代替材料
として有用なものである。The fiber of the present invention having the above-mentioned composition and having the above-mentioned structure can be easily fibrillated by a beating operation by being dispersed in water after being cut, and there is no elution component in water and foaming etc. A good quality pulp-like substance can be obtained without any trouble. Such a pulp-like substance is fine and has high strength, and is useful as a good substitute material for asbestos or wood pulp as a reinforcing fiber for cement products such as synthetic paper and slate.
【0010】本発明繊維の連続相は、天然パルプのセル
ロースと同じ親水性の水酸基を規則正しく有し、かつ分
子が延伸配向結晶化した際水酸基同志の分子間水素結合
により強固な結晶構造を形成することができる重合度1
200以上、ケン化度90モル%以上のPVA(A)で
なければならない。得られるフィブリルの耐水性、強度
の点で用いるPVAの重合度、ケン化度は高い方が好ま
しく、重合度が1400以上、かつケン化度が98モル
%以上であるとより好ましく、重合度が1600以上、
かつケン化度が99.5モル%以上であるとさらに好ま
しい。The continuous phase of the fiber of the present invention has regularly the same hydrophilic hydroxyl groups as the cellulose of natural pulp, and when the molecules are stretch-oriented and crystallized, a strong crystal structure is formed by the intermolecular hydrogen bonds of the hydroxyl groups. Polymerization degree of 1
It must be 200 or more and PVA (A) having a saponification degree of 90 mol% or more. From the viewpoint of water resistance and strength of the obtained fibrils, the degree of polymerization and saponification of PVA used are preferably high, and the degree of polymerization is more preferably 1400 or more and the degree of saponification is more preferably 98 mol% or more, and the degree of polymerization is Over 1600,
Further, the saponification degree is more preferably 99.5 mol% or more.
【0011】本発明繊維の連続相に分散される独立相
は、連続相であるPVAの相分離挙動、繊維の耐水性、
強度の点でポリアクリロニトリル(PVAと略記する)
系ポリマー(B)が主成分でなければならない。他のポ
リマーの場合、連続相を形成しているPVAとの相溶性
の関係より、フィブリル化が困難であり、またフィブリ
ル化したとしても得られたフィブリルの耐水性、強度が
不満足である。本発明に用いるPAN系ポリマーは、ア
クリロニトリルの単独重合体とともに、メチルアクリレ
ート、エチルアクリレート、メチルメタクリレート、な
どのアクリル酸エステル、酢酸ビニルなどのビニルエス
テル、アクリル酸、メタクリル酸、スルホン酸変性モノ
マーなどのイオン性モノマーなどが、30モル%以下の
割合で共重合されたPAN系コポリマーも本発明のPA
N系ポリマー(B)として用いることができる。The independent phase dispersed in the continuous phase of the fiber of the present invention is the phase separation behavior of PVA which is the continuous phase, the water resistance of the fiber,
Polyacrylonitrile (abbreviated as PVA) in terms of strength
The system polymer (B) must be the main component. In the case of other polymers, it is difficult to fibrillate due to the compatibility with PVA forming the continuous phase, and the water resistance and strength of the fibrils obtained even if fibrillated are unsatisfactory. The PAN-based polymer to be used in the present invention includes acrylic acid esters such as methyl acrylate, ethyl acrylate, and methyl methacrylate, vinyl esters such as vinyl acetate, acrylic acid, methacrylic acid, and sulfonic acid-modified monomers together with a homopolymer of acrylonitrile. A PAN-based copolymer obtained by copolymerizing an ionic monomer or the like at a ratio of 30 mol% or less is also a PA of the present invention.
It can be used as the N-based polymer (B).
【0012】本発明繊維において上記連続相のPAN系
ポリマー(A)と独立相のPAN系ポリマー(B)に加
えて、PVAにアクリロニトリルがグラフト共重合した
グラフトコポリマー(C)を含有せしめることが重要な
ポイントである。グラフトポリマー(C)は、上記連続
相や独立相の一部に入り込んで連続相と独立相の相溶性
を向上させるとともに、PAN系ポリマー(B)を主成
分とする独立相の中にPAN系ポリマー(A)とグラフ
トポリマー(C)中のPVAを主成分とする第3の相を
形成する上で極めて重要な役割を果たす。本発明繊維を
水中で叩解する場合、PAN系ポリマー(B)の中に分
散形成されているPVAを主成分とする第3の相が水に
より膨潤し、これが引き金となって、独立相であるPA
N系ポリマー(B)相を膨潤させ、ひいては繊維全体を
分割フィブリル化させる。In the fiber of the present invention, it is important that PVA contains a graft copolymer (C) obtained by graft copolymerizing acrylonitrile with PVA, in addition to the continuous phase PAN polymer (A) and the independent phase PAN polymer (B). That's the point. The graft polymer (C) improves the compatibility between the continuous phase and the independent phase by penetrating into the continuous phase or a part of the independent phase, and the PAN-based polymer is contained in the independent phase containing the PAN-based polymer (B) as a main component. It plays a very important role in forming the third phase containing PVA in the polymer (A) and the graft polymer (C) as a main component. When the fiber of the present invention is beaten in water, the third phase mainly composed of PVA dispersed in the PAN-based polymer (B) swells with water, which triggers and is an independent phase. PA
The N-based polymer (B) phase is swollen, and thus the entire fiber is divided into fibrils.
【0013】グラフトポリマー(C)がこのような3相
の繊維構造を形成させ、水分散時のフィブリル化の引き
金となるためには、全重合体中の(C)の割合が5〜5
0重量%であり、かつPVA系ポリマー(A)とグラフ
トポリマー(C)中のPVA系成分の和すなわち全重合
体の全PVAが50〜90重量%(すなわち全重合体中
の全PAN系ポリマーが10〜50重量%)でなければ
ならない。(C)が5%未満の場合はPVAとPAN系
ポリマーの相溶性向上効果が小さく、PAN系ポリマー
の独立相の中にPVAを主成分とする第3の相を形成す
ることができない。また(C)が50重量%を越えると
相溶性がよくなって(B)が部分的に連続相(すなわち
(A)が部分的に独立相)になり、繊維構造の制御が困
難となり、本発明の目的とするPVA系易フィブリル化
性繊維を得ることができない。また全重合体中の全PV
Aが50%未満(すなわち全PAN系ポリマーが50%
を越える)であると、(A)が連続相とならず、本発明
の目的とするPVA系易フィブリル化性繊維を得ること
ができない。全重合体中の全PVAが90%を越える
(すなわち全PAN系ポリマーが10%未満である)
と、PAN系ポリマーが少なく、(A)の連続相が強固
となり過ぎて分割フィブリル化ができない。In order that the graft polymer (C) forms such a three-phase fiber structure and triggers fibrillation during water dispersion, the proportion of (C) in the total polymer is 5 to 5.
0% by weight, and the sum of the PVA-based polymer (A) and the PVA-based components in the graft polymer (C), that is, the total PVA of all polymers is 50 to 90% by weight (that is, the total PAN-based polymers in all the polymers). Of 10 to 50% by weight). If (C) is less than 5%, the effect of improving the compatibility between PVA and the PAN-based polymer is small, and the third phase containing PVA as the main component cannot be formed in the independent phase of the PAN-based polymer. Further, when (C) exceeds 50% by weight, the compatibility is improved and (B) becomes a partially continuous phase (that is, (A) is a partially independent phase), making it difficult to control the fiber structure. It is not possible to obtain the PVA-based easily fibrillating fiber that is the object of the invention. In addition, all PV in all polymers
A is less than 50% (that is, all PAN-based polymers are 50%
(A) is not satisfied, (A) does not form a continuous phase, and the PVA-based easily fibrillizable fiber aimed at by the present invention cannot be obtained. The total PVA in all polymers exceeds 90% (that is, the total PAN-based polymer is less than 10%).
Then, the amount of PAN-based polymer is small, and the continuous phase of (A) becomes too strong, so that split fibrillation cannot be performed.
【0014】なお、グラフトポリマー(C)におけるP
VAの含有量が9重量%より少ないと、独立相の水膨潤
性が低下し、本発明が目的とする易フィブリル化性が低
下する傾向を示し、67重量%より多いと、独立相形成
能や独立相の分散性がわるくなり、目的とする易フィブ
リル化性が低下する傾向を示すので、(C)におけるP
VAの含有量が9〜67重量%であると、本発明繊維の
易フィブリル化性を確保し易いので好ましい。(C)に
おけるPVA含量が18〜45重量%であるとさらに好
ましい。P in the graft polymer (C)
When the content of VA is less than 9% by weight, the water swelling property of the independent phase is lowered, and the tendency toward fibrillation which is the object of the present invention tends to be lowered. When it is more than 67% by weight, the independent phase forming ability is increased. And the dispersibility of the independent phase becomes poor, and the desired fibrillation property tends to decrease, so P in (C)
When the content of VA is 9 to 67% by weight, it is easy to secure the easily fibrillating property of the fiber of the present invention, which is preferable. It is more preferable that the PVA content in (C) is 18 to 45% by weight.
【0015】次に、本発明によるかかるPVA系易フィ
ブリル化繊維は以下の方法で製造可能である。すなわ
ち、(A)重合度1200以上、ケン化度90モル%以
上のPVA系重合体、(B)PAN系重合体および
(C)PVAにアクリロニトリルがグラフト共重合した
グラフト共重合体からなり、全重合体中のグラフト共重
合体(C)の割合が5〜50重量%であり、かつPVA
(A)とグラフ共重合体(C)中のPVA成分の和が5
0〜90重量%であるブレンド物をジメチルスルホキサ
イド(以下DMSOと略す)などの共通溶媒に均一に溶
解した後、湿式法または乾湿式法にて紡糸し、凝固、乾
燥させ、目的に応じて乾燥前後で延伸して、PVAを主
成分とする連続相中のポリマーを高度に配向結晶化させ
ると共に、該連続相の中に微分散したPANを主成分と
する独立相および該独立相中に均一分散したPVAを主
成分とする第三相の繊維軸方向に高度に配向させること
により本発明のPVA系易フィブリル化繊維を製造する
ことができる。Next, the PVA-based easily fibrillated fiber according to the present invention can be produced by the following method. That is, (A) a PVA-based polymer having a polymerization degree of 1200 or more and a saponification degree of 90 mol% or more, (B) a PAN-based polymer and (C) a graft copolymer obtained by graft-copolymerizing acrylonitrile with PVA, The proportion of the graft copolymer (C) in the polymer is 5 to 50% by weight, and PVA
The sum of the PVA component in (A) and the graph copolymer (C) is 5
A blend of 0 to 90% by weight is uniformly dissolved in a common solvent such as dimethyl sulfoxide (hereinafter abbreviated as DMSO), and then spun by a wet method or a dry-wet method, coagulated and dried, depending on the purpose. And stretching before and after drying to highly orientate and crystallize the polymer in the continuous phase containing PVA as a main component, and the independent phase containing PAN as a main component finely dispersed in the continuous phase and the independent phase. The PVA-based easily fibrillated fiber of the present invention can be produced by highly orienting it in the axial direction of the fiber of the third phase containing PVA as the main component uniformly dispersed therein.
【0016】以下本発明繊維の製造法をさらに詳細に述
べる。先ず本発明によるPVA系易フィブリル化繊維の
フィブリル化の核となる独立相の主要成分であるPVA
とアクリロニトリル(ANと略す)のグラフト共重合体
の製造方法について述べる。なお該グラフト共重合体の
製法に関しては特公昭48−38790号公報、特公昭
49−5621号公報、特公昭49−11471号公
報、特公昭51−583号公報などに記載されている。
該グラフト共重合体に用いるPVAはフィブリル化の際
の核となる水膨潤性やグラフト反応性、繊維にした時の
耐水性などの点から、重合度500以上、ケン化度80
モル%以上が望ましく、連続相となるPVAと同一のも
のを使用してもよいが、本発明のPVAを連続相となる
繊維においては、できれば連続相に使用するPVAより
も重合度、ケン化度共に若干小さめのものを使用するこ
とが望ましい。しかし重合度500以下またはケン化度
80モル%以下のPVAを使用した場合には、ANをグ
ラフト重合した際に、たとえばANモノマーの反応率を
50%とした場合には約25%のPVAが未反応のホモ
ポリマーとして残るために、紡糸時に膠着を引き起こし
たり、フィブリル化時に泡を発生させる等の不都合を生
じさせる懸念がある。The method for producing the fiber of the present invention will be described in more detail below. First, PVA which is the main component of the independent phase which is the core of fibrillation of the PVA-based easily fibrillated fiber according to the present invention
And a method for producing a graft copolymer of acrylonitrile (abbreviated as AN) will be described. The method for producing the graft copolymer is described in JP-B-48-38790, JP-B-49-5621, JP-B-49-11471 and JP-B-51-583.
The PVA used in the graft copolymer has a degree of polymerization of 500 or more and a degree of saponification of 80 or more from the viewpoint of water swellability which is a core at the time of fibrillation, graft reactivity, and water resistance when formed into fibers.
It is desirable to use the same mol% or more as the PVA as the continuous phase, but in the fiber as the continuous phase of the PVA of the present invention, the degree of polymerization and saponification are preferably higher than those of the PVA used in the continuous phase. It is desirable to use a slightly smaller one. However, when PVA having a polymerization degree of 500 or less or a saponification degree of 80 mol% or less is used, about 25% of PVA is obtained when AN is graft-polymerized, for example, when the reaction rate of AN monomer is 50%. Since it remains as an unreacted homopolymer, there is a risk of causing inconvenience such as causing sticking during spinning and generating bubbles during fibrillation.
【0017】該グラフト共重合体中のPVAの含有量は
9〜67重量%が好ましいが、この組成範囲とするため
には、ANモノマーの反応率やPANホモポリマーの生
成を考慮した上で、初期重量仕込み比でANモノマーを
PVAに対して0.5〜10.0倍量にすることが好ま
しい。PVAを連続相とする本発明においては得られた
グラフト共重合体組成はPAN成分が多い方が好まし
く、ANモノマーの反応率やANホモポリマーの生成を
考慮した更に好ましい初期重量仕込み比はANモノマー
をPVAに対して1.5〜5倍量とするThe content of PVA in the graft copolymer is preferably 9 to 67% by weight. To achieve this composition range, the reaction rate of AN monomer and the formation of PAN homopolymer are taken into consideration. It is preferable that the amount of the AN monomer is 0.5 to 10.0 times the amount of PVA in the initial weight charging ratio. In the present invention in which PVA is used as the continuous phase, the graft copolymer composition obtained preferably has a large PAN component, and a more preferable initial weight charging ratio in consideration of the reaction rate of AN monomer and the formation of AN homopolymer is AN monomer. Is 1.5 to 5 times the amount of PVA
【0018】また該グラフト共重合体の製造において、
ANモノマーの一部を他のビニル系モノマーすなわち酢
酸ビニル、アクリル酸、アクリル酸メチル、アクリル酸
エチルなどに代替することも可能であり、一般にAN以
外のモノマーは全モノマー量に対して25重量%以内に
止めることが望ましい。該グラフト共重合体は溶液重合
法で得られ、この際用いられる溶剤としてはDMSO、
ジメチルホルムアミド(以下DMFと略す)、ジメチル
アセトアミド、ハロゲン化亜鉛水溶液、ロダン酸カリウ
ム水溶液等が挙げられるが、得られたグラフト共重合体
の溶液安定性および紡糸工程での取扱い性の点で、DM
SOが最も好ましく、かかる良溶媒で均一に溶解された
紡糸原液から得られた繊維は高次構造の形成が容易であ
り、易フィブリル化性、耐水性、強度等の点で優れた繊
維が得易い。In the production of the graft copolymer,
It is also possible to replace a part of the AN monomer with another vinyl-based monomer, that is, vinyl acetate, acrylic acid, methyl acrylate, ethyl acrylate, etc. In general, the monomer other than AN is 25% by weight based on the total amount of the monomer. It is desirable to stop within. The graft copolymer is obtained by a solution polymerization method, and the solvent used at this time is DMSO,
Examples thereof include dimethylformamide (hereinafter abbreviated as DMF), dimethylacetamide, an aqueous solution of zinc halide, an aqueous solution of potassium rhodanate, and the like. In terms of solution stability of the obtained graft copolymer and handleability in the spinning step, DM
SO is most preferable, and the fiber obtained from the spinning dope uniformly dissolved in such a good solvent is easy to form a higher-order structure, and a fiber excellent in fibrillation resistance, water resistance, strength, etc. is obtained. easy.
【0019】次に該グラフト共重合体の具体的な製造方
法について示す。まずPVAを前述の溶剤に1〜10重
量%の範囲で5〜80℃において加熱溶解し、均一溶液
になったところで45〜60℃に保って所定量のANな
どのモノマーを撹拌しながら徐々に加え、さらに所定量
の連鎖移動剤を添加する。次にグラフト重合の進行状況
を見ながら所定量の重合触媒を少しずつ添加して所定時
間撹拌を継続して重合を進め、最終的には連鎖移動剤を
過剰に加えて重合を停止する。Next, a specific method for producing the graft copolymer will be described. First, PVA is heated and dissolved in the above-mentioned solvent in the range of 1 to 10% by weight at 5 to 80 ° C, and when a uniform solution is obtained, the temperature is kept at 45 to 60 ° C and a predetermined amount of monomer such as AN is gradually stirred. In addition, a predetermined amount of chain transfer agent is added. Next, while observing the progress of the graft polymerization, a predetermined amount of the polymerization catalyst is added little by little, stirring is continued for a predetermined time to proceed with the polymerization, and finally the chain transfer agent is added in excess to terminate the polymerization.
【0020】該グラフト重合反応に用いる触媒として
は、過硫酸アンモニウム(APS)、過硫酸カリウム
(KPS)、アゾビスバレロニトリル、アゾビスイソブ
チニトリル、過硫化ベンゾイル等を用いることができる
が、APSまたはKPSが好適である。触媒の添加量は
モノマーに対して0.01〜3.0重量%が好ましい。
また該グラフト重合反応に用いる連鎖移動剤としては、
ドデシルメルカプタン(DM)、チオグリコール酸、ス
テアリルメルカプタン等を用いることができるが、DM
が好適であり、使用量はANモノマーに対して0.5〜
5.0重量%が好ましい。As the catalyst used in the graft polymerization reaction, ammonium persulfate (APS), potassium persulfate (KPS), azobisvaleronitrile, azobisisobutynitrile, benzoyl persulfate and the like can be used. KPS is preferred. The addition amount of the catalyst is preferably 0.01 to 3.0% by weight with respect to the monomer.
Further, as the chain transfer agent used in the graft polymerization reaction,
Dodecyl mercaptan (DM), thioglycolic acid, stearyl mercaptan, etc. can be used, but DM
Is preferred, and the amount used is 0.5 to AN monomer.
5.0% by weight is preferred.
【0021】重合時間は重合温度や触媒、連鎖移動剤、
ANモノマーの量によっても異なるが、一般には1〜2
0時間であり、特に反応系のゲル化を防ぐにはANモノ
マーの転化率の制御が重要である。即ち、経済的にはA
Nモノマーの転化率は100%まで追い込むのが理想的
であるが、ゲル化を防止するには転化率が30〜80%
の段階で重合を停止させることが好ましい。重合が完了
した該グラフト共重合体の溶液は別途用意されたPVA
の溶液及び必要に応じて別途溶解したPAN系ポリマー
の溶液と混合されて紡糸原液に供されるが、グラフト共
重合体が含有されるため混合紡糸原液は極めて安定であ
り、40〜80℃で1〜2日放置しても安定で相分離し
ない。The polymerization time depends on the polymerization temperature, catalyst, chain transfer agent,
Generally 1-2 depending on the amount of AN monomer.
It is 0 hours, and it is particularly important to control the conversion rate of the AN monomer in order to prevent gelation of the reaction system. That is, economically A
Ideally, the conversion rate of N monomer should be 100%, but in order to prevent gelation, the conversion rate is 30-80%.
It is preferable to terminate the polymerization at the stage of. A solution of the graft copolymer, which has been completely polymerized, is prepared separately from PVA.
The mixed spinning dope is very stable because it contains a graft copolymer, and is mixed at 40-80 ° C. Stable and no phase separation even if left for 1 to 2 days.
【0022】得られたグラフト共重合体溶液中には未反
応のANモノマー以外に未反応のホモPVAやグラフト
し得なかったホモのPANを含有する。これらの含有率
は反応原液よりポリマー分をメタノールで再沈させた
後、アセトン、DMF、熱水で別々にソクスレー抽出す
ることによって定量化することができる。即ち、アセト
ンでは未反応ANモノマーのみを除去でき、DMFでは
ANモノマーとホモPANを、熱水ではANモノマーと
未反応ホモPVAを抽出できるので、これらからグラフ
ト共重合体の収量を算出することができる。反応原液中
に含有される未反応ANモノマーは、そのまま紡糸原液
中に含有されたまま湿式または乾湿式紡糸された場合、
凝固浴に放出されて回収することは可能である。しかし
その有毒性より、出来れば紡糸前の反応原液を加熱減圧
して追い出すほうが望ましい。以上述べてきた該グラフ
ト共重合体は本発明によるPVA系易フィブリル化繊維
の構成上必須成分であり、ただ単にPVAとPANをブ
レンドしただけの系では紡糸原液の安定性が悪くて相分
離が生じ易く、従って紡糸調子も悪くて断糸しやすく、
さらに繊維断面写真観察の結果、独立相の分布は不均一
であり、延伸過程でも毛羽が生じて工程通過性は極めて
悪くなる。The resulting graft copolymer solution contains unreacted homo-PVA and non-graftable homo-PAN in addition to the unreacted AN monomer. These contents can be quantified by reprecipitating the polymer content from the reaction stock solution with methanol and then separately performing Soxhlet extraction with acetone, DMF, and hot water. That is, since only unreacted AN monomer can be removed with acetone, AN monomer and homo-PAN can be extracted with DMF, and AN monomer and unreacted homo-PVA can be extracted with hot water, the yield of the graft copolymer can be calculated from them. it can. When the unreacted AN monomer contained in the reaction stock solution is wet- or dry-wet spun as it is contained in the spinning stock solution,
It is possible to release it in the coagulation bath for recovery. However, because of its toxicity, it is preferable to heat and decompress the reaction stock solution before spinning if possible. The above-mentioned graft copolymer is an essential component in the constitution of the PVA-based easily fibrillated fiber according to the present invention, and in a system in which PVA and PAN are simply blended, the stability of the spinning dope is poor and phase separation occurs. It is easy to occur, so the spinning condition is bad and it is easy to break the thread,
Furthermore, as a result of observing the cross section of the fiber, the distribution of the independent phase is non-uniform, and fluff occurs during the drawing process, resulting in extremely poor processability.
【0023】本発明による易フィブリル化繊維の連続相
を形成するPVAは重合度1200以上、ケン化度90
モル%以上、好ましくは98モル%以上であり、得られ
た繊維およびフィブリルの力学的性質、耐水性および該
グラフト共重合体との相分離挙動の点からは、出来る限
り高重合度で高ケン化度のものが好ましく、重合度15
00以上、ケン化度99.5モル%以上であるとさらに
好ましい。The PVA forming the continuous phase of the easily fibrillated fiber according to the present invention has a degree of polymerization of 1200 or more and a degree of saponification of 90.
Mol% or more, preferably 98 mol% or more, and in view of mechanical properties of the obtained fibers and fibrils, water resistance, and phase separation behavior with the graft copolymer, the degree of polymerization is as high as possible and the degree of ken is as high as possible. Degree of polymerization is preferably 15 and degree of polymerization is 15.
It is more preferable that the saponification degree is 00 or more and the saponification degree is 99.5 mol% or more.
【0024】本発明において該グラフト反応の状況、即
ちANモノマーの反応率の如何によって、独立相を形成
すべきPAN成分が不足する場合には、別途用意された
ポリアクリロニトリル(共)重合体を追加添加して全P
AN成分が10〜50重量%になるように調整する。In the present invention, a polyacrylonitrile (co) polymer prepared separately is added when the PAN component to form an independent phase is insufficient depending on the condition of the graft reaction, that is, the reaction rate of the AN monomer. Add all P
The AN component is adjusted to be 10 to 50% by weight.
【0025】該PVAおよび必要に応じて添加されるポ
リアクリロニトリル(共)重合体は該グラフト共重合体
溶液の溶媒と同一の溶媒で加熱溶解され、該グラフト共
重合体溶液に混合されて紡糸原液となるところに特徴が
ある。溶解濃度はPVAの重合度やケン化度によって異
なるが、3〜30重量%が好ましく、混合された紡糸原
液の粘度によって支配される。すなわち、一般に高重合
度PVAが用いられる場合には低濃度とすべきであり、
低重合度PVAの場合には高濃度とすべきであって、紡
糸原液粘度が紡糸される温度において数十〜数百ポイズ
に調整されるべきである。The PVA and the polyacrylonitrile (co) polymer optionally added are heated and dissolved in the same solvent as the solvent of the graft copolymer solution and mixed with the graft copolymer solution to prepare a spinning dope. There is a feature in that. Although the dissolved concentration varies depending on the degree of polymerization or saponification of PVA, it is preferably 3 to 30% by weight, and is governed by the viscosity of the mixed spinning dope. That is, generally, when a high degree of polymerization PVA is used, it should be a low concentration,
In the case of low degree of polymerization PVA, the concentration should be high, and the viscosity of the spinning dope should be adjusted to tens to hundreds of poise at the spinning temperature.
【0026】本発明によるPVA系易フィブリル化繊維
の紡糸は凝固過程を経る湿式法または乾湿式法によって
実施されるべきで、凝固条件の制御によってはじめてフ
ィブリル化を容易にする好ましい相分離構造が発現され
る。紡糸口金と凝固浴との間に0.1〜数cmのエアギ
ャップを設けた乾湿式法は、特に紡糸原液と凝固浴の温
度差が大きい場合には有効であるが、原液濃度が低くて
低粘度の原液を紡糸する場合には不利である。一方紡糸
口金が凝固浴と接触している湿式法は、紡糸原液と凝固
浴の温度差が大きい場合には、口金からの吐出時に原液
が凝固浴の温度の影響を受けやすく、粘度斑すなわち吐
出斑を生じ易く、工夫を要するが、低粘度原液が紡糸可
能であり、また口金の孔数が多くても膠着なしに紡糸可
能であるなどの利点を有している。かかる湿式法か乾湿
式法かの選択は原液の状態や紡糸条件によって判断され
るべきで、本発明のPVA系易フィブリル化繊維の相分
離構造や生産性にも影響を与える。The spinning of the PVA-based easily fibrillated fiber according to the present invention should be carried out by a wet method or a dry-wet method that undergoes a coagulation process, and a preferable phase separation structure that facilitates fibrillation is not realized until the coagulation condition is controlled. To be done. The dry-wet method in which an air gap of 0.1 to several cm is provided between the spinneret and the coagulation bath is effective especially when the temperature difference between the spinning dope and the coagulation bath is large, but the concentration of the dope is low. It is disadvantageous when spinning a low viscosity stock solution. On the other hand, in the wet method in which the spinneret is in contact with the coagulation bath, when the temperature difference between the spinning stock solution and the coagulation bath is large, the stock solution is easily affected by the temperature of the coagulation bath at the time of discharging from the spinneret, resulting in viscosity unevenness Although it is likely to cause spots and requires some ingenuity, it has the advantages that a low-viscosity stock solution can be spun and that spinning can be performed without sticking even if the number of holes in the die is large. The selection of such a wet method or a dry-wet method should be judged depending on the state of the stock solution and the spinning conditions, and also affects the phase separation structure and productivity of the PVA-based easily fibrillated fiber of the present invention.
【0027】原液が吐出される口金は通常のPVAの紡
糸の際に用いられているものと同様の寸法のものを使用
することができる。繊維構造および相分離構造の発現の
ためには凝固浴の選択は特に重要であり、ボウ硝水溶
液、カ性ソーダ水溶液、ボウ硝とカ性ソーダの混合水溶
液などを用いることができるが、本発明においては特に
ボウ硝水溶液が好適である。さらに繊維構造および相分
離構造の発現の上からは、凝固浴温度やドラフト比の選
択も重要であり、特に高強度高弾性率のPVA繊維を得
ようとする場合には、吐出速度に対する凝固浴上がりの
巻取速度の比であるドラフト比を1.0以下の逆ドラフ
ト側に持っていき、凝固時に高分子鎖を十分収縮させ
て、しかる後に延伸によって高分子鎖を繊維軸に沿って
出来る限り配向させることが重要である。The spinneret from which the undiluted solution is discharged may be of the same size as that used in ordinary PVA spinning. The selection of the coagulation bath is particularly important for the expression of the fiber structure and the phase separation structure, and an aqueous solution of Glauber's salt, an aqueous solution of caustic soda, an aqueous solution of a mixture of glauber's salt and caustic soda can be used. In particular, an aqueous solution of Glauber's salt is particularly preferable. Further, from the viewpoint of developing the fiber structure and the phase separation structure, it is important to select the coagulation bath temperature and the draft ratio. Especially, when the PVA fiber having high strength and high elastic modulus is to be obtained, the coagulation bath with respect to the discharge speed is The draft ratio, which is the ratio of the ascending winding speed, is brought to the reverse draft side of 1.0 or less so that the polymer chain is sufficiently shrunk during solidification, and then the polymer chain can be formed along the fiber axis by stretching. It is important to orient as long as possible.
【0028】かかる方法にて固化された糸条体に高強度
高弾性率を付与するための繊維構造や易フィブリル化の
ための相分離構造を発現せしめるためには高分子鎖や独
立相を繊維軸方向に配向させる必要があり、適当な洗
浄、乾燥、延伸、熱固定工程を経る必要がある。まず延
伸工程で障害となる無機塩や溶媒を除去する目的で、膨
潤剤でもある水で十分洗浄して溶剤を置換した後、さら
に残存溶媒や膨潤剤を除去するために加熱乾燥される。
乾燥工程で熱や時間をかけすぎるとPVAやPANの結
晶化が進み、後の延伸工程に悪影響を与えるので効率的
乾燥が重要である。延伸は乾燥前の膨潤状態で液体浴中
で行われる湿延伸と乾燥後の熱風または熱板による乾熱
延伸とに大別されるが、両者を組み合わせることも有効
であり、通常全体で3〜20倍に引き伸ばされることが
望ましい。易フィブリル化を強調したい場合には湿延伸
を主にして乾熱延伸を控え目にしたほうが良く、一方高
強度高弾性率および耐熱水性を希望する場合には乾熱延
伸を主とすることが好ましい。最後に結晶化を完遂さ
せ、寸法安定性などを発現させる目的で、乾熱延伸温度
よりも若干高い温度で熱固定が行われるが、易フィブリ
ル化のために熱固定条件は出来る限り温和なほうが良
い。In order to develop a fiber structure for imparting high strength and high elastic modulus or a phase-separated structure for facilitating fibrillation to the filament solidified by such a method, a polymer chain or an independent phase is added to the fiber. It is necessary to orient in the axial direction, and appropriate washing, drying, stretching and heat setting steps are required. First, for the purpose of removing an inorganic salt and a solvent that are obstacles in the stretching step, the solvent is sufficiently washed with water which is also a swelling agent to replace the solvent, and then heat drying is performed to remove a residual solvent and a swelling agent.
If too much heat or too much time is used in the drying step, crystallization of PVA or PAN will proceed, which will adversely affect the subsequent stretching step, so efficient drying is important. Stretching is roughly divided into wet stretching performed in a liquid bath in a swollen state before drying and dry heat stretching with hot air or a hot plate after drying, but it is also effective to combine both and usually 3 to It is desirable to be stretched 20 times. When it is desired to emphasize easy fibrillation, it is better to refrain from dry heat stretching mainly by wet stretching, while dry heat stretching is preferred mainly when high strength and high elastic modulus and hot water resistance are desired. . Finally, for the purpose of completing crystallization and expressing dimensional stability, heat setting is performed at a temperature slightly higher than the dry heat drawing temperature, but the heat setting conditions should be as mild as possible for easy fibril formation. good.
【0029】本発明によるPVA系繊維は、さらに1.
0〜50mmのカット長に切断されたのち、水中に分散
され、十分に膨潤させた後ミキサー、リファイナー、ビ
ーターなどの装置によって叩解すると、容易に繊維軸方
向に沿って微細に分散され、フィブリル化する。さらに
フィブリル間の毛羽が少ないことから、フィブリルが毛
玉状に絡まることもなくきれいに分散する。このことが
本発明易フィブリル化繊維の大きな特長である。さらに
その親水性の故にパルプ状にきれいに分散して、合繊紙
などの各種材料の原料繊維やセメント製品などの補強繊
維として優れた性能を発揮する点である。本発明による
PVA系易フィブリル化繊維はヤーンまたはトウとして
連続的にエンドレスに生産可能であり、通常の合成繊維
用のカッターで各種のカット長に切断可能であるが、こ
の時点で分割、フィブリル化が生じないことが工程通過
性上重要である。The PVA fiber according to the present invention further comprises 1.
After being cut to a cut length of 0 to 50 mm, it is dispersed in water, sufficiently swelled, and then beaten with a device such as a mixer, a refiner or a beater to easily finely disperse along the fiber axis direction to form fibrils. To do. Furthermore, since there are few fluffs between the fibrils, the fibrils are dispersed without being entangled in a pill shape. This is a major feature of the easily fibrillated fiber of the present invention. Furthermore, because of its hydrophilicity, it is finely dispersed in a pulp form and exhibits excellent properties as raw material fibers for various materials such as synthetic paper and reinforcing fibers for cement products. The PVA-based easily fibrillated fiber according to the present invention can be continuously and endlessly produced as a yarn or tow, and can be cut into various cut lengths by a general synthetic fiber cutter, but at this point, it is divided and fibrillated. It is important for processability that no occurrence occurs.
【0030】本発明の易フィブリル化繊維の合成パルプ
としての優れた性質は、本発明によるPVA系易フィブ
リル化繊維の内部に形成された複雑な三相構造によって
初めて発現されるものである。すなわち凝固工程での相
分離によって形成され、延伸工程で繊維軸に沿って引き
伸ばされたPANを主成分とする独立相中に点在するP
VAを主成分とする第三相も繊維軸に沿って層状または
棒状に内在しているものと考えられ、かつ第三相のPV
Aを主成分とする相は連続相を形成するPVA相に比べ
て配向結晶化の程度ははるかに低く、最も水膨潤性に富
み、かつグラフト共重合体成分の存在によって水溶解に
は至らないものと考えられる。かくしてこの第三相の存
在によってはじめて水膨潤時にフィブリル化が容易にな
るものと考えられる。The excellent properties of the easily fibrillated fiber of the present invention as a synthetic pulp are first exhibited by the complex three-phase structure formed inside the PVA type easily fibrillated fiber of the present invention. That is, P which is formed by phase separation in the solidification step and is scattered in the independent phase containing PAN as a main component and stretched along the fiber axis in the drawing step.
It is considered that the third phase containing VA as a main component is also present in the form of a layer or a rod along the fiber axis, and the third phase PV
The phase containing A as a main component has a much lower degree of oriented crystallization than the PVA phase forming a continuous phase, is most water-swellable, and does not dissolve in water due to the presence of the graft copolymer component. It is considered to be a thing. Thus, it is considered that the presence of this third phase facilitates fibrillation only when swollen by water.
【0031】このように微細にフィブリル化されたパル
プ状物は水分散の状態で沈降固結することもなく放置す
ることができ、単独またはセルロース系の天然パルプと
混合してタッピー、丸網、長網などの各種抄造機で抄紙
することが可能であり、バインダーを用いなくても紙力
強度に優れ、地合い(表面平滑性)も良好であり、本発
明によるPVA系繊維単独ではあたかも紙幣のような高
級和紙に似た合繊紙を製造することができる。また強度
的に優れた微細パルプの特徴を生かして各種機能紙のバ
インダー繊維としても適しており、特にカオリン、タル
ク、ゼオライトなどの多量の無機粒子を含有する機能紙
の製造においては、本発明によるPVA系繊維からのフ
ィブリルは無機粒子の保持性に優れているために抄紙直
後のグリーン強度が上がって生産性が向上する点が注目
される。The finely fibrillated pulp-like material can be left in a water-dispersed state without settling and solidifying, and can be used alone or in a mixture with a cellulosic natural pulp, such as tappies, round nets, It is possible to make paper with various paper making machines such as Fourdrinier, has excellent paper strength even without using a binder, and has a good texture (surface smoothness). It is possible to manufacture a synthetic fiber paper similar to such high-grade Japanese paper. It is also suitable as a binder fiber for various functional papers by taking advantage of the characteristics of fine pulp having excellent strength, and particularly in the production of functional papers containing a large amount of inorganic particles such as kaolin, talc and zeolite, according to the present invention. It is noteworthy that fibrils made from PVA-based fibers have excellent retention of inorganic particles, so that the green strength immediately after papermaking is increased and the productivity is improved.
【0032】さらにこの無機粒子の保持力はスレート製
品製造の際の石綿代替繊維の活用の点でも重要で、従来
の代替繊維であるビニロンやアクリル繊維では石綿に比
べて太すぎるため抄造時にセメント粒子の抜けが生じ、
これを補うためにセルロース系天然パルプを併用する必
要があった。本発明によるPVA系易フィブリル化繊維
から得られた合成パルプは微細化されているためにかか
る天然パルプの混合を必要とせず、有機系繊維を少量添
加するだけで補強効果に優れるためにセメント製品の耐
火性能上有利となる。その他本発明によるPVA系易フ
ィブリル化繊維から得られた合成パルプによって、従来
の有機系合成繊維では太くて無機粒子の保持性に欠けて
いるために石綿代替が難しかったブレーキシュウやクラ
ッチ板の分野でも代替可能となった。Further, the holding power of the inorganic particles is important in the use of the asbestos substitute fiber in the production of slate products. Since the conventional substitute fibers such as vinylon and acrylic fiber are too thick as compared with asbestos, the cement particles at the time of papermaking. Omission occurs,
In order to compensate for this, it was necessary to use cellulose-based natural pulp together. The synthetic pulp obtained from the PVA-based easily fibrillated fiber according to the present invention does not need to be mixed with such a natural pulp because it is finely divided, and a cement product has an excellent reinforcing effect by adding a small amount of an organic fiber. Is advantageous in fire resistance performance. In the field of brake shoes and clutch plates, it is difficult to substitute asbestos due to the synthetic pulp obtained from the PVA-based easily fibrillated fiber according to the present invention, which is difficult to replace asbestos with the conventional organic synthetic fiber because it is thick and lacks retention of inorganic particles. But it became possible to substitute.
【0033】[0033]
【実施例】以下実施例により本発明を具体的に説明する
が、本発明は実施例によって何等限定されるものではな
い。 実施例1 <グラフト共重合体の合成>;重合度1250、ケン化
度99.0モル%の市販PVA7.50重量部を25
9.4重量部のDMSOに60℃にて溶解し、窒素ガス
で置換した後重合禁止剤を除去した特級試薬のANモノ
マー22.50重量部(PVA/AN=1/3重量
比)、重合度調節剤としての所定量のドデシルメルカプ
タン(DM)および重合開始剤である過硫酸アンモニウ
ム(APS)をDMSO10重量部に分散したうえで
0.31重量部添加し、セパラブルフラスコ中で撹拌し
ながら55℃で60分間グラフト共重合した。最後に重
合停止剤としてのDMを添加して温度を下げ、反応を停
止させた。DMの全添加量は0.3重量部であった。得
られたグラフト共重合体溶液をアセトン中に落として凝
固させ、真空乾燥後アセトン、DMF、水で別々にソク
スレー抽出し、その重量減少量からANモノマーの反応
率、PVAのグラフト効率およびANのグラフト効率を
求めた。その結果ANモノマーの反応率は50%、PV
AおよびANのグラフト効率は75%であった。従っ
て、グラフトポリマー中のPVA含量は40%であっ
た。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples. Example 1 <Synthesis of graft copolymer>; 25 parts of commercial PVA 7.50 parts by weight having a degree of polymerization of 1250 and a degree of saponification of 99.0 mol% were used.
22.50 parts by weight of an AN monomer of a special grade reagent which was dissolved in 9.4 parts by weight of DMSO at 60 ° C. and was replaced with nitrogen gas and then the polymerization inhibitor was removed (PVA / AN = 1/3 weight ratio), polymerization A predetermined amount of dodecyl mercaptan (DM) as a degree adjusting agent and ammonium persulfate (APS) as a polymerization initiator were dispersed in 10 parts by weight of DMSO and then 0.31 part by weight was added, and the mixture was stirred in a separable flask. Graft copolymerization was carried out at 60 ° C. for 60 minutes. Finally, DM as a polymerization terminator was added to lower the temperature to stop the reaction. The total amount of DM added was 0.3 parts by weight. The obtained graft copolymer solution was dropped into acetone to coagulate, vacuum-dried and then Soxhlet-extracted separately with acetone, DMF, and water. From the weight reduction amount, the reaction rate of AN monomer, the grafting efficiency of PVA, and AN Grafting efficiency was determined. As a result, the reaction rate of AN monomer was 50%, PV
The grafting efficiency of A and AN was 75%. Therefore, the PVA content in the graft polymer was 40%.
【0034】<紡糸原液の調整>;混合紡糸による連続
相を形成する重合度1750、ケン化度99.9モル%
の市販PVA37.5重量部を153.1重量部のDM
SOに溶解した溶液を予め用意し、グラフト共重合直後
の前記溶液を混合して、全ポリマー中のPVA成分とP
AN成分の重量組成比がPVA/PAN=80/20で
あり、濃度が12重量%の紡糸原液を調整した。なお、
全ポリマー中のグラフト共重合体の割合は25重量%で
ある。溶液の温度を下げるとゲル化するので、60〜7
0℃に保ったまま紡糸直前に静置脱泡した。 <紡糸・延伸>;原液を100℃に上げ、直径0.08
mm×100穴の口金より、2.4g/分の吐出速度で
比重1.23、温度33℃のボウ硝水溶液からなる凝固
浴中に吐出し、紡糸速度1.1m/分で湿式紡糸した。
紡糸調子は良好で、連続して長時間糸が取れた。得られ
たヤーンは引き続き凝固浴と同一組成の90℃の延伸浴
中で4倍湿延伸を行い、水洗し、乾燥した。なお最大延
伸倍率は9倍と高かった。得られた繊維の太さは単糸3
デニールであり、強度は約5g/d、伸度は18であっ
た。<Preparation of spinning dope> Polymerization degree 1750 for forming continuous phase by mixed spinning, saponification degree 99.9 mol%
37.5 parts by weight of commercial PVA of 153.1 parts by weight of DM
A solution dissolved in SO was prepared in advance, and the solution immediately after the graft copolymerization was mixed to obtain the PVA component and P in all the polymers.
A spinning dope having an AN component weight composition ratio of PVA / PAN = 80/20 and a concentration of 12% by weight was prepared. In addition,
The proportion of graft copolymer in the total polymer is 25% by weight. Since gelation occurs when the temperature of the solution is lowered, 60 to 7
Immediately before spinning, degassing was performed while keeping the temperature at 0 ° C. <Spinning / Drawing>; The stock solution was heated to 100 ° C and the diameter was 0.08.
It was discharged from a spinneret of 100 mm × 100 holes into a coagulation bath made of an aqueous solution of Glauber's salt having a specific gravity of 1.23 and a temperature of 33 ° C. at a discharge speed of 2.4 g / min, and wet spinning was performed at a spinning speed of 1.1 m / min.
The spinning condition was good, and the yarn could be taken off continuously for a long time. The obtained yarn was subsequently subjected to 4-fold wet drawing in a drawing bath of the same composition as the coagulation bath at 90 ° C., washed with water and dried. The maximum draw ratio was as high as 9 times. The thickness of the obtained fiber is single yarn 3
It was denier and had a strength of about 5 g / d and an elongation of 18.
【0035】図1は得られた繊維の横断面の透過電子顕
微鏡写真(6万倍)を忠実に模写した図である。得られ
た繊維をアセタール化処理して水に対する寸法固定を行
った後エポキシ樹脂に包埋し、超ミクロトームで横断切
片を作成してさらに酸化ルテニウム蒸気で電子染色後透
過電子顕微鏡で観察したものである。図中緻密な点々が
付されている部分がPAN成分であり、PAN系独立相
中にさらにPVA系の第三相が点在した3相構造を有し
ている。FIG. 1 is a faithful copy of a transmission electron micrograph (60,000 times) of the cross section of the obtained fiber. The obtained fiber was acetalized and fixed in size to water, then embedded in epoxy resin, cross-sectioned with an ultramicrotome, further stained with ruthenium oxide vapor, and then observed with a transmission electron microscope. is there. In the figure, the densely dotted portions are the PAN components, and have a three-phase structure in which the PVA-based third phase is further interspersed with the PAN-based independent phase.
【0036】<フィブリル化・抄紙>;得られたヤーン
をギロチンカッターで長さ2mmに切断し、3g/リッ
トルの水分散液にしてディスクリファイナーを通して叩
解した。得られたパルプは直径が0.1ミクロン以下に
微細繊維にフィブリル化されており、水分散性は良好
で、毛玉状の塊は存在しなかった。続いてタッピー抄紙
機を用いて40g/平方メートルの坪量を目標に抄紙を
行い、合繊紙を得た。得られた紙はあたかも紙幣のよう
な高級和紙の風合いがあり、表面平滑は良好で、紙力強
度は対照として同時に抄紙したセルロース系天然パルプ
を原料としたものの約2倍であり、特に湿潤強度に優れ
ていた。<Fibrillation / papermaking> The obtained yarn was cut into a length of 2 mm with a guillotine cutter, made into an aqueous dispersion of 3 g / liter, and beaten through a disc refiner. The obtained pulp was fibrillated into fine fibers with a diameter of 0.1 micron or less, had good water dispersibility, and had no pill-like lumps. Then, using a tappy paper machine, paper making was carried out aiming at a basis weight of 40 g / square meter to obtain a synthetic fiber paper. The obtained paper has the texture of high-quality Japanese paper like a banknote, the surface smoothness is good, and the paper strength is about twice as high as that of the material made from the cellulosic natural pulp simultaneously made as a control, especially the wet strength. Was excellent.
【0037】比較例1 グラフト共重合体を用いずに、重合度1700、ケン化
度99.9モル%のPVAと市販アクリル繊維綿を脱脂
したPANを原料として、PVA/PAN=80/20
重量比になるように配合した単純ブレンド物をDMSO
に溶解して濃度12重量%の原液を作製し、実施例2と
同様の方法で湿式紡糸を試みた。ところが原液は非常に
不安定で、撹拌中もモヤモヤとした状態が続き、原液温
度を65℃に下げ、吐出速度を遅くして紡糸したが、紡
糸調子は極めて悪く、度々断糸が生じ、正常な紡糸が行
えなかった。Comparative Example 1 PVA / PAN = 80/20 was used as a raw material without using a graft copolymer, using PVA having a polymerization degree of 1700 and a saponification degree of 99.9 mol% and commercially available acrylic fiber cotton as a defatted PAN.
A simple blend compounded in a weight ratio is added to DMSO.
A stock solution having a concentration of 12% by weight was prepared by dissolving in, and wet spinning was tried in the same manner as in Example 2. However, the stock solution was very unstable, and it remained moggy during stirring. The stock solution temperature was lowered to 65 ° C, and the discharge speed was slowed down to spin the fiber, but the spinning condition was extremely poor and frequent yarn breakage occurred, resulting in normal operation. Spinning could not be done.
【0038】比較例2 実施例1において、連続相を形成するために用いたPV
Aを重合度1000、ケン化度99.9モル%とした以
外は全く同様の方法でPVA系繊維を湿式紡糸した。と
ころが用いたPVAの重合度が低すぎるために、最大延
伸倍率は5倍と低く、得られた延伸糸の強度も約2g/
dと低かった。そのため、合繊紙にした時の紙力強度も
低下して、目的を達成することはできなかった。Comparative Example 2 PV used in Example 1 to form the continuous phase
A PVA-based fiber was wet-spun by the same method except that the degree of polymerization A was 1000 and the degree of saponification was 99.9 mol%. However, because the degree of polymerization of PVA used was too low, the maximum draw ratio was as low as 5 times, and the strength of the obtained drawn yarn was about 2 g /
It was as low as d. Therefore, the strength of the paper when it is made into synthetic paper is also reduced, and the purpose could not be achieved.
【0039】比較例3 実施例1において、連続相を形成するために用いたPV
Aを重合度1700、ケン化度88.0モル%とした以
外は全く同様の方法でPVA系繊維を湿式紡糸した。と
ころが用いたPVAのケン化度が低すぎるために、凝固
浴から出たヤーンの膠着が激しく、連続して紡糸するこ
とは困難であった。また、かろうじて得られた繊維を切
断して抄紙することを試みたが、得られた合繊紙の湿潤
強度が極めて弱く、ほとんど物性測定に供する紙は得ら
れなかった。Comparative Example 3 PV used in Example 1 to form the continuous phase
PVA-based fibers were wet-spun by the same method except that the degree of polymerization A was 1700 and the degree of saponification was 88.0 mol%. However, since the degree of saponification of PVA used was too low, the yarn ejected from the coagulation bath was severely stuck, and continuous spinning was difficult. Further, it was attempted to cut the fibers barely obtained to make paper, but the wet strength of the obtained synthetic fiber paper was extremely weak, and almost no paper to be used for physical property measurement could be obtained.
【0040】比較例4 重合度1250、ケン化度99.0モル%のPVA10
重量部に特級ANモノマー4重量部を加え、実施例1と
同様の方法でグラフト共重合を行い、ANモノマー反応
率50%、PVAおよびANグラフト効率75%のグラ
フト共重合体溶液を得た。グラフト共重合体中のPVA
は83%であった。さらに別に準備したPVA1重量部
のDMSO溶液を加えて、紡糸原液とした。全ポリマー
中のグラフト共重合体の割合は約69重量%であり、P
VA成分の割合は約85重量%であった。続いて実施例
1と同様に湿式紡糸してPVA系繊維を得た。さらに得
られた繊維を切断して、実施例1と同様の方法でフィブ
リル化することを試みたが、フィブリル化は困難であっ
た。その原因は全重合体中のグラフト共重合体の割合が
多過ぎるためと推定される。Comparative Example 4 PVA10 having a degree of polymerization of 1250 and a degree of saponification of 99.0 mol%
4 parts by weight of the special grade AN monomer was added to parts by weight, and graft copolymerization was carried out in the same manner as in Example 1 to obtain a graft copolymer solution having an AN monomer reaction rate of 50% and PVA and AN graft efficiency of 75%. PVA in graft copolymer
Was 83%. Furthermore, DMSO solution of 1 part by weight of PVA prepared separately was added to prepare a spinning dope. The proportion of graft copolymer in the total polymer is about 69% by weight,
The proportion of the VA component was about 85% by weight. Then, wet spinning was performed in the same manner as in Example 1 to obtain a PVA fiber. Further, it was tried to cut the obtained fiber and fibrillate it by the same method as in Example 1, but it was difficult to fibrillate. It is presumed that the cause is that the proportion of the graft copolymer in the total polymer is too high.
【0041】[0041]
【発明の効果】本発明によるPVA系易フィブリル化繊
維から得られる合成パルプを抄紙することで得られる合
繊紙、機能紙は強度、耐水性、風合いなどに優れ、また
該セメント製品などの石綿代替補強繊維としては無機粒
子保持性などに優れることを特徴とする繊維を提供しう
るものである。EFFECTS OF THE INVENTION Synthetic paper and functional paper obtained by making synthetic pulp obtained from the PVA-based easily fibrillated fiber according to the present invention are excellent in strength, water resistance, texture and the like, and substitute asbestos for the cement product. As the reinforcing fiber, it is possible to provide a fiber characterized by being excellent in retention of inorganic particles.
【図1】図1は本発明繊維の横断面の一部を透過電子顕
微鏡で撮った写真(6万倍)を忠実に模写した図であ
る。FIG. 1 is a faithful copy of a photograph (60,000 times) taken by a transmission electron microscope of a part of the cross section of the fiber of the present invention.
a PVA成分 b PAN成分 c PAN成分中のPVA成分 d 繊維表面 a PVA component b PAN component c PVA component in PAN component d Fiber surface
Claims (2)
0モル%以上のポリビニルアルコール、(B)ポリアク
リロニトリル系重合体および(C)ポリビニルアルコー
ルにアクリロニトリルがグラフト共重合したグラフト共
重合体からなり、全重合体中のグラフト共重合体(C)
の割合が5〜50重量%であり、かつポリビニルアルコ
ール(A)とグラフト共重合体(C)の中のポリビニル
アルコール成分の和が50〜90重量%であることを特
徴とするポリビニルアルコール系易フィブリル化繊維。1. (A) Polymerization degree of 1200 or more, saponification degree of 9
A graft copolymer (C) comprising 0 mol% or more of polyvinyl alcohol, (B) a polyacrylonitrile polymer, and (C) a graft copolymer obtained by graft-copolymerizing acrylonitrile with polyvinyl alcohol.
Is 5 to 50% by weight, and the sum of the polyvinyl alcohol components in the polyvinyl alcohol (A) and the graft copolymer (C) is 50 to 90% by weight. Fibrillated fiber.
続相の中にポリアクリロニトリルを主成分とする独立相
が均一に微分散されており、さらにポリアクリロニトリ
ルを主成分とする独立相中にポリビニルアルコールを主
成分とする第三相が均一に分散されていて、少なくとも
三相以上の構造を形成している請求項1に記載のポリビ
ニルアルコール系易フィブリル化繊維。2. An independent phase containing polyacrylonitrile as a main component is uniformly finely dispersed in a continuous phase containing polyvinyl alcohol as a main component, and polyvinyl alcohol is added to the independent phase containing polyacrylonitrile as a main component. The polyvinyl alcohol-based easily fibrillated fiber according to claim 1, wherein the third phase as a main component is uniformly dispersed to form a structure having at least three phases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22033594A JPH0881818A (en) | 1994-09-14 | 1994-09-14 | Polyvinyl alcohol-based fiber subject to ready fibrillation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22033594A JPH0881818A (en) | 1994-09-14 | 1994-09-14 | Polyvinyl alcohol-based fiber subject to ready fibrillation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0881818A true JPH0881818A (en) | 1996-03-26 |
Family
ID=16749541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22033594A Pending JPH0881818A (en) | 1994-09-14 | 1994-09-14 | Polyvinyl alcohol-based fiber subject to ready fibrillation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0881818A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1068074C (en) * | 1995-10-18 | 2001-07-04 | 可乐丽股份有限公司 | Fibrillatable fiber of sea-islands structure |
-
1994
- 1994-09-14 JP JP22033594A patent/JPH0881818A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1068074C (en) * | 1995-10-18 | 2001-07-04 | 可乐丽股份有限公司 | Fibrillatable fiber of sea-islands structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3047456A (en) | Manufacture of paper products from fibers wet spun from polymer blends | |
JP2003336130A (en) | Carbon fiber, carbon nanofiber obtained from the same and method of production for carbon fiber and precursor fiber for the same | |
RU2181798C2 (en) | Method for obtaining molded cellulose body and molded cellulose body | |
JP4604911B2 (en) | Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber | |
JPH0881818A (en) | Polyvinyl alcohol-based fiber subject to ready fibrillation | |
JPS6039404B2 (en) | Hollow fibrous membrane and its manufacturing method | |
JP4210924B2 (en) | Fibrilized acrylic fiber, method for producing the same, and structure containing the fiber | |
JPH11222718A (en) | Extremely extrafine acrylic fiber aggregate | |
JP3556510B2 (en) | Acrylic binder fiber | |
WO2001086040A1 (en) | Acrylonitrile-based fiber bundle for carbon fiber precursor and method for preparation thereof | |
JPH05148709A (en) | Acrylic modified cross section fiber and its production | |
JP4168542B2 (en) | Acrylic fiber suitable for nonwoven fabric processing | |
JP3897430B2 (en) | Acrylic binder fiber | |
CN116043349A (en) | Preparation method of polyacrylonitrile fiber and pulp for sealing and friction materials | |
DE2166178A1 (en) | SYNTHETIC PULP FOR PAPER MAKING | |
JPH10158928A (en) | Splittable acrylic synthetic yarn and its production | |
JP3720635B2 (en) | Acrylonitrile-based synthetic fiber and method for producing the same | |
JPS59192717A (en) | Pilling-resistant acrylic conjugated fiber and its production | |
JPH09268426A (en) | Production of fiber | |
JP2004332179A (en) | Acrylic synthetic fiber and method for producing the same | |
NO140193B (en) | ENGINE FUEL MIXTURE. | |
JP2004308038A (en) | Low-density wet type nonwoven fabric | |
JP2000080521A (en) | Slittable acrylic fiber, slit acrylic fiber and sheetlike material | |
JP2020015998A (en) | Method for producing synthetic fiber | |
JPS5838527B2 (en) | Manufacturing method of acrylic hollow fiber |