JPH0881219A - Synthesis of lanthanum-based oxide powder having perovskite-type structure - Google Patents

Synthesis of lanthanum-based oxide powder having perovskite-type structure

Info

Publication number
JPH0881219A
JPH0881219A JP6215112A JP21511294A JPH0881219A JP H0881219 A JPH0881219 A JP H0881219A JP 6215112 A JP6215112 A JP 6215112A JP 21511294 A JP21511294 A JP 21511294A JP H0881219 A JPH0881219 A JP H0881219A
Authority
JP
Japan
Prior art keywords
lanthanum
powder
perovskite
aqueous solution
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6215112A
Other languages
Japanese (ja)
Inventor
Osamu Yamaguchi
修 山口
Hirohisa Ishikawa
演久 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Fuji Corp
Original Assignee
Osaka Fuji Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Fuji Corp filed Critical Osaka Fuji Corp
Priority to JP6215112A priority Critical patent/JPH0881219A/en
Publication of JPH0881219A publication Critical patent/JPH0881219A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To obtain lanthanum-based oxide powder having perovskite-type structure by heating at a low temperature in good productivity, by preparing a mixed aqueous solution of a water-soluble lanthanum compound and a prescribed water-soluble compound, forming a precursor of an oxide under specific conditions and then heating. CONSTITUTION: A mixed aqueous solution of a water-soluble lanthanum compound (e.g. LaCl3 ) and a prescribed water-soluble compound (e.g. SrCl2 O.H2 O and MnCl2 .H2 O) is prepared. The mixed aqueous solution is blended with a solution of hydrazine to form a precursor of an oxide containing La and a fixed element. Then the precursor is heated at 1,000 deg.C for 15-60 minutes to give oxide [e.g. La1-x Srx MnO3 ((x) is 0.1-0.5)] powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ペロブスカイト型構造
を有するランタン系酸化物粉体の合成方法に関する。
TECHNICAL FIELD The present invention relates to a method for synthesizing a lanthanum-based oxide powder having a perovskite structure.

【0002】[0002]

【従来の技術と課題】ペロブスカイト型の結晶構造をも
つランタン系酸化物は高い電気伝導性を示す。このラン
タン系酸化物粉体を合成する方法として、従来より固相
反応法が知られている。この方法を、例えばランタンス
トロンチウムマンガナイト(La1-XSrXMnO3)を
例にして説明する。まず、酸化ランタンと炭酸ストロン
チウムと酸化マンガンをエタノールと伴にボールミルに
入れ、粉砕混合する。十分な粉砕混合の後、乾燥してエ
タノールを蒸発させて三成分系からなる混合物を作製す
る。次に、この三成分系の混合物を約1500℃の高温
度で熱処理してLa1-xSrXMnO3とする。ところ
が、一回の熱処理だけでは化学反応(固相反応)である
ため、単一相のLa1-XSrXMnO3が得られない。そ
こで、再度ボールミル処理をして、粒子同士の接触面積
を大きくした後、約1500℃の高温度で熱処理する。
これを2〜3回繰り返した後、完全に生成したLa1-X
SrXMnO3をボールミルに入れて粉砕し、ペロブスカ
イト単一相のLa1-XSrXMnO3粉体を得る。従っ
て、固相反応法で単一相のLa1-XSrXMnO3粉体を
得るためには、約1500℃の高温度で熱処理及びボー
ルミルによる粉砕を繰り返す必要があること等の問題が
あった。
2. Description of the Related Art Lanthanum oxides having a perovskite type crystal structure exhibit high electrical conductivity. As a method for synthesizing this lanthanum-based oxide powder, a solid-phase reaction method has been conventionally known. This method will be described by taking lanthanum strontium manganite (La 1-X Sr X MnO 3 ) as an example. First, lanthanum oxide, strontium carbonate, and manganese oxide are put in a ball mill together with ethanol, and pulverized and mixed. After thorough pulverization and mixing, the mixture is dried to evaporate ethanol to prepare a ternary mixture. Next, this ternary mixture is heat-treated at a high temperature of about 1500 ° C. to form La 1-x Sr x MnO 3 . However, since only one heat treatment is a chemical reaction (solid-phase reaction), a single-phase La 1-x Sr x MnO 3 cannot be obtained. Therefore, the ball mill treatment is performed again to increase the contact area between the particles, and then the heat treatment is performed at a high temperature of about 1500 ° C.
After repeating this a few times, the completely generated La 1-X
Sr X MnO 3 is put into a ball mill and pulverized to obtain La 1 -X Sr X MnO 3 powder having a single phase of perovskite. Therefore, in order to obtain a single-phase La 1-X Sr X MnO 3 powder by the solid-phase reaction method, there is a problem that it is necessary to repeat the heat treatment and the pulverization by the ball mill at a high temperature of about 1500 ° C. It was

【0003】また、別の方法として、金属アルコキシド
を使用した湿式法が知られている。しかしながら、この
方法は、金属アルコキシドが高価であり、マンガンアル
コキシド収率が悪く、合成することが困難であり、かつ
合成中に発生する廃液の処理費用も高く、製造コストが
高かった。しかも約1350℃の温度で約10時間熱処
理する必要があった。
As another method, a wet method using a metal alkoxide is known. However, in this method, the metal alkoxide is expensive, the manganese alkoxide yield is poor, the synthesis is difficult, and the treatment cost of the waste liquid generated during the synthesis is high, and the manufacturing cost is high. Moreover, it was necessary to perform heat treatment at a temperature of about 1350 ° C. for about 10 hours.

【0004】そこで、本発明の目的は、上記課題を解決
し、生産性に優れ、かつ製造コストが安価なランタン系
酸化物粉体の合成方法を提供することにある。
Therefore, an object of the present invention is to solve the above problems and to provide a method for synthesizing lanthanum-based oxide powder which is excellent in productivity and is inexpensive in manufacturing cost.

【0005】[0005]

【課題を解決するための手段と作用】以上の課題を解決
するため、本発明に係るペロブスカイト型構造を有する
ランタン系酸化物粉体の合成方法は、(a)水溶性ラン
タン化合物と所定の水溶性化合物の混合水溶液を作製す
る工程と、(b)前記混合水溶液にヒドラジン溶液を加
え、ランタンと所定の元素を含む酸化物の前駆体を作製
する工程と、(c)前記前駆体を加熱して酸化物粉体を
作製する工程、を備えたことを特徴とする。
In order to solve the above problems, the method for synthesizing a lanthanum-based oxide powder having a perovskite structure according to the present invention comprises (a) a water-soluble lanthanum compound and a predetermined water-soluble compound. Of preparing a mixed aqueous solution of a polar compound, (b) adding a hydrazine solution to the mixed aqueous solution to prepare a precursor of an oxide containing lanthanum and a predetermined element, and (c) heating the precursor. And a step of producing an oxide powder.

【0006】以上の方法により、安価なヒドラジンを使
用し、ボールミルによる粉砕を繰り返すことなくペロブ
スカイト型構造を有するランタン系酸化物粉体が製造さ
れる。また、熱処理の温度も従来の温度(約1350〜
1500℃)より低温度(約1000℃)ですみ、生産
コストを低減できる。
By the above method, lanthanum-based oxide powder having a perovskite type structure can be produced by using inexpensive hydrazine without repeating grinding by a ball mill. The heat treatment temperature is also the conventional temperature (about 1350 to about 1350).
Lower temperature (about 1000 ° C) than 1500 ° C is required, and production cost can be reduced.

【0007】[0007]

【実施例】以下、本発明に係るペロブスカイト型構造を
有するランタン系酸化物粉体の作製に関する実施例につ
いて添付図面を参照して説明する。 [第1実施例、図1]第1実施例では、ランタンストロ
ンチウムマンガナイト(以下、La1-XSrXMnO3
する)を例にして説明する。
EXAMPLES Examples of producing a lanthanum-based oxide powder having a perovskite structure according to the present invention will be described below with reference to the accompanying drawings. [First Example, FIG. 1] In the first example, lanthanum strontium manganite (hereinafter, referred to as La 1-X Sr X MnO 3 ) will be described as an example.

【0008】図1に示すように、水溶性ランタン化合物
として、塩化ランタン(LaCl3)を準備し、このラ
ンタン化合物と組み合わす塩化ストロンチウム(SrC
2・H2O)と塩化マンガン(MnCl2・H2O)を準
備する。これら3種類の化合物を希望する組成を水に溶
かす。この混合水溶液はpHが2の酸性である。
As shown in FIG. 1, lanthanum chloride (LaCl 3 ) was prepared as a water-soluble lanthanum compound, and strontium chloride (SrC) was combined with this lanthanum compound.
1 2 · H 2 O) and manganese chloride (MnCl 2 · H 2 O) are prepared. The desired composition of these three compounds is dissolved in water. This mixed aqueous solution is acidic with a pH of 2.

【0009】次に、混合水溶液を加熱、攪拌しながらヒ
ドラジン((NH22・H2O)溶液を混合水溶液に滴
下する。ヒドラジン溶液が滴下されるとただちに白色沈
澱物ができる。混合溶液を攪拌する理由は、溶液中のヒ
ドラジンの濃度が一定になるようにするためである。こ
の白色沈澱物はランタンストロンチウム及びマンガンを
含む殆んどアモルファス状態の粉体である。
Next, the hydrazine ((NH 2 ) 2 .H 2 O) solution is added dropwise to the mixed aqueous solution while heating and stirring the mixed aqueous solution. A white precipitate forms as soon as the hydrazine solution is added dropwise. The reason for stirring the mixed solution is to keep the concentration of hydrazine in the solution constant. This white precipitate is almost amorphous powder containing lanthanum strontium and manganese.

【0010】次に、このアモルファス前駆体を1000
℃で15〜60分間熱処理して結晶性のペロブスカイト
型単一相のLa1-XSrXMnO3粉体(X=0.1〜
0.5)とする。また、適当な熱処理条件を選択するこ
とにより、粒子径が0.01〜20nmの粒度の揃った
La1-XSrXMnO3粉体を得ることができる。従っ
て、本発明により作製された粉体は高品質のセラミック
ス、そして膜の形成に用いる溶射用出発原料として適し
ている。
Next, 1000 parts of this amorphous precursor are added.
Crystallized perovskite type single phase La 1-X Sr X MnO 3 powder (X = 0.1
0.5). Further, by selecting appropriate heat treatment conditions, it is possible to obtain La 1-x Sr x MnO 3 powder having a uniform particle size of 0.01 to 20 nm. Therefore, the powder produced according to the present invention is suitable as a high quality ceramic and a starting material for thermal spraying used for forming a film.

【0011】このようにして、La1-XSrXMnO3
ロブスカイト単一相の粉体が効率良く製造される。すな
わち、従来の固相反応や湿式法(1350〜1500
℃)よりも低温度(1000℃)で短時間の熱処理、か
つ容易に入手することができる安価な材料(塩化ランタ
ン、塩化ストロンチウム、塩化マンガン及びヒドラジ
ン)を使用して製造することができる。さらに、廃液処
理も有機溶媒を使用する従来の湿式法と比較して、本発
明では水溶液を用いるため簡単である。
In this way, the powder of La 1 -X Sr X MnO 3 perovskite single phase is efficiently produced. That is, conventional solid phase reaction or wet method (1350-1500)
It can be produced by heat treatment at a temperature lower than (.degree. C.) (1000.degree. C.) for a short time and using inexpensive materials (lanthanum chloride, strontium chloride, manganese chloride and hydrazine) that are easily available. Further, the waste liquid treatment is simpler in the present invention because it uses an aqueous solution than in the conventional wet method using an organic solvent.

【0012】また、得られたLa1-XSrXMnO3粉体
は、高温の酸化雰囲気下で化学的に安定で、かつ高い電
気伝導性を有するので、固体電解質型燃料電池の空気極
として利用することができる。すなわち、La1-XSrX
MnO3粉体を出発原料として溶射の手段により、イッ
トリア安定化ジルコニア(YSZ)の固体電解質の表面
に膜形成して空気極とすることができる。
The obtained La 1-X Sr X MnO 3 powder is chemically stable in a high temperature oxidizing atmosphere and has high electrical conductivity, and therefore, it can be used as an air electrode of a solid oxide fuel cell. Can be used. That is, La 1-X Sr X
A film can be formed on the surface of a solid electrolyte of yttria-stabilized zirconia (YSZ) by means of thermal spraying using MnO 3 powder as a starting material to form an air electrode.

【0013】[第2実施例〜第8実施例]表1に示すよ
うに、第2実施例は塩化ランタンと塩化カルシウムと塩
化マンガンとヒドラジンを使用して第1実施例と同様の
手順によりLa1-XCaXMnO3粉体を製造した。同様
に、第3実施例は塩化ランタンと硝酸マグネシウムと塩
化マンガンとヒドラジンを使用してLa1-XMgXMnO
3粉体を製造した。第4実施例は塩化ランタンと塩化ス
トロンチウムと硝酸コバルトとヒドラジンを使用してL
1-XSrXCoO3粉体を製造した。第5実施例は塩化
ランタンと塩化カルシウムと硝酸コバルトとヒドラジン
を使用してLa1-XCaXCoO3粉体を製造した。第6
実施例は塩化ランタンと塩化クロムと硝酸マグネシウム
とヒドラジンを使用してLa1-XMgXCrO3粉体を製
造した。第7実施例は塩化ランタンと塩化ストロンチウ
ムと塩化クロムとヒドラジンを使用してLa1-XSrX
rO3粉体を製造した。第8実施例は塩化ランタンと塩
化カルシウムと塩化クロムとヒドラジンを使用してLa
1-XCaXCrO3粉体を製造した。
[Second Embodiment to Eighth Embodiment] As shown in Table 1, the second embodiment uses lanthanum chloride, calcium chloride, manganese chloride and hydrazine according to the same procedure as in the first embodiment. A 1-X Ca X MnO 3 powder was produced. Similarly, the third embodiment uses La 1-X Mg X MnO using lanthanum chloride, magnesium nitrate, manganese chloride and hydrazine.
Three powders were produced. The fourth embodiment uses L-lanthanum chloride, strontium chloride, cobalt nitrate and hydrazine to obtain L
An a 1-X Sr X CoO 3 powder was produced. In the fifth example, La 1 -X Ca X CoO 3 powder was manufactured using lanthanum chloride, calcium chloride, cobalt nitrate and hydrazine. Sixth
In the example, La 1 -X Mg X CrO 3 powder was manufactured using lanthanum chloride, chromium chloride, magnesium nitrate and hydrazine. The seventh embodiment uses La 1-X Sr X C using lanthanum chloride, strontium chloride, chromium chloride and hydrazine.
An rO 3 powder was produced. The eighth example uses lanthanum chloride, calcium chloride, chromium chloride and hydrazine to prepare La.
A 1-X Ca X CrO 3 powder was produced.

【0014】[0014]

【表1】 [Table 1]

【0015】こうして、単一相のLa1-XCaXMnO3
粉体、La1-XMgXMnO3粉体、La1-XSrXCoO3
粉体、La1-XCaXCoO3粉体、La1-XMgXCrO3
粉体、La1-XSrXCrO3粉体、La1-XCaXCrO3
粉体が効率良く製造される。得られたLa1-XCaXMn
3粉体、La1-XMgXMnO3粉体及びLa1-XCaX
oO3粉体はそれぞれ高温の酸化雰囲気下で化学的に安
定で、かつ高い電気伝導性を有するので、これらを出発
原料として溶射により膜を形成させて固体電解質型燃料
電池の空気極として使用することができる。一方、La
1-XMgXCrO 3粉体、La1-XSrXCrO3粉体及びL
1-XCaXCrO3粉体は、それぞれ高温の酸化及び還
元雰囲気下で化学的に安定で、かつ高い電気伝導性を有
するので、セラミックを作製する方法と同様な手段(ド
クターブレード法や押出し法)により厚膜を形成させ、
固体電解質型燃料電池のインタコネクタとして使用する
ことができる。
Thus, the single phase La1-XCaXMnO3
Powder, La1-XMgXMnO3Powder, La1-XSrXCoO3
Powder, La1-XCaXCoO3Powder, La1-XMgXCrO3
Powder, La1-XSrXCrO3Powder, La1-XCaXCrO3
The powder is manufactured efficiently. The obtained La1-XCaXMn
O3Powder, La1-XMgXMnO3Powder and La1-XCaXC
oO3Each powder is chemically safe under a high temperature oxidizing atmosphere.
Since these are stable and have high electrical conductivity, these are the starting points.
Solid electrolyte fuel by forming a film by thermal spraying as a raw material
It can be used as the air electrode of a battery. On the other hand, La
1-XMgXCrO 3Powder, La1-XSrXCrO3Powder and L
a1-XCaXCrO3The powder has high temperature oxidation and reduction, respectively.
It is chemically stable in the original atmosphere and has high electrical conductivity.
Therefore, the same method (d
Thick film is formed by the knacker blade method or extrusion method,
Used as an interconnector for solid oxide fuel cells
be able to.

【0016】[他の実施例]なお、本発明によるペロブ
スカイト型構造を有するランタン系酸化物粉体の合成方
法は前記実施例に限定するものではなく、その要旨の範
囲内で種々に応用することができる。特に、水溶性ラン
タン化合物としては、LaCl3・H2Oの他に、LaN
3・H2O等であってもよい。
[Other Examples] The method for synthesizing the lanthanum-based oxide powder having the perovskite structure according to the present invention is not limited to the above-mentioned examples, and various applications can be made within the scope of the invention. You can In particular, as the water-soluble lanthanum compound, in addition to LaCl 3 .H 2 O, LaN
It may be O 3 · H 2 O or the like.

【0017】[0017]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、水溶性ランタン化合物と所定の水溶性の化合物
の混合溶液にヒドラジン溶液を加えることにより、ペロ
ブスカイト単一相のランタン系酸化物粉体を安価な製造
コストで効率良く製造することができる。すなわち、従
来の固相反応法や湿式法の温度(1350〜1500
℃)よりも低温度(1000℃)で短時間で熱処理する
ことができ、かつ容易に入手することができる安価な材
料を使用して製造することができる。
As is apparent from the above description, according to the present invention, by adding a hydrazine solution to a mixed solution of a water-soluble lanthanum compound and a predetermined water-soluble compound, lanthanum-based oxidation of a perovskite single phase is performed. The material powder can be efficiently produced at a low production cost. That is, the temperature of the conventional solid-phase reaction method or wet method (1350-1500
It can be heat-treated at a temperature lower than (.degree. C.) for a short time (1000.degree. C.) and can be manufactured using an inexpensive material that is easily available.

【0018】さらに、得られたランタン系酸化物粉体は
粒子径が揃っており、ペロブスカイト単一相でも高品質
のセラミックスの作製及び溶射による膜の形成に最適で
ある。
Further, the obtained lanthanum-based oxide powder has a uniform particle size, and is suitable for producing high-quality ceramics and forming a film by thermal spraying even with a single perovskite phase.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るペロブスカイト型構造を有するラ
ンタン系酸化物粉体の合成方法を示すフローチャート。
FIG. 1 is a flowchart showing a method for synthesizing a lanthanum-based oxide powder having a perovskite structure according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水溶性ランタン化合物と所定の水溶性化
合物の混合水溶液を作製する工程と、 前記混合水溶液にヒドラジン溶液を加え、ランタンと所
定の元素を含む酸化物の前駆体を作製する工程と、 前記前駆体を加熱して酸化物粉体を作製する工程、 を備えたことを特徴とするペロブスカイト型構造を有す
るランタン系酸化物粉体の合成方法。
1. A step of preparing a mixed aqueous solution of a water-soluble lanthanum compound and a predetermined water-soluble compound, and a step of adding a hydrazine solution to the mixed aqueous solution to prepare a precursor of an oxide containing lanthanum and a predetermined element. A method for synthesizing a lanthanum-based oxide powder having a perovskite structure, comprising: heating the precursor to produce an oxide powder.
JP6215112A 1994-09-08 1994-09-08 Synthesis of lanthanum-based oxide powder having perovskite-type structure Pending JPH0881219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6215112A JPH0881219A (en) 1994-09-08 1994-09-08 Synthesis of lanthanum-based oxide powder having perovskite-type structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6215112A JPH0881219A (en) 1994-09-08 1994-09-08 Synthesis of lanthanum-based oxide powder having perovskite-type structure

Publications (1)

Publication Number Publication Date
JPH0881219A true JPH0881219A (en) 1996-03-26

Family

ID=16666958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6215112A Pending JPH0881219A (en) 1994-09-08 1994-09-08 Synthesis of lanthanum-based oxide powder having perovskite-type structure

Country Status (1)

Country Link
JP (1) JPH0881219A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462428A2 (en) * 2003-03-28 2004-09-29 Dowa Mining Co., Ltd. Method of producing perovskite complex oxide and precursor substance used in the method
JP2005187311A (en) * 2003-03-28 2005-07-14 Dowa Mining Co Ltd Method of producing perovskite compound oxide and precursor substance used in the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462428A2 (en) * 2003-03-28 2004-09-29 Dowa Mining Co., Ltd. Method of producing perovskite complex oxide and precursor substance used in the method
JP2005187311A (en) * 2003-03-28 2005-07-14 Dowa Mining Co Ltd Method of producing perovskite compound oxide and precursor substance used in the method

Similar Documents

Publication Publication Date Title
Bansal et al. Combustion synthesis of Sm0. 5Sr0. 5CoO3− x and La0. 6Sr0. 4CoO3− x nanopowders for solid oxide fuel cell cathodes
JP5306726B2 (en) Fuel cell electrode-electrolyte composite powder and preparation method thereof
Duran et al. Formation, sintering and thermal expansion behaviour of Sr-and Mg-doped LaCrO3 as SOFC interconnector prepared by the ethylene glycol polymerized complex solution synthesis method
Deshpande et al. Aqueous Combustion Synthesis of Strontium‐Doped Lanthanum Chromite Ceramics
CN101847725B (en) Cathode material of solid oxide fuel cell in A omission type perovskite structure
JP5642197B2 (en) Composite ceramic material and method for producing the same
CN110494595B (en) Chemically resistant oxidation electrocatalyst for oxygen evolution in alkaline water electrolysis processes
EP1796191B1 (en) An improved process for the manufacture of strontium doped lanthanum manganite (LSM) ceramic powder suitable for solid oxide fuel cell (SOFC) applications
Bilger et al. Sol—Gel Synthesis of Strontium‐Doped Lanthanum Manganite
JPH1053463A (en) Lanthanide ceramic material
Subramania et al. Synthesis of nano-crystalline (Ba0. 5Sr0. 5) Co0. 8Fe0. 2O3− δ cathode material by a novel sol–gel thermolysis process for IT-SOFCs
JP2740634B2 (en) Method for producing composite metal oxide, method for producing electrode for fuel cell, and electrode for fuel cell
US20150001442A1 (en) Method for synthesizing air electrode powder for mid- and low- temperature solid oxide fuel cell according to sol-gel process
Tai et al. Mixed‐Cation Oxide Powders via Resin Intermediates Derived from a Water‐Soluble Polymer
Gordes et al. Synthesis of perovskite-type compounds by drip pyrolysis
CN101257120A (en) Process for synthesizing biphase nanometer fuel battery cathode material
KR100800289B1 (en) The processing method of co-synthesis nanosized LSM-YSZ composites with enhanced electrochanmical property for solid oxide fuel cell, and the nanosized LSM-YSZ composites synthesized by the above processing method
JPH0881219A (en) Synthesis of lanthanum-based oxide powder having perovskite-type structure
JP2001342056A (en) Method for producing high density lanthanum chromite- based oxide molding
KR101702217B1 (en) Low-temperature Solid Oxide Fuel Cell
Gupta et al. Characterization of perovskite-type cathode, La0. 75Sr0. 25 Mn0. 95− xCox Ni0. 05O3+ δ (0.1≤ x≤ 0.3), for intermediate-temperature solid oxide fuel cells
JP2005139024A (en) Mixed conductive ceramic material and solid oxide type fuel cell using this material
Kısa et al. Transition metal doped solid oxide fuel cell cathodes
Ghouse et al. Synthesis of Mg doped LaCrO3 nano powders by sol-gel process for solid oxide fuel cell (SOFC) application
JPH05266892A (en) Manuifacture of electrode material for solid electrolyte fuel cell