JPH0881207A - Aluminum nitride powder, its production and use thereof - Google Patents

Aluminum nitride powder, its production and use thereof

Info

Publication number
JPH0881207A
JPH0881207A JP7199064A JP19906495A JPH0881207A JP H0881207 A JPH0881207 A JP H0881207A JP 7199064 A JP7199064 A JP 7199064A JP 19906495 A JP19906495 A JP 19906495A JP H0881207 A JPH0881207 A JP H0881207A
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride powder
particles
particle diameter
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7199064A
Other languages
Japanese (ja)
Other versions
JP3814842B2 (en
Inventor
Masahide Mori
正英 毛利
Shinichiro Tanaka
紳一郎 田中
Takeshi Miyai
健 宮井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP19906495A priority Critical patent/JP3814842B2/en
Publication of JPH0881207A publication Critical patent/JPH0881207A/en
Application granted granted Critical
Publication of JP3814842B2 publication Critical patent/JP3814842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE: To obtain aluminum nitride powder capable of readily sintering and handling, exhibiting high density and thermal conductivity in a sintered compact when used for sintering, and comprising particles with proper unevenness having anchor effect, but not causing a hole in adhesion between the particles and a matrix resin when used as a filler. CONSTITUTION: This aluminum nitride powder is composed of polycrystal particles incapable of clearly noticing grain boundaries and substantially having no crushed face and has 0.1-100μm aggregate particle diameter measured by a particle size distribution-measuring apparatus and 0.55-2.0g/cm heavy density and >=1.1 and <=3 value obtained by dividing number-average particle diameter obtained from SEM image with a particle diameter obtained from BET specific surface area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒化アルミニウム
粉末、その製造方法及びその用途に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to aluminum nitride powder, a method for producing the same, and its use.

【0002】[0002]

【従来の技術】窒化アルミニウムは電気絶縁性に優れ、
かつ高熱伝導性を有する物質であり、窒化アルミニウム
焼結体あるいは窒化アルミニウム粉末をフィラーとして
用いた樹脂等の成形体は、高熱伝導性部材として期待さ
れている。
2. Description of the Related Art Aluminum nitride has excellent electrical insulation properties,
In addition, a sintered body of aluminum nitride or a molded body of resin or the like using aluminum nitride powder as a filler, which is a substance having high thermal conductivity, is expected as a high thermal conductivity member.

【0003】特にエレクトロニクス分野においては、I
Cの高集積化の進展に伴い半導体素子から発生する熱の
放散の問題が重要になってきており、窒化アルミニウム
部材を使用することによる熱放散の向上が検討されてい
る。また、パワートランジスタの高出力化に伴い基板の
熱放散性向上が望まれているが、窒化アルミニウムを用
いた部材は高熱伝導性の基板材料として注目されてい
る。
Especially in the electronics field, I
With the progress of high integration of C, the problem of heat dissipation generated from a semiconductor element has become important, and improvement of heat dissipation by using an aluminum nitride member has been studied. Further, it is desired to improve the heat dissipation of the substrate with the increase in the output of the power transistor, but a member using aluminum nitride is attracting attention as a substrate material having high thermal conductivity.

【0004】窒化アルミニウム粉末を製造する方法は、
アルミナ粉末をカーボン等の還元剤の存在下で窒素を含
む雰囲気中で加熱する還元窒化法、アルミニウム粉末を
窒素を含む雰囲気中で加熱する直接窒化法、塩化アルミ
ニウムを窒素を含む雰囲気中で加熱する気相合成法があ
る。本願発明は還元窒化法に関するものである。
The method for producing aluminum nitride powder is as follows:
Reductive nitriding method of heating alumina powder in an atmosphere containing nitrogen in the presence of a reducing agent such as carbon, direct nitriding method of heating aluminum powder in an atmosphere containing nitrogen, and heating aluminum chloride in an atmosphere containing nitrogen. There is a gas phase synthesis method. The present invention relates to a reduction nitriding method.

【0005】SEM写真による観察では粒界が明瞭には
認めらない従来の窒化アルミニウム粉末においては一般
に、小さい粒子よりなる粉末は焼結しやすいが、粒子が
小さくなるほど粒子と粒子の間に引力として働くファン
デルワールス力の影響が大きくなるので粒子同士が強く
凝集し、小さな粒子よりなる粉末は嵩高くなり、取扱い
が困難である。また、焼結前の成形体密度が低く、焼結
前後の収縮が大きくなる。一方、大きな粒子よりなる粉
末は嵩が低く取扱いが容易であり、成形体密度が高くな
るが、焼結が困難である。
In the conventional aluminum nitride powder, in which grain boundaries are not clearly recognized by SEM photograph observation, powders of small particles are generally easy to sinter, but the smaller the particles, the more attractive the particles become. Since the influence of the van der Waals force acting becomes large, the particles are strongly aggregated, and the powder consisting of small particles becomes bulky and difficult to handle. Further, the density of the compact before sintering is low, and the shrinkage before and after sintering becomes large. On the other hand, a powder composed of large particles has a low bulk, is easy to handle, and increases the density of the compact, but is difficult to sinter.

【0006】また、樹脂等に添加してフィラーとして使
用した場合、従来の窒化アルミニウム粉末は粒子の表面
が滑らかなために、粒子と樹脂との接着に問題があり、
表面に凹凸がある粉末は粒子に空孔を有し、樹脂が内部
まで入り込まず欠陥の原因となる等の問題があった。特
に樹脂と粒子の接着が不十分であると、樹脂が空気中よ
り吸収した水分が接着面の剥離を生じさせ、さらに剥離
した空隙に水分が侵入し複合体の水分吸収が増加すると
いう問題が生じる。吸収された水分は窒化アルミニウム
の粒子を劣化させるので、吸収水分は少ない方が好まし
い。
When used as a filler by adding it to a resin or the like, the conventional aluminum nitride powder has a problem in adhesion between the particles and the resin because the surface of the particles is smooth.
The powder having irregularities on the surface has a problem that the particles have pores and the resin does not enter the inside, which causes defects. In particular, when the adhesion between the resin and the particles is insufficient, there is a problem that the water absorbed by the resin from the air causes peeling of the bonding surface, and the water penetrates into the peeled voids to increase the water absorption of the composite. Occurs. Since the absorbed moisture deteriorates the particles of aluminum nitride, it is preferable that the absorbed moisture is small.

【0007】樹脂フィラーとして使用することのできる
窒化アルミニウム粉末について、これまで種々の検討が
行われてきた。例えば特開平3−23206号公報にお
いては、単一粒子の平均径が3μm以上で、丸味をおび
た形状を有し、実質的に酸窒化アルミニウムスピネルを
含まず、単一粒子径の揃った窒化アルミニウム粉末が開
示されている。該公報第1図に窒化アルミニウム粉末の
写真が開示されているが、粒子の表面が滑らかである。
粒子の表面が滑らかであると、マトリックスである樹脂
等と粒子との接着性が不十分なことがあり、粒子の表面
の凹凸によるアンカー効果が必要となる。
Various studies have been conducted so far on aluminum nitride powder that can be used as a resin filler. For example, in Japanese Unexamined Patent Publication (Kokai) No. 3-23206, a single particle having an average diameter of 3 μm or more and having a rounded shape, substantially not containing aluminum oxynitride spinel, and having a uniform single particle diameter is nitrided. Aluminum powder is disclosed. A photograph of aluminum nitride powder is disclosed in FIG. 1 of the publication, but the surface of the particles is smooth.
If the surface of the particle is smooth, the adhesion between the resin and the matrix as the particle may be insufficient, and the anchor effect due to the unevenness of the surface of the particle is required.

【0008】特開平4−74705号公報においては、
平均粒子径が7〜300μmの範囲にあり、かつ長径と
短径の比が1.5以下である球状窒化アルミニウム粒子
が開示されている。該公報の第1図に窒化アルミニウム
粉末の写真が開示されているが、深い空孔を有する粒子
からなっている。粒子に深い空孔があいていると空孔の
中まで樹脂が入り込まず欠陥の原因となる。
In Japanese Patent Laid-Open No. 4-74705,
Spherical aluminum nitride particles having an average particle diameter in the range of 7 to 300 μm and a ratio of major axis to minor axis of 1.5 or less are disclosed. A photograph of the aluminum nitride powder is disclosed in FIG. 1 of the publication, which consists of particles having deep pores. If the particles have deep pores, the resin will not penetrate into the pores, causing defects.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明の目的
は、焼結が容易で、かつ取扱いが容易で、焼結用として
用いた場合、高い熱伝導度を有し、フィラーとして用い
た場合、粒子とマトリックス樹脂の接着において、アン
カー効果を有するが空孔の原因にはならない適当な凹凸
を有する粒子よりなる、窒化アルミニウム粉末、その製
造方法およびその用途を提供することにある。
Therefore, an object of the present invention is that it is easy to sinter and handle, has high thermal conductivity when used for sintering, and has high thermal conductivity when used as a filler. It is an object of the present invention to provide an aluminum nitride powder, a method for producing the same, and a use thereof, which is composed of particles having an appropriate effect of anchoring but not causing voids in the adhesion between the particles and the matrix resin.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意検討を重ねた結果、粒界が明瞭に
認められる実質的に破砕面を有しない多結晶体粒子から
なる窒化アルミニウム粉末が、焼結用およびフィラー用
に適していることを見出し、本発明を完成させたもので
ある。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the inventors of the present invention have formed polycrystalline particles having substantially no crushed surface in which grain boundaries are clearly recognized. The present invention has been completed by finding that aluminum nitride powder is suitable for sintering and filler.

【0011】すなわち、本発明は下記の発明からなる。 〔1〕粒界が明瞭に認められる多結晶体粒子からなり、
粒度分布測定装置により測定される凝集粒子径が0.1
〜100μm、重装密度が0.55〜2.0g/cm
3 、SEM画像から求めた数平均粒子径をBET比表面
積より求めた粒子径で除した値が1.1以上3以下であ
ることを特徴とする窒化アルミニウム粉末。 〔2〕8面以上の多面体形状で、六方最密格子であるα
−アルミナの六方格子面に平行な最大粒子径をD、六方
格子面に垂直な粒子径をHとしたとき、D/Hが0.5
以上3.0以下のα型アルミナ粒子よりなるアルミナ粉
末を、還元剤の存在下、窒素を含む雰囲気中にて焼成す
ることを特徴とする前記項〔1〕記載の窒化アルミニウ
ム粉末の製造方法。 〔3〕生成した窒化アルミニウム粉末のBET比表面積
が原料のアルミナ粉末のBET比表面積より大きい前記
項〔2〕記載の窒化アルミニウム粉末の製造方法。 〔4〕前記項〔1〕記載の窒化アルミニウム粉末を焼結
して得られる焼結体。 〔5〕前記項〔1〕記載の窒化アルミニウム粉末をフィ
ラーとして添加してなる樹脂組成物。
That is, the present invention comprises the following inventions. [1] Polycrystalline particles with clearly visible grain boundaries,
The aggregate particle size measured by the particle size distribution measuring device is 0.1.
~ 100 μm, and the loading density is 0.55-2.0 g / cm
3. An aluminum nitride powder characterized in that the value obtained by dividing the number average particle diameter obtained from the SEM image by the particle diameter obtained from the BET specific surface area is 1.1 or more and 3 or less. [2] A hexagonal close-packed lattice α with a polyhedron shape of eight or more faces
D / H is 0.5, where D is the maximum particle size parallel to the hexagonal lattice plane of alumina and H is the particle size perpendicular to the hexagonal lattice plane.
The method for producing an aluminum nitride powder according to the above item [1], wherein an alumina powder composed of α-alumina particles having a particle size of 3.0 or less is burned in an atmosphere containing nitrogen in the presence of a reducing agent. [3] The method for producing an aluminum nitride powder according to the above item [2], wherein the BET specific surface area of the produced aluminum nitride powder is larger than the BET specific surface area of the raw material alumina powder. [4] A sintered body obtained by sintering the aluminum nitride powder according to the above item [1]. [5] A resin composition obtained by adding the aluminum nitride powder according to the above item [1] as a filler.

【0012】以下本発明について詳細に説明する。本発
明による窒化アルミニウム粉末の粒子は、粒界が明瞭に
認められる多結晶体粒子よりなる。本発明の窒化アルミ
ニウム粉末を焼結体製造用に使用した場合、粒子内の粒
界によって分けられた結晶が最小単位として焼結するた
め、焼結が容易となる。また取扱いについては多結晶体
である粒子全体が最小単位として作用するので、取扱い
が容易となる。
The present invention will be described in detail below. The particles of the aluminum nitride powder according to the present invention are composed of polycrystalline particles whose grain boundaries are clearly recognized. When the aluminum nitride powder of the present invention is used for producing a sintered body, the crystals separated by the grain boundaries within the particles sinter as the minimum unit, so that the sintering becomes easy. In addition, regarding the handling, since the whole particles that are polycrystals act as the minimum unit, the handling becomes easy.

【0013】よって、本発明の窒化アルミニウム粉末
は、取扱いにおいて作用する最小単位が焼結における最
小単位より大きいものであり、その重装密度は0.55
g/cm3 以上であるため取扱いが容易で、かつ焼結も
容易である。粉砕により破砕面を有する粒子を形成して
重装密度を0.55g/cm3 以上とすることもできる
が、粉砕により窒化アルミニウム粉末中の酸素含有量が
増大したり、微細な粒子が混入して焼結むらの原因とな
ったりするため、破砕面を有する粒子からなる窒化アル
ミニウム粉末は焼結用粉末として適当ではない。
Therefore, in the aluminum nitride powder of the present invention, the minimum unit that acts in handling is larger than the minimum unit in sintering, and the weight density is 0.55.
Since it is g / cm 3 or more, it is easy to handle and easy to sinter. It is also possible to form particles having a crushed surface by crushing to have a heavy load density of 0.55 g / cm 3 or more, but the crushing increases the oxygen content in the aluminum nitride powder or causes the inclusion of fine particles. The aluminum nitride powder composed of particles having a crushed surface is not suitable as a powder for sintering because it may cause uneven sintering.

【0014】本発明の窒化アルミニウム粉末は多結晶体
粒子からなり、粒界が明瞭に認められ、粒子表面の粒界
部に凹凸が存在するため、滑らかな表面を有する粒子よ
り表面積が大きくなり、BET比表面積から求めた粒子
径はSEM画像から求めた数平均粒子径より小さくな
る。SEM画像から求めた数平均粒子径をBET比表面
積より求めた粒子径で除した値は1.1以上3以下であ
る。SEM画像から求めた数平均粒子径をBET比表面
積より求めた粒子径で除した値が1.1未満であると、
窒化アルミニウム粉末を樹脂にフィラーとして添加して
複合体を製造した場合、粒子の表面が平滑であるため粒
子表面と樹脂との接着が不十分となり、複合体の水分の
吸収量が大きくなり好ましくない。数平均粒子径をBE
T比表面積より求めた粒子径で除した値が3より大きく
なると、粒子に深い空孔があいているためフィラーとし
て使用した場合、空孔の中まで樹脂が入り込みにくく、
欠陥の原因となるため好ましくない。また焼結体用に使
用した場合、凝集が強くなり焼結性が低下するため好ま
しくない。
The aluminum nitride powder of the present invention is composed of polycrystalline particles, grain boundaries are clearly recognized, and irregularities are present at the grain boundary portions of the particle surface, so that the surface area becomes larger than that of particles having a smooth surface. The particle size obtained from the BET specific surface area is smaller than the number average particle size obtained from the SEM image. The value obtained by dividing the number average particle diameter obtained from the SEM image by the particle diameter obtained from the BET specific surface area is 1.1 or more and 3 or less. When the value obtained by dividing the number average particle diameter obtained from the SEM image by the particle diameter obtained from the BET specific surface area is less than 1.1,
When a composite is produced by adding aluminum nitride powder to the resin as a filler, the surface of the particle is so smooth that the adhesion between the particle surface and the resin becomes insufficient, and the amount of moisture absorbed by the composite becomes large, which is not preferable. . The number average particle size is BE
When the value obtained by dividing the particle size obtained from the T specific surface area is larger than 3, when the particles are used as a filler because the particles have deep pores, it is difficult for the resin to penetrate into the pores.
It is not preferable because it causes defects. Further, when it is used for a sintered body, coagulation becomes strong and sinterability is deteriorated, which is not preferable.

【0015】粒子に粒界が明瞭に認められない窒化アル
ミニウム粉末では、粒子表面が平滑であるため、樹脂に
添加した場合に樹脂と粒子の接着が不十分となりやすい
ため、フィラー用途には適当でなく、また、多結晶体で
あっても多孔体であると、深い空孔の内部まで樹脂が入
り込みにくく欠陥の原因となるため好ましくない。よっ
て粒界が明瞭に認められ、かつ多結晶体粒子よりなる本
発明の窒化アルミニウム粉末は、適当な凹凸を有するた
め焼結体用途やフィラー用途に好適に使用され得る。
The aluminum nitride powder in which no grain boundary is clearly seen in the particles has a smooth particle surface, and when it is added to the resin, the adhesion between the resin and the particles tends to be insufficient, so that it is suitable for use as a filler. Moreover, even if it is a polycrystalline body, it is not preferable that it is a porous body because it is difficult for the resin to penetrate into the deep pores and cause defects. Therefore, the aluminum nitride powder of the present invention in which the grain boundaries are clearly recognized and which is composed of polycrystalline particles can be suitably used for a sintered body application or a filler application because it has appropriate irregularities.

【0016】本発明の窒化アルミニウム粉末の粒度分布
測定装置により測定される凝集粒子径は0.1μm以
上、100μm以下であり、重装密度は0.55〜2.
0g/cm3 である。重装密度は高い方が好ましいが、
2.0g/cm3 を超えることは実質的に困難である。
凝集粒子径は、粒子が小さいと酸化が進みやすく長期保
存ができないので0.1μm以上であることが必要であ
り、0.5μm以上であることが好ましい。凝集粒子径
が0.1μm未満では、重装密度が0.55g/cm3
より小さくなり、焼結体用途に使用した場合には焼結前
の取扱いが困難となり、またフィラー用途に使用した場
合にはフィラーとして樹脂に添加できる量が少なくなる
ため好ましくない。また、凝集粒子径は、100μm以
下であることが必要であり、好ましくは50μm以下、
特に焼結体製造用には5μm以下がさらに好ましく、3
μm以下が最も好ましい。凝集粒子径が100μmより
大きいと、焼結体用途に使用した場合には焼結体密度が
小さくなり、またフィラー用途に使用した場合には該窒
化アルミニウム粉末を添加して製造した樹脂成形体の表
面に凹凸が生じやすくなるため好ましくない。
The agglomerated particle size measured by the aluminum nitride powder particle size distribution measuring apparatus of the present invention is 0.1 μm or more and 100 μm or less, and the weight density is 0.55 to 2.
It is 0 g / cm 3 . Higher loading density is preferable, but
It is practically difficult to exceed 2.0 g / cm 3 .
The agglomerated particle size needs to be 0.1 μm or more, and is preferably 0.5 μm or more, because if the particles are small, oxidation is likely to proceed and long-term storage cannot be performed. If the aggregated particle size is less than 0.1 μm, the weight density is 0.55 g / cm 3
It becomes smaller, and it becomes difficult to handle before use when it is used for a sintered body, and when it is used for a filler, the amount that can be added to the resin as a filler is small, which is not preferable. Further, the aggregated particle size needs to be 100 μm or less, preferably 50 μm or less,
Especially for producing a sintered body, 5 μm or less is more preferable and 3
Most preferably, it is less than or equal to μm. When the aggregate particle size is larger than 100 μm, the density of the sintered body becomes small when it is used for a sintered body, and when it is used for a filler, a resin molded body produced by adding the aluminum nitride powder is used. Unevenness is likely to occur on the surface, which is not preferable.

【0017】本発明の窒化アルミニウム粉末は、アルミ
ナ粉末をカーボン等の還元剤の存在下、窒素を含む雰囲
気中で加熱する還元窒化法、アルミニウム粉末を窒素を
含む雰囲気中で加熱する直接酸化法、塩化アルミニウム
を窒素を含む雰囲気中で加熱する気相合成法等の方法に
より製造することが可能であるが、還元窒化法により製
造することが好ましい。以下に還元窒化法による本発明
の窒化アルミニウム粉末の製造方法について説明する。
本発明の窒化アルミニウム粉末を製造するための原料の
代表例としては、8面以上の多面体形状で、六方最密格
子であるα−アルミナの六方格子面に平行な最大粒子径
をD、六方格子面に垂直な粒子径をHとしたとき、D/
Hが0.5以上3.0以下である、実質的に破砕面を有
しない、α型アルミナ粒子よりなるアルミナ粉末が挙げ
られる。該アルミナ粉末を原料として使用することによ
り、粒界が明瞭に認められる多結晶体粒子よりなり、粒
度分布測定装置により測定される凝集粒子径が0.1〜
100μmで、重装密度が0.55g/cm3 以上、S
EM画像から求めた数平均粒子径をBET比表面積より
求めた粒子径で除した値は1.1以上3以下である実質
的に破砕面を有しない窒化アルミニウム粉末を容易に製
造することができる。
The aluminum nitride powder of the present invention is obtained by a reduction nitriding method in which alumina powder is heated in an atmosphere containing nitrogen in the presence of a reducing agent such as carbon, a direct oxidation method in which aluminum powder is heated in an atmosphere containing nitrogen, It can be produced by a method such as a vapor phase synthesis method in which aluminum chloride is heated in an atmosphere containing nitrogen, but it is preferably produced by a reduction nitriding method. The method for producing the aluminum nitride powder of the present invention by the reduction nitriding method will be described below.
As a typical example of the raw material for producing the aluminum nitride powder of the present invention, a polyhedral shape having 8 or more faces and a maximum particle diameter D parallel to the hexagonal lattice plane of α-alumina, which is a hexagonal close-packed lattice, and a hexagonal lattice are shown. When the particle diameter perpendicular to the plane is H, D /
An alumina powder composed of α-type alumina particles having H of 0.5 or more and 3.0 or less and having substantially no crushed surface can be mentioned. By using the alumina powder as a raw material, it is composed of polycrystalline particles in which grain boundaries are clearly recognized, and the aggregate particle diameter measured by a particle size distribution measuring device is 0.1 to 0.1.
100μm, the loading density is 0.55g / cm 3 or more, S
The value obtained by dividing the number average particle diameter obtained from the EM image by the particle diameter obtained from the BET specific surface area is 1.1 or more and 3 or less, and it is possible to easily manufacture a substantially crushed aluminum nitride powder. .

【0018】原料のアルミナ粉末が、8面以上の多面体
形状で、六方最密格子であるα−アルミナの六方格子面
に平行な最大粒子径をD、六方格子面に垂直な粒子径を
Hとしたとき、D/Hが0.5以上3.0以下である、
実質的に破砕面を有しない、α型アルミナ粒子よりなる
アルミナ粉末である場合、還元窒化により得られた窒化
アルミニウム粉末は明瞭な粒界を有しており、表面に凹
凸が生じているため、BET比表面積が増加する。よっ
て、原料のアルミナ粉末のBET比表面積に対して得ら
れる窒化アルミニウム粉末のBET比表面積は大きくな
る。従って、上記のα型アルミナ粒子よりなるアルミナ
粉末を原料として用いることが好ましい。一方、窒化ア
ルミニウム粉末のBET比表面積が原料のアルミナ粉末
のBET比表面積より大きくない場合は、窒化アルミニ
ウム粉末の粒子に明瞭な粒界が存在しないため好ましく
ない。例えば、破砕面を有する不定型アルミナ粒子を原
料として用いた場合は、明瞭な粒界が形成されないた
め、本発明の目的には適当でない。
The raw material alumina powder has a polyhedral shape with eight or more faces, and the maximum particle diameter parallel to the hexagonal lattice surface of α-alumina, which is a hexagonal close-packed lattice, is D, and the particle diameter perpendicular to the hexagonal lattice surface is H. D / H is 0.5 or more and 3.0 or less,
Substantially no crushed surface, when the alumina powder consisting of α-type alumina particles, the aluminum nitride powder obtained by reduction nitriding has clear grain boundaries, because the surface has irregularities, BET specific surface area increases. Therefore, the BET specific surface area of the obtained aluminum nitride powder becomes large with respect to the BET specific surface area of the raw material alumina powder. Therefore, it is preferable to use, as a raw material, an alumina powder composed of the above α-type alumina particles. On the other hand, when the BET specific surface area of the aluminum nitride powder is not larger than the BET specific surface area of the raw material alumina powder, there is no clear grain boundary in the particles of the aluminum nitride powder, which is not preferable. For example, when amorphous alumina particles having a crushed surface are used as a raw material, clear grain boundaries are not formed, which is not suitable for the purpose of the present invention.

【0019】本発明の窒化アルミニウム粉末は、焼結用
に用いた場合、焼結が容易でかつ取扱いが容易であり、
高い熱伝導度を有する焼結体を得ることができる。ま
た、樹脂等に添加するフィラーとして用いた場合、アン
カー効果を有するが空孔の原因とはならない適度な凹凸
を有するため粒子とマトリックス樹脂の接着性が良好で
あり、工業上きわめて有用である。
When used for sintering, the aluminum nitride powder of the present invention is easy to sinter and is easy to handle,
A sintered body having high thermal conductivity can be obtained. When it is used as a filler to be added to a resin or the like, it has an adequate anchoring effect that has an anchoring effect but does not cause pores, and therefore has good adhesion between the particles and the matrix resin, which is extremely useful industrially.

【0020】本発明の窒化アルミニウム粉末は、一般的
な方法により焼結することができる。焼結助剤を使用す
る場合は、酸化イットリウム、酸化カルシウム、稀土類
酸化物を0.1〜10重量%添加することができる。バ
インダーを使用するばあい、アクリル樹脂、ポリビニー
ルブチラールを窒化アルミニウム粉末100重量部に対
して0.1〜10重量部、可塑剤を使用する場合はジオ
クチルフタレート、ジブチルフタレートを窒化アルミニ
ウム粉末100重量部に対して0.1〜10重量部使用
することができる。窒化アルミニウム粉末と焼結助剤と
バインダーおよび可塑剤の混合方法は、ボールミル、振
動ミル、らいかい機、ニーダーを使用することができ、
混合に際してエタノール、メタノール、ブタノール、ト
ルエン、アセトン、メチルエチルケトン等の溶剤を使用
することができる。窒化アルミニウム粉末と焼結助剤と
バインダー等の混合物を乾燥させ、一軸プレス、ラバー
プレスにより成形体を作製することができる。また、窒
化アルミニウム粉末と焼結助剤とバインダー等の混合物
を溶剤中に分散させた状態で、ドクターブレード、カレ
ンダーロールにより成形体を作製することができる。焼
結は窒素またはアルゴン中1〜10気圧で行うかまた
は、100〜2000kg/cm2 の圧力を加えたホッ
トプレス、または100〜3000kg/cm2 の圧力
を加えた熱間静水圧プレス(HIP)により行うことが
できる。焼結温度は1600〜2000℃が好ましい。
焼結温度が1600℃未満では密度が理論密度の90%
未満となり緻密な焼結体が得られない場合があり、焼結
温度が2000℃を超えると焼結体に色むらが発生する
場合がある。本発明の窒化アルミニウム粉末を、一般的
な方法により樹脂等にフィラーとして添加し複合体を作
製することができる。フィラーとして添加する対象は特
に限定されないが、本発明の窒化アルミニウム粉末は、
エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリ
プロピレン樹脂、ポリエステル樹脂、シリコーン樹脂、
シリコーンゴムに添加することができる。硬化剤、可塑
剤、着色剤、安定剤、離型剤等を添加することは差支え
ない。窒化アルミニウム粉末を樹脂等に添加するには、
ロール、ニーダー、ラボブラストミルにより混練するこ
とができる。添加量は20〜80体積%が好ましく、添
加量が20体積%未満では熱伝導度上昇が少なく、80
体積%を超えて添加すると樹脂が不足し成形体中に空孔
が発生する場合がある。成形は注型、トランファー成
形、プレス成形、射出成形により行うことができる。
The aluminum nitride powder of the present invention can be sintered by a general method. When a sintering aid is used, yttrium oxide, calcium oxide, and rare earth oxide can be added in an amount of 0.1 to 10% by weight. When using a binder, 0.1 to 10 parts by weight of acrylic resin and polyvinyl butyral are used per 100 parts by weight of aluminum nitride powder, and when a plasticizer is used, dioctyl phthalate and dibutyl phthalate are 100 parts by weight of aluminum nitride powder. 0.1 to 10 parts by weight can be used. As a method for mixing the aluminum nitride powder, the sintering aid, the binder, and the plasticizer, a ball mill, a vibration mill, a raider machine, or a kneader can be used.
At the time of mixing, a solvent such as ethanol, methanol, butanol, toluene, acetone or methyl ethyl ketone can be used. A mixture of aluminum nitride powder, a sintering aid, a binder, etc. is dried, and a molded product can be produced by a uniaxial press or a rubber press. Further, a molded body can be produced by a doctor blade or a calender roll in a state where a mixture of aluminum nitride powder, a sintering aid, a binder and the like is dispersed in a solvent. Sintering or carried out in 1 to 10 atm in a nitrogen or argon, hot isostatic pressing with a pressure of hot pressing or 100~3000kg / cm 2, was added the pressure of 100~2000kg / cm 2 (HIP) Can be done by. The sintering temperature is preferably 1600 to 2000 ° C.
If the sintering temperature is less than 1600 ° C, the density is 90% of the theoretical density.
When the sintering temperature exceeds 2000 ° C., color unevenness may occur in the sintered body. The aluminum nitride powder of the present invention can be added to a resin or the like as a filler by a general method to prepare a composite. The subject to be added as a filler is not particularly limited, the aluminum nitride powder of the present invention,
Epoxy resin, phenol resin, polyimide resin, polypropylene resin, polyester resin, silicone resin,
It can be added to silicone rubber. It does not matter to add a curing agent, a plasticizer, a coloring agent, a stabilizer, a release agent, or the like. To add aluminum nitride powder to resin etc.,
It can be kneaded by a roll, a kneader or a lab blast mill. The addition amount is preferably 20 to 80% by volume, and if the addition amount is less than 20% by volume, the increase in thermal conductivity is small,
If added in excess of volume%, the resin may be insufficient and voids may occur in the molded body. Molding can be performed by casting, transfer molding, press molding, or injection molding.

【0021】[0021]

【実施例】次に本発明を実施例によりさらに詳しく説明
するが、本発明はこれらの実施例に限定されるものでは
ない。なお、本発明における各種の測定はつぎのように
して行った。 1)数平均粒子径およびD/Hの測定 SEM(走査型電子顕微鏡、日本電子株式会社製:T−
300)を使用して粉末粒子の写真を写し、その写真か
ら5ないし10個の粒子を選び出して画像解析を行い、
その平均値として求めた。数平均粒子径を以下単に粒子
径ということがある。 2)重量平均凝集粒子径の測定 アルミナ粉末については、マスターサイザー(マルバー
ン社製)を使用し、レーザー回折散乱法により測定し
た。以下、単に凝集粒子径ということがある。測定の前
処理として、分散剤としてヘキサメタリン酸ナトリウム
を水に0.15重量%溶解させた水中に添加し、超音波
ホモジナイザーにより超音波を2分間照射して分散させ
た。窒化アルミニウム粉末については、SA−CP2
(島津製作所製)を使用し、遠心沈降法により測定し
た。以下、単に凝集粒子径ということがある。測定の前
処理として、分散剤として第一工業製薬製セラモD−1
8を0.02重量%溶解させたエタノール中に窒化アル
ミニウム粉末を添加し、超音波洗浄機により超音波を1
0分間照射して分散させた。 3)結晶相 X線回折法(株式会社リガク製、RAD−C)により測
定した。 4)単結晶の判定 日本電子株式会社製透過型電子顕微鏡J−4000型に
より粉末粒子を観察した。 5)BET比表面積 フローソーブII(マイクロメリティックス社製)によ
り測定した。 6)BET比表面積から求めた粒子径 窒化アルミニウムの密度を3.26g/cm3 とし、次
式により算出する。 粒径=6÷(BET比表面積)÷(密度) 7)重装密度の測定 窒化アルミニウム粉末をメスシリンダ−に、メスシリン
ダ−を振動させたり窒化アルミニウム粉末を圧縮するこ
となしに約200ml入れ、メスシリンダ−を3cmの
高さから100回落下させた後にメスシリンダ−の目盛
りを読んで窒化アルミニウム粉末の体積を測定した。メ
スシリンダ−に入れた窒化アルミニウム粉末の重量を1
00回落下後の窒化アルミニウム粉末の体積で除して重
装密度を算出した。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples. Various measurements in the present invention were performed as follows. 1) Measurement of number average particle diameter and D / H SEM (scanning electron microscope, manufactured by JEOL Ltd .: T-)
300) is used to take a photograph of powder particles, and 5 to 10 particles are selected from the photograph and image analysis is performed,
The average value was calculated. Hereinafter, the number average particle diameter may be simply referred to as the particle diameter. 2) Measurement of weight average agglomerated particle size The alumina powder was measured by a laser diffraction scattering method using Mastersizer (manufactured by Malvern Instruments Ltd.). Hereinafter, it may be simply referred to as an aggregate particle size. As a pretreatment for the measurement, sodium hexametaphosphate as a dispersant was added to water prepared by dissolving 0.15% by weight in water, and ultrasonic waves were irradiated for 2 minutes by an ultrasonic homogenizer to disperse the particles. For aluminum nitride powder, SA-CP2
(Manufactured by Shimadzu Corporation) was used and the measurement was carried out by the centrifugal sedimentation method. Hereinafter, it may be simply referred to as an aggregate particle size. As a pretreatment for measurement, as a dispersant, CERAMO D-1 manufactured by Daiichi Kogyo Seiyaku
Aluminum nitride powder was added to ethanol in which 0.02% by weight of 8 was dissolved, and ultrasonic waves were applied by an ultrasonic cleaner to 1
Irradiate for 0 minutes to disperse. 3) Crystal phase It was measured by an X-ray diffraction method (manufactured by Rigaku Corporation, RAD-C). 4) Judgment of single crystal Powder particles were observed with a transmission electron microscope J-4000 manufactured by JEOL Ltd. 5) BET specific surface area Measured by Flowsorb II (manufactured by Micromeritics). 6) Particle size calculated from BET specific surface area The density of aluminum nitride is set to 3.26 g / cm 3 and calculated by the following formula. Particle size = 6 ÷ (BET specific surface area) ÷ (density) 7) Measurement of heavy load density About 200 ml of aluminum nitride powder was put in a graduated cylinder without vibrating the graduated cylinder or compressing the aluminum nitride powder, After the graduated cylinder was dropped 100 times from a height of 3 cm, the graduated scale of the graduated cylinder was read and the volume of the aluminum nitride powder was measured. The weight of the aluminum nitride powder put in the graduated cylinder is 1
The heavy load density was calculated by dividing by the volume of the aluminum nitride powder after being dropped 00 times.

【0022】実施例1 住友化学工業株式会社製の水酸化アルミニウム(商品
名:AKP−DA)を水に分散させて作製したスラリー
に、住友化学工業株式会社製α型アルミナ粉末(商品
名:AKP−30、粒子径0.5μm)を添加し、乾燥
させてアルミナの原料とした。水酸化アルミニウムスラ
リーを乾燥焼成して生成するアルミナ100重量部に対
して、AKP−30を0.1重量部添加した。このよう
にして得た原料を片側を閉じた石英炉芯管に1kg仕込
み、1100℃に保持した炉内に挿入し30分間保持し
た。その後、石英炉芯管に雰囲気導入管と排気管を有す
る蓋を付け、塩化水素ガス30体積%、窒素70体積%
よりなる雰囲気ガスを毎分200ml流して1時間保持
した後、反応した粉末を炉から抜出し自然放冷した。得
られた粉末についてX線回折による分析を行ったとこ
ろ、α型アルミナであり、それ以外のピークは見られな
かった。走査型電子顕微鏡による観察の結果、8〜10
の面を有する多面体粒子が生成しており実質的に破砕面
は見られなかった。その粒子径は1.5μm、D/Hは
1.0であった。凝集粒子径は3.2μm、BET比表
面積は1.2m2 /gであった。透過型電子顕微鏡によ
り粉末粒子を観察した結果、粒界は見当らず単結晶粒子
であった。得られた多面体状アルミナ粒子からなる粉末
510gとカーボン(電気化学工業株式会社製アセチレ
ンブラック)240gとをボールミルにより混合した。
分散媒には、1800gの水に、第一工業製薬株式会社
製ノイゲンEA−137を28.8g、和光純薬工業株
式会社製ポリエチレングリコール(#1000)を7.
5g、硝酸アルミニウム〔Al(NO33 ・9H2
O〕を4.49g、1N硝酸を18g溶解した液を使用
した。16時間のボールミル混合の後、乾燥機にて11
0℃で乾燥させた。該混合物をグラファイト製トレーに
15mm厚さに仕込み、窒素気流中1650℃で5時間
焼成した。窒素流量は原料1kgにつき1時間当り常温
常圧に換算して0.38m3 とした。得られた反応生成
物を空気中にて670℃で2時間焼成し、余剰カーボン
を焼成除去した。こうして得られた窒化アルミニウム粉
末の酸素量は1.01重量%、重装密度は0.66g/
cm3 であり、粒界が明瞭に認められる実質的に破砕面
を有しない緻密な多結晶体であった。粒子径は1.5μ
mであった。凝集粒子径は2.8μm、BET比表面積
は1.9m2 /gであった。BET比表面積から求めた
粒子径は0.97μmとなり、粒子径をBET比表面積
より求めた粒子径で除した値は1.5であった。得られ
た窒化アルミニウム粉末に、焼結助剤として酸化イット
リウム粉末を3重量%、バインダーとしてアクリル樹脂
を1重量%添加し、ブタノールを使用してボールミルに
より混合した。混合粉末を乾燥後、金型を使用して30
0kg/cm2 の圧力で直径13mm、高さ10mmの
形状に成形し、1500kg/cm2 の圧力でラバープ
レス処理を行った。得られた成形体を、グラファイト容
器に入れた窒化アルミニウム粉末と窒化ホウ素粉末の
1:1混合粉末中に埋没させ、窒素雰囲気中常圧にて1
850℃で焼結した。1850℃における保持時間は5
時間とした。得られた焼結体の密度を測定した結果、
3.29g/cm3 (理論密度の100%)であった。
焼結体の熱伝導度をレーザーフラッシュ法により測定し
た結果、189W/mKであった。凝集粒子径が2.8
μmである上記の窒化アルミニウム粉末をエポキシ樹脂
(商品名:スミエポキシESCN−195−XL、住友
化学工業社製)に添加し、さらにエポキシ樹脂100重
量部に対して、硬化剤としてフェノールノボラック(商
品名タマノル758、荒川化学工業製)を54.3重量
部、硬化促進剤としてトリフェニルホスフィン(和光純
薬製)を1.5重量部、離型剤としてカルナバワックス
を1.5重量部、カップリング剤(商品名SH−604
0、東レダウコーニングシリコーン製)を2.0重量部
添加した。該窒化アルミニウム粉末が50体積%となる
ようにして、110℃でロールにより混練を実施した。
体積%は窒化アルミニウム粉末の密度を3.2g/cm
3 、エポキシ樹脂の密度を1.2g/cm3 として計算
した。該混合物をトランスファー成形により円盤状に成
形し、180℃に加熱して硬化させて複合体を製造し
た。得られた複合体を85℃、相対湿度85%の雰囲気
に100時間晒し、吸収水分量を重量増加により測定し
た結果、0.51重量%であった。
Example 1 A slurry made by dispersing aluminum hydroxide (trade name: AKP-DA) manufactured by Sumitomo Chemical Co., Ltd. in water was added to α-alumina powder (trade name: AKP manufactured by Sumitomo Chemical Co., Ltd.). -30, particle diameter 0.5 μm) was added and dried to obtain a raw material for alumina. 0.1 part by weight of AKP-30 was added to 100 parts by weight of alumina produced by drying and firing the aluminum hydroxide slurry. 1 kg of the raw material thus obtained was charged into a quartz furnace core tube with one side closed, and the raw material was inserted into a furnace kept at 1100 ° C. and kept for 30 minutes. After that, a lid having an atmosphere introduction pipe and an exhaust pipe was attached to the quartz furnace core tube, and hydrogen chloride gas was 30% by volume and nitrogen was 70% by volume.
After flowing 200 ml of an atmosphere gas consisting of the above for 1 hour and holding it, the reacted powder was taken out of the furnace and naturally cooled. When the obtained powder was analyzed by X-ray diffraction, it was α-alumina and no other peak was observed. As a result of observation with a scanning electron microscope, 8 to 10
Polyhedral particles having a surface of (3) were generated, and a crushed surface was not substantially seen. The particle diameter was 1.5 μm and the D / H was 1.0. The aggregated particle size was 3.2 μm, and the BET specific surface area was 1.2 m 2 / g. As a result of observing the powder particles with a transmission electron microscope, no grain boundaries were found and the particles were single crystal particles. 510 g of the powder made of the obtained polyhedral alumina particles and 240 g of carbon (acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd.) were mixed by a ball mill.
As the dispersion medium, 28.8 g of Neugen EA-137 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. and polyethylene glycol (# 1000) manufactured by Wako Pure Chemical Industries, Ltd. in 1800 g of water were used.
5g, aluminum nitrate [Al (NO 3) 3 · 9H 2
O] of 4.49 g and 1N nitric acid of 18 g were used. After mixing for 16 hours with a ball mill, use a dryer for 11
It was dried at 0 ° C. The mixture was placed in a graphite tray in a thickness of 15 mm and baked in a nitrogen stream at 1650 ° C. for 5 hours. The nitrogen flow rate was 0.38 m 3 per 1 kg of raw material in terms of room temperature and atmospheric pressure. The obtained reaction product was fired in air at 670 ° C. for 2 hours to remove excess carbon by firing. The aluminum nitride powder thus obtained had an oxygen content of 1.01% by weight and a loading density of 0.66 g /
It was cm 3 , and it was a dense polycrystalline body having substantially no crushed surface in which grain boundaries were clearly recognized. Particle size is 1.5μ
It was m. The aggregate particle size was 2.8 μm, and the BET specific surface area was 1.9 m 2 / g. The particle diameter obtained from the BET specific surface area was 0.97 μm, and the value obtained by dividing the particle diameter by the particle diameter obtained from the BET specific surface area was 1.5. 3% by weight of yttrium oxide powder as a sintering aid and 1% by weight of acrylic resin as a binder were added to the obtained aluminum nitride powder, and they were mixed by a ball mill using butanol. After drying the mixed powder, use a mold to
0 kg / cm 2 in diameter 13mm in pressure, and molded into the shape of height 10 mm, were subjected to rubber press at a pressure of 1500 kg / cm 2. The molded body thus obtained was embedded in a 1: 1 mixed powder of aluminum nitride powder and boron nitride powder placed in a graphite container, and the mixture was subjected to 1 at normal pressure in a nitrogen atmosphere.
Sintered at 850 ° C. Hold time at 1850 ° C is 5
It was time. As a result of measuring the density of the obtained sintered body,
It was 3.29 g / cm 3 (100% of theoretical density).
As a result of measuring the thermal conductivity of the sintered body by the laser flash method, it was 189 W / mK. Aggregated particle size is 2.8
The aluminum nitride powder having a size of μm was added to an epoxy resin (trade name: Sumiepoxy ESCN-195-XL, manufactured by Sumitomo Chemical Co., Ltd.), and 100 parts by weight of the epoxy resin was further mixed with phenol novolac (trade name) as a curing agent. 54.3 parts by weight of Tamanor 758, manufactured by Arakawa Chemical Industry, 1.5 parts by weight of triphenylphosphine (manufactured by Wako Pure Chemical Industries) as a curing accelerator, 1.5 parts by weight of carnauba wax as a release agent, and coupling. Agent (trade name SH-604
0, manufactured by Toray Dow Corning Silicone) was added in an amount of 2.0 parts by weight. The aluminum nitride powder was made to be 50% by volume and kneaded by a roll at 110 ° C.
Volume% is the density of the aluminum nitride powder 3.2 g / cm
3 , the density of the epoxy resin was calculated to be 1.2 g / cm 3 . The mixture was molded into a disk shape by transfer molding, and heated at 180 ° C. to be cured to produce a composite. The obtained composite was exposed to an atmosphere of 85 ° C. and a relative humidity of 85% for 100 hours, and the amount of absorbed water was measured by weight increase. As a result, it was 0.51% by weight.

【0023】実施例2 AKP−30の添加量を0.05重量部とした以外は実
施例1と同様にして実質的に破砕面を有しない8〜12
面を有する多面体状のα型アルミナ粒子よりなるアルミ
ナ粉末を作製した。粒子径は2.5μm、D/Hは1.
0であった。凝集粒子径は3.8μm、BET比表面積
は0.7m2 /gであった。得られたアルミナ粉末を使
用して、1650℃における焼成時間を6時間とした以
外は実施例1と同様にして窒化アルミニウム粉末を得
た。こうして得られた窒化アルミニウム粉末の酸素量は
0.69重量%、重装密度は0.62g/cm3 であ
り、粒子は粒界が明瞭に認められる実質的に破砕面を有
しない緻密な多結晶体であった。粒子径は2.5μmで
あった。凝集粒子径は4.1μm、BET比表面積は
1.5m2 /gであった。BET比表面積から求められ
る粒子径は1.2μmとなり、粒子径をBET比表面積
より求めた粒子径で除した値は2.1であった。該窒化
アルミニウム粉末を実施例1と同様にしてエポキシ樹脂
に添加して複合体を製造し、実施例1と同様にして吸収
水分量を重量増加により測定した結果、0.45重量%
であった。
Example 2 The procedure of Example 1 was repeated except that the amount of AKP-30 added was changed to 0.05 parts by weight.
An alumina powder composed of polyhedral α-type alumina particles having a surface was prepared. The particle size is 2.5 μm and the D / H is 1.
It was 0. The aggregate particle size was 3.8 μm, and the BET specific surface area was 0.7 m 2 / g. An aluminum nitride powder was obtained in the same manner as in Example 1 except that the obtained alumina powder was used and the firing time at 1650 ° C. was set to 6 hours. The aluminum nitride powder thus obtained had an oxygen content of 0.69% by weight and a loading density of 0.62 g / cm 3 , and the particles had a dense multi-grained structure with clearly recognizable grain boundaries. It was a crystal. The particle size was 2.5 μm. The aggregate particle size was 4.1 μm, and the BET specific surface area was 1.5 m 2 / g. The particle diameter obtained from the BET specific surface area was 1.2 μm, and the value obtained by dividing the particle diameter by the particle diameter obtained from the BET specific surface area was 2.1. The aluminum nitride powder was added to an epoxy resin in the same manner as in Example 1 to produce a composite, and the amount of absorbed water was measured by increasing the weight in the same manner as in Example 1, and the result was 0.45% by weight.
Met.

【0024】比較例1 住友化学工業株式会社製のアルミナ(商品名:AMS−
12、粒子径は0.3μm、凝集粒子径は0.6μm、
BET比表面積は7.1m2 /g、D/Hは1.0)を
使用し、反応条件を1600℃で5時間とした以外は実
施例1と同様にして窒化アルミニウム粉末を作製した。
AMS−12をSEMにて観察した結果、破砕面を有す
る粒子より成っていた。生成した窒化アルミニウム粒子
には明瞭な粒界が見られなかった。窒化アルミニウム粉
末の酸素量は1.10重量%、重装密度は0.50g/
cm3 であった。粒子径は0.5μm、凝集粒子径は
1.9μm、BET比表面積は3.8m2 /gであっ
た。BET比表面積から求められる粒子径は0.48μ
mとなり、粒子径をBET比表面積より求めた粒子径で
除した値は1.04であった。該窒化アルミニウム粉末
を実施例1と同様にして焼結体を得た。得られた焼結体
の密度を測定した結果、3.24g/cm3 (理論密度
の98%)であった。焼結体の熱伝導度をレーザーフラ
ッシュ法により測定した結果、175W/mKであっ
た。該窒化アルミニウム粉末を実施例1と同様にしてエ
ポキシ樹脂に添加して複合体を製造し、実施例1と同様
にして吸収水分量を重量増加により測定した結果、1.
06重量%であった。
Comparative Example 1 Alumina manufactured by Sumitomo Chemical Co., Ltd. (trade name: AMS-
12, particle size is 0.3 μm, aggregate particle size is 0.6 μm,
An aluminum nitride powder was produced in the same manner as in Example 1 except that the BET specific surface area was 7.1 m 2 / g and D / H was 1.0) and the reaction conditions were 1600 ° C. for 5 hours.
As a result of observing AMS-12 by SEM, it was composed of particles having a crushed surface. No clear grain boundary was found in the produced aluminum nitride particles. Aluminum nitride powder has an oxygen content of 1.10% by weight and a heavy load density of 0.50 g /
It was cm 3 . The particle diameter was 0.5 μm, the aggregate particle diameter was 1.9 μm, and the BET specific surface area was 3.8 m 2 / g. Particle size calculated from BET specific surface area is 0.48μ
The value obtained by dividing the particle diameter by the particle diameter obtained from the BET specific surface area was 1.04. A sintered body was obtained from the aluminum nitride powder in the same manner as in Example 1. As a result of measuring the density of the obtained sintered body, it was 3.24 g / cm 3 (98% of the theoretical density). As a result of measuring the thermal conductivity of the sintered body by the laser flash method, it was 175 W / mK. The aluminum nitride powder was added to an epoxy resin in the same manner as in Example 1 to produce a composite, and the amount of absorbed water was measured by increasing the weight in the same manner as in Example 1. As a result, 1.
It was 06% by weight.

【0025】[0025]

【発明の効果】本発明の方法により得られる窒化アルミ
ニウム粉末は、焼結用に用いた場合、焼結が容易でかつ
取扱いが容易であり、焼結体としたときに高い焼結体密
度と熱伝導度が得られる。また、樹脂等に添加するフィ
ラーとして用いた場合、粒子とマトリックス樹脂の接着
性が良好となり、吸収水分量が少なくなる等、工業上き
わめて有用である。
INDUSTRIAL APPLICABILITY The aluminum nitride powder obtained by the method of the present invention is easy to sinter and handle when used for sintering, and has a high sintered body density when formed into a sintered body. Thermal conductivity is obtained. Further, when it is used as a filler added to a resin or the like, the adhesion between the particles and the matrix resin is improved, and the amount of absorbed water is reduced, which is extremely useful industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2で観察された窒化アルミニウム粉末の
粒子構造を示す。図面に代わる写真。倍率8800倍の
走査型電子顕微鏡写真。
1 shows the grain structure of the aluminum nitride powder observed in Example 2. FIG. A photo that replaces the drawing. Scanning electron micrograph with 8800x magnification.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】粒界が明瞭に認められる多結晶体粒子から
なり、粒度分布測定装置により測定される凝集粒子径が
0.1〜100μm、重装密度が0.55〜2.0g/
cm3 、SEM画像から求めた数平均粒子径をBET比
表面積より求めた粒子径で除した値が1.1以上3以下
であることを特徴とする窒化アルミニウム粉末。
1. Polycrystalline particles having clearly recognized grain boundaries, agglomerated particle diameter measured by a particle size distribution measuring device of 0.1 to 100 μm, and a loading density of 0.55 to 2.0 g /
cm 3, the aluminum nitride powder, characterized in that SEM values a number average particle diameter determined from the image divided by the particle diameter determined by BET specific surface area of 1.1 to 3.
【請求項2】8面以上の多面体形状で、六方最密格子で
あるα−アルミナの六方格子面に平行な最大粒子径を
D、六方格子面に垂直な粒子径をHとしたとき、D/H
が0.5以上3.0以下のα型アルミナ粒子よりなるア
ルミナ粉末を、還元剤の存在下、窒素を含む雰囲気中に
て焼成することを特徴とする請求項1記載の窒化アルミ
ニウム粉末の製造方法。
2. D is the maximum particle diameter parallel to the hexagonal lattice surface of α-alumina, which is a hexagonal close-packed lattice and has a particle diameter perpendicular to the hexagonal lattice surface, and D is D. / H
2. The production of an aluminum nitride powder according to claim 1, wherein an alumina powder composed of α-type alumina particles having a ratio of 0.5 to 3.0 is fired in an atmosphere containing nitrogen in the presence of a reducing agent. Method.
【請求項3】生成した窒化アルミニウム粉末のBET比
表面積が原料のアルミナ粉末のBET比表面積より大き
い請求項2記載の窒化アルミニウム粉末の製造方法。
3. The method for producing an aluminum nitride powder according to claim 2, wherein the BET specific surface area of the produced aluminum nitride powder is larger than the BET specific surface area of the raw material alumina powder.
【請求項4】請求項1記載の窒化アルミニウム粉末を焼
結して得られる焼結体。
4. A sintered body obtained by sintering the aluminum nitride powder according to claim 1.
【請求項5】請求項1記載の窒化アルミニウム粉末をフ
ィラーとして添加してなる樹脂組成物。
5. A resin composition obtained by adding the aluminum nitride powder according to claim 1 as a filler.
JP19906495A 1994-07-12 1995-07-11 Aluminum nitride powder, production method thereof and use thereof Expired - Fee Related JP3814842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19906495A JP3814842B2 (en) 1994-07-12 1995-07-11 Aluminum nitride powder, production method thereof and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-184093 1994-07-12
JP18409394 1994-07-12
JP19906495A JP3814842B2 (en) 1994-07-12 1995-07-11 Aluminum nitride powder, production method thereof and use thereof

Publications (2)

Publication Number Publication Date
JPH0881207A true JPH0881207A (en) 1996-03-26
JP3814842B2 JP3814842B2 (en) 2006-08-30

Family

ID=26502283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19906495A Expired - Fee Related JP3814842B2 (en) 1994-07-12 1995-07-11 Aluminum nitride powder, production method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP3814842B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020625A (en) * 2000-07-11 2002-01-23 Denki Kagaku Kogyo Kk Composition with high-heat conductivity and its use
JP2003221279A (en) * 2001-11-26 2003-08-05 Ngk Insulators Ltd Aluminum nitride ceramics, member for manufacturing semiconductor and anticorrosive member
WO2013122296A1 (en) * 2012-02-13 2013-08-22 영남대학교 산학협력단 Method for producing aluminum nitride powder
JP2016155727A (en) * 2015-02-25 2016-09-01 丸祥電器株式会社 Polyhedron-shaped aluminum nitride powder and method for manufacturing the same
WO2018199322A1 (en) * 2017-04-27 2018-11-01 株式会社トクヤマ Aluminum nitride particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020625A (en) * 2000-07-11 2002-01-23 Denki Kagaku Kogyo Kk Composition with high-heat conductivity and its use
JP2003221279A (en) * 2001-11-26 2003-08-05 Ngk Insulators Ltd Aluminum nitride ceramics, member for manufacturing semiconductor and anticorrosive member
JP4493264B2 (en) * 2001-11-26 2010-06-30 日本碍子株式会社 Aluminum nitride ceramics, semiconductor manufacturing members and corrosion resistant members
WO2013122296A1 (en) * 2012-02-13 2013-08-22 영남대학교 산학협력단 Method for producing aluminum nitride powder
JP2016155727A (en) * 2015-02-25 2016-09-01 丸祥電器株式会社 Polyhedron-shaped aluminum nitride powder and method for manufacturing the same
WO2018199322A1 (en) * 2017-04-27 2018-11-01 株式会社トクヤマ Aluminum nitride particles
KR20190139211A (en) * 2017-04-27 2019-12-17 가부시끼가이샤 도꾸야마 Aluminum nitride particles

Also Published As

Publication number Publication date
JP3814842B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
Suvaci et al. Critical factors in the templated grain growth of textured reaction‐bonded alumina
US6976532B2 (en) Anisotropic thermal applications of composites of ceramics and carbon nanotubes
Kusunose et al. Fabrication and microstructure of silicon nitride/boron nitride nanocomposites
US7481267B2 (en) Anisotropic thermal and electrical applications of composites of ceramics and carbon nanotubes
JP4122746B2 (en) Method for producing fine α-alumina powder
JPS60141676A (en) Composite ceramic body of silicon carbide/graphite/carbon
US5646078A (en) Aluminum nitride powder
Suvaci et al. Reaction-based processing of textured alumina by templated grain growth
WO2019049784A1 (en) SiC CERAMIC USING COATED SiC NANOPARTICLES AND PRODUCTION METHOD THEREFOR
Yokota et al. Effect of the addition of β-Si3N4 nuclei on the thermal conductivity of β-Si3N4 ceramics
JP3814842B2 (en) Aluminum nitride powder, production method thereof and use thereof
Duran et al. Sintering at near theoretical density and properties of PZT ceramics chemically prepared
JP6982000B2 (en) Oriented AlN sintered body and its manufacturing method
Hirano et al. Microstructure and thermal conductivity of Si3N4SiC nanocomposites fabricated from amorphous Si C N precursor powders
Yoshida et al. Formation, powder characterization and sintering of MgCr2O4 by the hydrazine method
Wasanapiarnpong Effect of post-sintering heat-treatment on thermal conductivity of Si3N4 ceramics containing different additives
JPH05117039A (en) Aluminum nitride-based powder and its production
JPH04317402A (en) Aluminum nitride power and its production
JP3225873B2 (en) MgO composite ceramics and method for producing the same
Van der Heijde et al. Total aqueous processing of carbothermally produced β-sialon
JPH01167279A (en) Sintered polycrystalline containing aluminium nitride as main component and method for its manufacture
WO2023248910A1 (en) Ceramic-matrix composite material and production method therefor
JP5713284B2 (en) High hardness B4C oriented by strong magnetic field technology and method for manufacturing the same
Uyan et al. An investigation on the thermal and microstructural properties of low-cost pressureless sintered silicon nitride (Si3N4) ceramics incorporated with Y2O3-SiO2-MgO
Wallace et al. Grain growth in Si3N4

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees