JPH0880302A - Ultrasonic probe and ultrasonic diagnostic device using the same - Google Patents

Ultrasonic probe and ultrasonic diagnostic device using the same

Info

Publication number
JPH0880302A
JPH0880302A JP6218699A JP21869994A JPH0880302A JP H0880302 A JPH0880302 A JP H0880302A JP 6218699 A JP6218699 A JP 6218699A JP 21869994 A JP21869994 A JP 21869994A JP H0880302 A JPH0880302 A JP H0880302A
Authority
JP
Japan
Prior art keywords
needle
ultrasonic probe
ultrasonic
elastic
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6218699A
Other languages
Japanese (ja)
Inventor
Yutaka Masuzawa
裕 鱒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP6218699A priority Critical patent/JPH0880302A/en
Publication of JPH0880302A publication Critical patent/JPH0880302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE: To differentiate the tissues in the deep parts in a living body without executing enucleation even in the case of deep part from surface by forming a structure to diffuse part of the elastic wave energy to propagate the elastic waves generated in an electroacoustic converter into the examinee on the surface of a pricking needle. CONSTITUTION: A piezoelectric thin-film layer 10, comb-shaped electrodes 12 to 15 and a protective layer 16 are formed on the base part 11 of a needle-shaped probe 1. The elastic waves are generated in the piezoelectric thin-film layer 10 to propagate the elastic energy in the longitudinal direction of the needle when an ultrasonic pulse signal voltage having a prescribed central frequency is supplied to the set of pairs 12 and 13 of the comb-shaped electrodes. The elastic energy dissipates gradually to the tissues via the protective film 16 when the biotissues exist on the propagation route. This energy changes dependently upon the wavelengths of the elastic waves at which the energy dissipation quantity is generated when the average periodic structure of the biotissues varies. The frequency dependency of the insertion loss is, thereupon, detected when the frequency of the electric field to be impressed is changed. This characteristic reflects the periodic structure of the biotissues. The tissue differentiation is thus executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波を用いて生体の
組織情報を得るための超音波探触子およびこれを用いた
超音波診断装置に関し、特に針を穿刺することにより注
目部位近傍の組織鑑別を行うに好適な超音波探触子およ
びこれを用いた超音波診断装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe for obtaining tissue information of a living body using ultrasonic waves and an ultrasonic diagnostic apparatus using the ultrasonic probe, and particularly to the vicinity of a region of interest by puncturing a needle. The present invention relates to an ultrasonic probe suitable for performing the tissue discrimination, and an ultrasonic diagnostic apparatus using the ultrasonic probe.

【0002】[0002]

【従来の技術】従来より、被検体の体表から被検体内部
に超音波ビームを送波し、体内からの反射波を受信し
て、この受信信号に基づいて超音波画像診断を行う超音
波診断装置が広く知られるところとなっている。現在の
技術では、これらの超音波診断装置の分解能は、生体深
部で数mm程度であり、断層像の中で異常を疑われる場合
には、バイオプシと称される細胞検が行われている。こ
の検査は、生検針を断層像の観察下で被検体に穿刺し、
病変を疑われる部位の細胞を実際に採取して検査するこ
とにより、部位の細胞病変を推定するものである。この
方法は、切開手術で摘出する場合に比べて、被験者への
侵襲性が低く、負担を軽減できる点で有利である。しか
し、例えば、診断基準が少量の細胞ではなく、所定の大
きさ(数mm程度)にわたってその性状を検査しなければな
らない場合も多く、異常を疑われる部位が体表から深い
場合等には、やはり切開手術で摘出する以外に確定的な
方法がないのが現状である。このような問題点に鑑み、
例えば、特開平2-206449号公報等に開示される如く、被
検体内部に穿刺する針の先端に超音波送受信を行う振動
子を備え、被検体内の注目部位の減衰等の情報を得る手
法が提案されている。これらの従来技術は、針の表面に
超音波を送受信する振動子を形成し、被検体内へ超音波
を放射して生体からの反射を受信するか、振動子を対向
配置し、被検体の一部を挟む状態で超音波を送受信する
ものであった。
2. Description of the Related Art Conventionally, an ultrasonic wave is transmitted from a body surface of a subject to the inside of the subject, a reflected wave from the body is received, and ultrasonic image diagnosis is performed based on the received signal. Diagnostic devices have become widely known. In the current technology, the resolution of these ultrasonic diagnostic apparatuses is about several mm in the deep part of the living body, and when an abnormality is suspected in the tomographic image, a biopsy called biopsy is performed. In this test, the biopsy needle is punctured into the subject under observation of a tomographic image,
The cell lesion at the site is estimated by actually collecting and inspecting the cells at the site where the lesion is suspected. This method is advantageous in that it is less invasive to the subject and the burden can be reduced as compared with the case of removing by open surgery. However, for example, the diagnostic criterion is not a small amount of cells, but in many cases it is necessary to inspect its properties over a predetermined size (a few mm), and if the site suspected of abnormality is deep from the body surface, etc., After all, there is no definite method other than the removal by open surgery. In view of such problems,
For example, as disclosed in Japanese Unexamined Patent Publication No. 2-206449, a method in which a transducer for transmitting and receiving ultrasonic waves is provided at the tip of a needle that punctures the inside of a subject, and information such as attenuation of a region of interest in the subject is obtained. Is proposed. These conventional techniques form a transducer for transmitting and receiving ultrasonic waves on the surface of the needle, emit ultrasonic waves into the subject to receive reflection from a living body, or arrange the transducers to face each other. Ultrasonic waves were transmitted and received while sandwiching a part.

【0003】[0003]

【発明が解決しようとする課題】一般に、生体の細胞組
織の特性を鑑別できるような計測を行うためには、細胞
の平均的大きさと同程度の波長を有する非常に高い周波
数の超音波を用いる必要がある。例えば、病巣と疑わし
き部位において、中心周波数が10ミクロン程度の波長を
有する超音波パルスを送受信しようとすると、150MHz
程度の高周波の超音波パルスを送受信する必要がある。
しかし、このような高い周波数の超音波パルスを透過さ
せることは、生体内で著しい減衰が発生するため、非常
に困難であった。また、振動子から被検体内へ超音波を
放射して生体からの反射を受信する場合では、送波時の
振動子の残響成分と反射波受信信号の時間的分離が困難
であるために十分な受信感度が得られず、対向配置した
振動子間の透過減衰量を計測する場合では、生体内の著
しい減衰のために対向振動子間の距離を非常に小さなも
のとしなければ計測が困難であった。従って、上述の如
く、病巣と疑わしき部位で外径数mm程度の範囲にわたる
情報を得るためには、十分な受信信号強度が得られず、
計測の信頼性が低下するという問題があった。本発明は
上記事情に鑑みてなされたもので、その目的とするとこ
ろは、従来の技術における上述の如き問題を解消し、異
常を疑われる部位が体表から深い場合にも、生体内深部
の組織鑑別を摘出することなく行うことが可能な超音波
探触子およびそれを用いる超音波診断装置を提供するこ
とにある。
Generally, in order to perform the measurement capable of distinguishing the characteristics of cell tissues of a living body, an ultrasonic wave of a very high frequency having a wavelength similar to the average size of cells is used. There is a need. For example, when an ultrasonic pulse having a center frequency of about 10 microns is transmitted / received at a suspected lesion, it is 150 MHz.
It is necessary to transmit and receive high frequency ultrasonic pulses.
However, it has been extremely difficult to transmit such an ultrasonic pulse having a high frequency because a significant attenuation occurs in the living body. Also, when ultrasonic waves are radiated from the oscillator into the subject and reflections from the living body are received, it is difficult to temporally separate the reverberation component of the oscillator from the reflected wave reception signal during transmission. When the transmission attenuation between the transducers arranged facing each other is not obtained, it is difficult to measure unless the distance between the opposing transducers is very small due to the significant attenuation in the living body. there were. Therefore, as described above, in order to obtain information over a range of an outer diameter of about several mm at a suspected lesion, a sufficient received signal strength cannot be obtained,
There is a problem that the reliability of measurement is reduced. The present invention has been made in view of the above circumstances, and an object thereof is to solve the problems as described above in the related art, and even when the site suspected of being abnormal is deep from the body surface, An object of the present invention is to provide an ultrasonic probe capable of performing tissue discrimination without extracting it and an ultrasonic diagnostic apparatus using the same.

【0004】[0004]

【課題を解決するための手段】本発明の上述の目的は、
電気信号を弾性波に変換する電気音響変換器を備えた針
状の超音波探触子であって、前記電気音響変換器により
発生する弾性波を伝播させ、伝播する弾性波エネルギー
の一部を接触する被検体中に徐々に散逸させる構造を、
針状の超音波探触子の表面に形成したことを特徴とする
超音波探触子、および、前記超音波探触子と、該超音波
探触子からの信号の処理手段を備えたことを特徴とする
超音波診断装置によって達成される。より具体的には、
針状の超音波探触子の表面に圧電体層と櫛形電極群を備
え、櫛形電極間に電界を作用させることにより弾性波を
針の表面上で発生させるか、針の表面上で送受信する手
段を備えた超音波探触子、および、この超音波探触子の
電極に印加する電気信号の周波数を変化させて、該信号
の挿入損失を計測する手段を備え、挿入損失の周波数依
存性から組織鑑別を行うようにした超音波診断装置によ
って達成される。
The above objects of the present invention are as follows:
A needle-shaped ultrasonic probe provided with an electroacoustic transducer that converts an electric signal into an elastic wave, in which an elastic wave generated by the electroacoustic transducer is propagated and a part of the propagating elastic wave energy is transferred. A structure that gradually dissipates into the contacting subject,
An ultrasonic probe formed on the surface of a needle-shaped ultrasonic probe, the ultrasonic probe, and a processing means for processing a signal from the ultrasonic probe. Is achieved by an ultrasonic diagnostic apparatus. More specifically,
The surface of the needle-shaped ultrasonic probe is provided with a piezoelectric layer and a comb-shaped electrode group, and an elastic wave is generated on the surface of the needle by applying an electric field between the comb-shaped electrodes, or is transmitted and received on the surface of the needle. An ultrasonic probe provided with a means, and a means for measuring the insertion loss of the signal by changing the frequency of the electric signal applied to the electrodes of the ultrasonic probe, and the frequency dependence of the insertion loss. It is achieved by an ultrasonic diagnostic apparatus adapted to perform tissue discrimination.

【0005】[0005]

【作用】本発明に係る超音波探触子においては、櫛形電
極間に電界を作用させることにより、薄膜で形成した圧
電体層から、弾性波が発生する。この弾性波は、表面弾
性波(SAW)、あるいは、薄膜の形状がなす音響導波路
を伝搬する弾性波から成る。これらの弾性波は、針の表
面上を伝搬し、再び圧電性により電気信号に変換され
る。弾性波の伝搬経路に直接に、あるいは、他の層を介
して間接に、生体組織が接触していると、弾性波のエネ
ルギーは生体組織内へ散逸し、この散逸量が素子全体の
電気的挿入損失(以下、単に「挿入損失」ともいう)に変化
を与える。接触している生体組織の平均的周期構造(例
えば、球状に近い細胞の平均径など)が異なると、生体
組織内へのエネルギー散逸量が、発生している弾性波の
波長に依存して変化する。櫛形電極間に印加する電界の
周波数を変化させる、あるいは、間隔の異なる櫛形電極
構成により、挿入損失の周波数依存性を検出することが
でき、その特性が接触している生体組織の平均的細胞径
などの周期構造を反映するので組織鑑別を行うことがで
きる。なお、本発明に係る超音波探触子においては、穿
刺する針の表面上に櫛形電極構成を備えているので、生
体組織との接触区間長を波長に比べて比較的長く構成で
きるために、精度の高い評価が可能になる。
In the ultrasonic probe according to the present invention, an elastic wave is generated from the piezoelectric layer formed of a thin film by applying an electric field between the comb electrodes. This elastic wave is composed of a surface acoustic wave (SAW) or an elastic wave propagating in an acoustic waveguide formed by the shape of a thin film. These elastic waves propagate on the surface of the needle and are again converted into electric signals by the piezoelectric property. When the biological tissue is in contact with the propagation path of the elastic wave or indirectly through another layer, the energy of the elastic wave is dissipated into the biological tissue, and the amount of the dissipation is the electrical energy of the entire element. Change the insertion loss (hereinafter also simply referred to as "insertion loss"). If the average periodic structure of the living tissue in contact (for example, the average diameter of cells that are close to spherical) is different, the amount of energy dissipated into the living tissue changes depending on the wavelength of the elastic wave that is generated. To do. The frequency dependence of the insertion loss can be detected by changing the frequency of the electric field applied between the comb-shaped electrodes or by configuring the comb-shaped electrodes with different intervals, and the average cell diameter of the living tissue with which the characteristics are in contact can be detected. Since it reflects the periodic structure such as, tissue discrimination can be performed. In the ultrasonic probe according to the present invention, since the comb electrode configuration is provided on the surface of the needle to be punctured, the contact section length with the biological tissue can be configured to be relatively long compared to the wavelength. Highly accurate evaluation is possible.

【0006】[0006]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。まず、本発明の一実施例に係る超音波探触
子を用いた具体的計測手順を、図8を用いて説明する。
図8は、断層像の撮像下で穿刺を行う様子を説明する断
面図である。図において、1は外径1〜2mm程度の針状
探触子であり、針状探触子1は、穿刺箇所を観察するた
めのリニア探触子81に付帯して設けられた治具に沿っ
て摺動する如く構成されている。針状探触子1の末端に
は、信号を送受信,分析するための手段が接続される
が、図8では図示を省略している。また、リニア探触子
81は被検体の体表82に接しており、臓器85内の患
部と思われる注目部位83を、実時間走査視野84内に
捕えている。このような断層像観察下で、針状探触子1
は、体表82から注目部位83まで穿刺される。ここ
で、針状探触子1は、並進や回転が可能な摺動構成にな
っている。これにより、検査者は、針状探触子1の検知
部分を注目部位83に接触させることができ、細胞の音
響的な特性を評価することができる。
Embodiments of the present invention will now be described in detail with reference to the drawings. First, a specific measurement procedure using the ultrasonic probe according to the embodiment of the present invention will be described with reference to FIG.
FIG. 8 is a cross-sectional view for explaining how to perform a puncture while capturing a tomographic image. In the figure, 1 is a needle-shaped probe having an outer diameter of about 1 to 2 mm, and the needle-shaped probe 1 is a jig attached to a linear probe 81 for observing a puncture site. It is configured to slide along. Although a means for transmitting / receiving and analyzing a signal is connected to the end of the needle probe 1, the illustration is omitted in FIG. In addition, the linear probe 81 is in contact with the body surface 82 of the subject, and captures a region of interest 83, which is considered to be a diseased part in the organ 85, in the real-time scanning visual field 84. Under such tomographic image observation, the needle probe 1
Is punctured from the body surface 82 to the site of interest 83. Here, the needle probe 1 has a sliding structure capable of translation and rotation. Accordingly, the inspector can bring the detection portion of the needle probe 1 into contact with the attention site 83 and evaluate the acoustic characteristics of the cell.

【0007】次に、針状探触子1の先端付近にある検知
部分の詳細な構造を図1に示す。図1に示す如く、針状
探触子1は円筒の側面を面取りした部分に異なる層を積
層した構造となっている。針として全体を保持する基底
部11は、金属,硬質の樹脂あるいはシリコンなどで形
成される。基底部11の上には、圧電薄膜層10が形成
されている。この圧電薄膜層10はスパッタ処理等で形
成された酸化亜鉛やチタン酸鉛から成る。更に、圧電薄
膜層10の上層に櫛形電極12〜15の層が形成され、
更に、この2層を覆う保護膜16が形成されている。櫛
形電極の対12と13の組に、図示されていない送波回
路から150MHz程度の中心周波数を有する超音波パルス
信号電圧が供給されると、圧電薄膜層10に弾性波が発
生する。この弾性波は、表面弾性波あるいは圧電薄膜層
10自体を導波路とするバルク波であり、針の長手方向
に弾性エネルギーを伝搬させる。このとき、圧電薄膜層
10と基底部11の音響インピーダンスが異なるため
に、圧電薄膜層10自体が音響導波路となる。
Next, FIG. 1 shows a detailed structure of a detection portion near the tip of the needle probe 1. As shown in FIG. 1, the needle-shaped probe 1 has a structure in which different layers are laminated on a chamfered side surface of a cylinder. The base 11 that holds the whole as a needle is made of metal, hard resin, silicon, or the like. The piezoelectric thin film layer 10 is formed on the base portion 11. The piezoelectric thin film layer 10 is made of zinc oxide or lead titanate formed by sputtering or the like. Further, layers of comb-shaped electrodes 12 to 15 are formed on the piezoelectric thin film layer 10,
Further, a protective film 16 that covers these two layers is formed. When an ultrasonic pulse signal voltage having a center frequency of about 150 MHz is supplied to the pair of comb-shaped electrodes 12 and 13 from a transmission circuit (not shown), elastic waves are generated in the piezoelectric thin film layer 10. This elastic wave is a surface acoustic wave or a bulk wave having the piezoelectric thin film layer 10 itself as a waveguide, and propagates elastic energy in the longitudinal direction of the needle. At this time, since the piezoelectric thin film layer 10 and the base portion 11 have different acoustic impedances, the piezoelectric thin film layer 10 itself serves as an acoustic waveguide.

【0008】また、これらの弾性波の振幅方向は、針の
長手方向あるいは圧電薄膜層10の厚さ方向の両者を含
む。伝搬した弾性波のエネルギーは、進行する長手方向
に存在する櫛形電極の対14と15の組に至り、ここ
で、一部が再び電気エネルギーに変換されて受信信号と
なる。ここで、伝搬経路上に生体の組織が存在すると、
弾性波のエネルギーは、上述の非常に薄い保護膜16を
介して、組織中に次第に散逸する。ここで、本針状探触
子1が保護膜16を介して接触している生体組織の平均
的周期構造(例えば、球状に近い細胞の平均径など)が異
なると、生体組織内へのエネルギー散逸量が発生してい
る弾性波の波長に依存して変化する。櫛形電極間に印加
する電界の周波数を変化させるか、間隔の異なる櫛形電
極構成を備えることにより、挿入損失の周波数依存性を
検出することができ、その特性が、接触している生体組
織の平均的周期構造を反映するので、組織鑑別を行うこ
とができる。特に、本実施例に係る超音波探触子は、穿
刺する針の表面上に櫛形電極構成を備えているので、生
体組織との接触区間長を波長に比べて比較的長く構成で
きるために、精度の高い評価が可能になる。
The amplitude directions of these elastic waves include both the longitudinal direction of the needle and the thickness direction of the piezoelectric thin film layer 10. The energy of the propagated elastic waves reaches the pair of comb-shaped electrode pairs 14 and 15 which are present in the longitudinal direction, and a part thereof is converted into electric energy again to become a reception signal. Here, if a living tissue exists on the propagation path,
The elastic wave energy is gradually dissipated into the tissue through the very thin protective film 16 described above. Here, if the average periodic structure of the living tissue with which the needle probe 1 is in contact with the protective film 16 is different (for example, the average diameter of cells having a nearly spherical shape), the energy into the living tissue is changed. The amount of dissipation changes depending on the wavelength of the generated elastic wave. The frequency dependence of the insertion loss can be detected by changing the frequency of the electric field applied between the comb-shaped electrodes or by providing the comb-shaped electrodes with different intervals. Since the periodic structure is reflected, tissue discrimination can be performed. In particular, the ultrasonic probe according to the present embodiment has a comb-shaped electrode configuration on the surface of the needle to be punctured, so that the contact section length with the biological tissue can be configured to be relatively longer than the wavelength, Highly accurate evaluation is possible.

【0009】以下、この原理に基づき、挿入損失の周波
数依存性を検出する装置の構成例を図4に示す。針状探
触子1の検知部分にある櫛形電極12〜15の延長は、
針の根元部分で送波増幅器41,受波増幅器42に接続
される。送波回路43の出力は、送波増幅器41を介し
て、針状探触子1へ出力される。送波回路の発生する信
号波形は、周波数掃引されたチャープ信号やパルス信号
など、さまざまに設計できる。受波増幅器42の出力
は、受波回路44の入力となる。受波回路44の出力
は、周波数分析器45の入力となり、減衰の周波数依存
性が測定される。周波数分析器45は、受信信号を低周
波に周波数移動して、帯域通過フィルタ処理を行う等の
一般的な周波数分析のための測定回路を備えている。測
定結果は、表示器46によって検査者に対して示され、
例えば、針状探触子1を水中においた時の減衰に対する
生体内での減衰の比を求め、周波数特性を表示する。こ
れら一連の動作は、制御手段47により動作を規定され
る。
FIG. 4 shows an example of the configuration of an apparatus for detecting the frequency dependence of insertion loss based on this principle. The extension of the comb-shaped electrodes 12 to 15 in the detection portion of the needle probe 1 is
The root portion of the needle is connected to the transmitting amplifier 41 and the receiving amplifier 42. The output of the wave transmission circuit 43 is output to the needle probe 1 via the wave transmission amplifier 41. The signal waveform generated by the transmission circuit can be designed in various ways such as a frequency-swept chirp signal or pulse signal. The output of the wave receiving amplifier 42 becomes the input of the wave receiving circuit 44. The output of the wave receiving circuit 44 becomes the input of the frequency analyzer 45, and the frequency dependence of attenuation is measured. The frequency analyzer 45 includes a measurement circuit for general frequency analysis such as frequency-shifting the received signal to a low frequency and performing bandpass filtering. The measurement result is shown to the inspector by the display 46,
For example, the ratio of the attenuation in the living body to the attenuation when the needle probe 1 is placed in water is obtained, and the frequency characteristic is displayed. The series of operations are defined by the control means 47.

【0010】図2に、本発明に係る針状探触子1の他の
構成例を示す。針状探触子1の層状構造において、櫛形
電極12〜15の層と圧電薄膜層10の形成順序を逆転
してもよい。図2(a)の断面図は、図1の構成と同じで
ある。基底部11の上に、最初に圧電薄膜層10を形成
する。この構成では、基底部11に結晶材料を用いるこ
とにより、圧電薄膜層10をエピタキシャル成長させる
ことができ、電気機械結合係数の大きな配向膜をスパッ
タ等で作成できる製造上の利点がある。また、逆に、図
2(b)の断面図のように、基底部11の上に先に櫛形電
極12〜15の層を形成してもよい。この場合には、圧
電薄膜層10の被検体側表面を比較的平坦に形成するこ
とができるため、電極が接触している生体組織と圧電薄
膜層10の間に介在しないので、伝播する表面波の不要
な負荷を減らした理想的な構成とすることができる。図
6に、本発明に係る針状探触子1の更に他の構成例を示
す。図6に示す構成例では、図2に示した層状構成にお
いて生体と接触させて検知する部分に凹凸をつけた構造
としたものである。この構造は、生体組織に針を侵入さ
せた場合に接触面の面積を増加させるように改良を加え
たものである。
FIG. 2 shows another structural example of the needle probe 1 according to the present invention. In the layered structure of the needle probe 1, the layers of the comb-shaped electrodes 12 to 15 and the piezoelectric thin film layer 10 may be formed in the reverse order. The sectional view of FIG. 2A has the same configuration as that of FIG. The piezoelectric thin film layer 10 is first formed on the base portion 11. In this configuration, by using the crystalline material for the base portion 11, the piezoelectric thin film layer 10 can be epitaxially grown, and there is an advantage in manufacturing that an alignment film having a large electromechanical coupling coefficient can be formed by sputtering or the like. On the contrary, as shown in the sectional view of FIG. 2B, the layers of the comb-shaped electrodes 12 to 15 may be first formed on the base portion 11. In this case, since the subject side surface of the piezoelectric thin film layer 10 can be formed relatively flat, it does not exist between the biological tissue in contact with the electrode and the piezoelectric thin film layer 10. It is possible to obtain an ideal configuration in which unnecessary load of is reduced. FIG. 6 shows still another configuration example of the needle probe 1 according to the present invention. In the configuration example shown in FIG. 6, the layered configuration shown in FIG. 2 has a structure in which unevenness is provided in a portion to be contacted with a living body for detection. This structure is modified so as to increase the area of the contact surface when the needle is inserted into the living tissue.

【0011】図7の構成は、針状探触子1の先端の形状
を円錐形としたものである。本発明の探触子では、針を
侵入させて生体内に生じる空洞内面の性状が細胞の周期
的構造を著しく損なう場合には、正しい計測結果を与え
ない問題点がある。このようなことから、針の先端形状
はできるだけ鋭利とし、針を侵入させる過程で不必要に
空洞内面の細胞の構造を乱さないことが必要である。こ
のような事情から、先端の形状を円錐形とした場合が非
常に好適である。次の実施例として、圧電薄膜層10に
接して設ける櫛形電極のパターン形状のいくつかの例
を、図3に示す。図中、12〜15は図1に示した単純
な櫛形電極対を対向させて、一方から送信、他方から受
信するものである。また、31,32は単一の櫛形電極
対を用いるもので、2端子としたものである。
In the configuration shown in FIG. 7, the tip of the needle probe 1 has a conical shape. The probe of the present invention has a problem that it does not give a correct measurement result when the property of the inner surface of the cavity generated in the living body by penetrating the needle significantly impairs the periodic structure of cells. For this reason, it is necessary to make the tip shape of the needle as sharp as possible and not unnecessarily disturb the structure of cells on the inner surface of the cavity during the process of inserting the needle. From such a situation, it is very suitable that the tip has a conical shape. Some examples of the pattern shapes of the comb-shaped electrodes provided in contact with the piezoelectric thin film layer 10 will be shown in FIG. 3 as the next embodiment. In the figure, reference numerals 12 to 15 are for allowing the simple comb-shaped electrode pairs shown in FIG. 1 to face each other and transmitting from one side and receiving from the other side. Further, 31 and 32 use a single comb-shaped electrode pair and have two terminals.

【0012】この場合には、計測回路は図5に示す構成
とする。図4の構成と図5の構成では、送受信回路51
が送波回路43、受波回路44の代わりに設けられ、針
状探触子1からの端子31,32間の電気的インピーダ
ンスを計測する周波数分析回路45を設ける。櫛形電極
対のパターンは図3の33〜38に示すように自由に設
計できる。33,34では電極間のピッチを順次変えて
おり、発生する弾性波の波長に広がりを持たせることが
できる。35,36の場合には発生する波の包絡線形状
に空間的重み付けを行うことが可能である。また、同様
に、37,38の場合にも、発生する弾性波の波長に広
がりを持たせることができる。このような電極の設計に
より、測定する弾性波の周波数特性を設計することがで
きる。なお、上記各実施例は本発明の一例を示したもの
であり、本発明はこれに限定されるべきものではないこ
とは言うまでもないことである。
In this case, the measuring circuit has the configuration shown in FIG. In the configuration of FIG. 4 and the configuration of FIG.
Is provided in place of the wave transmission circuit 43 and the wave reception circuit 44, and a frequency analysis circuit 45 for measuring the electrical impedance between the terminals 31 and 32 from the needle probe 1 is provided. The pattern of the comb-shaped electrode pair can be freely designed as shown in 33 to 38 of FIG. In 33 and 34, the pitch between the electrodes is sequentially changed, so that the wavelength of the generated elastic wave can be expanded. In the cases of 35 and 36, it is possible to perform spatial weighting on the envelope shape of the generated wave. Similarly, in the cases of 37 and 38, the wavelength of the generated elastic wave can be expanded. By designing such electrodes, the frequency characteristics of the elastic wave to be measured can be designed. It is needless to say that each of the above embodiments is an example of the present invention and the present invention should not be limited to this.

【0013】[0013]

【発明の効果】以上、詳細に説明した如く、本発明によ
れば、異常を疑われる部位が体表から深い場合にも、生
体内深部の組織鑑別を摘出することなく行うことが可能
な超音波探触子およびそれを用いる超音波診断装置を実
現できるという顕著な効果を奏するものである。詳細に
は、生体深部の領域に存在する生体組織を切開して摘出
することなく、その平均的周期構造を反映する非常に高
い周波数での超音波減衰特性を利用した組織鑑別を低い
侵襲度で行うことができる。特に、生体組織との接触区
間長を従来の技術に比べて比較的長く構成できるため、
精度の高い評価が可能になるという効果が得られる。
As described above in detail, according to the present invention, even when a site suspected of being abnormal is deep from the body surface, it is possible to perform tissue discrimination in the deep part of a living body without removing it. This has the remarkable effect of realizing an ultrasonic probe and an ultrasonic diagnostic apparatus using the same. In detail, without incising and extracting living tissue existing in the deep region of the living body, tissue discrimination using ultrasonic attenuation characteristics at a very high frequency reflecting its average periodic structure is performed with low invasiveness. It can be carried out. In particular, since the contact section length with the biological tissue can be configured to be relatively long compared to the conventional technology,
The effect is that highly accurate evaluation is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る針状探触子検知部の構
造を説明するための斜視透視図である。
FIG. 1 is a perspective perspective view for explaining a structure of a needle probe detection unit according to an embodiment of the present invention.

【図2】図1に示した針状探触子検知部の構造を説明す
る断面図である。
FIG. 2 is a cross-sectional view illustrating the structure of the needle probe detection unit shown in FIG.

【図3】実施例に係る針状探触子の櫛形電極形状の他の
構成例を説明する図である。
FIG. 3 is a diagram illustrating another configuration example of the comb electrode shape of the needle probe according to the embodiment.

【図4】実施例に係る針状探触子が2対の櫛形電極を有
する場合の測定系の実施例を説明する図(その1)であ
る。
FIG. 4 is a diagram (No. 1) for explaining an example of the measurement system in the case where the needle-shaped probe according to the example has two pairs of comb-shaped electrodes.

【図5】実施例に係る針状探触子が2端子櫛形電極を有
する場合の測定系の実施例を説明する図(その2)であ
る。
FIG. 5 is a diagram (No. 2) for explaining an example of the measurement system in the case where the needle probe according to the example has a two-terminal comb-shaped electrode.

【図6】針状探触子検知部の他の実施例を説明する断面
図である。
FIG. 6 is a cross-sectional view illustrating another embodiment of the needle probe detection unit.

【図7】針状探触子の先端形状の他の実施例を説明する
斜視透視図である。
FIG. 7 is a perspective perspective view for explaining another embodiment of the tip shape of the needle probe.

【図8】本発明に係る針状探触子を超音波断層像の撮像
下で穿刺する様子を例示する図である。
FIG. 8 is a diagram illustrating a state in which a needle probe according to the present invention is punctured while capturing an ultrasonic tomographic image.

【符号の説明】[Explanation of symbols]

1 針状探触子 10 圧電薄膜層 11 基底部 12〜15,31〜38 櫛形電極 16 保護膜 41 送波増幅器 42 受波増幅器 43 送波回路 44 受波回路 45 周波数分析器 46 表示器 47 制御手段 81 リニア探触子 82 体表 83 注目部位 85 臓器 1 Needle probe 10 Piezoelectric thin film layer 11 Base part 12-15, 31-38 Comb-shaped electrode 16 Protective film 41 Transmission amplifier 42 Receiving amplifier 43 Transmission circuit 44 Receiving circuit 45 Frequency analyzer 46 Indicator 47 Control Means 81 Linear probe 82 Body surface 83 Attention site 85 Organ

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電気信号を弾性波に変換する電気音響変
換器を備えた針状の超音波探触子であって、前記電気音
響変換器により発生する弾性波を伝播させ、伝播する弾
性波エネルギーの一部を接触する被検体中に散逸させる
構造を、穿刺針の表面に形成したことを特徴とする超音
波探触子。
1. A needle-shaped ultrasonic probe having an electroacoustic transducer for converting an electric signal into an elastic wave, wherein the elastic wave generated by the electroacoustic transducer is propagated and propagated. An ultrasonic probe having a structure in which a part of energy is dissipated in a contacted object on a surface of a puncture needle.
【請求項2】 前記電気音響変換器を、圧電体薄膜と該
圧電体薄膜上に形成した電極とで構成したことを特徴と
する請求項1記載の超音波探触子。
2. The ultrasonic probe according to claim 1, wherein the electroacoustic transducer is composed of a piezoelectric thin film and an electrode formed on the piezoelectric thin film.
【請求項3】 前記電極を、櫛形もしくはすだれ状電極
とし、前記弾性波を主として表面波としたことを特徴と
する請求項2記載の超音波探触子。
3. The ultrasonic probe according to claim 2, wherein the electrodes are comb-shaped or interdigital electrodes, and the elastic waves are mainly surface waves.
【請求項4】 請求項1から3のいずれかに記載の超音
波探触子と、該超音波探触子からの信号の処理手段を備
えたことを特徴とする超音波診断装置。
4. An ultrasonic diagnostic apparatus comprising the ultrasonic probe according to claim 1 and a processing unit for processing a signal from the ultrasonic probe.
【請求項5】 前記超音波探触子の電気的挿入損失ある
いはインピーダンスの周波数依存性を測定する周波数分
析手段を備えたことを特徴とする請求項4記載の超音波
診断装置。
5. The ultrasonic diagnostic apparatus according to claim 4, further comprising frequency analysis means for measuring electrical insertion loss or frequency dependency of impedance of the ultrasonic probe.
【請求項6】 前記超音波探触子を生体内に穿刺し、生
体内に穿刺された前記超音波探触子からの信号を実時間
画像で捕える手段を備えたことを特徴とする請求項5記
載の超音波診断装置。
6. A means for puncturing the ultrasonic probe into a living body and capturing a signal from the ultrasonic probe punctured in the living body with a real-time image. 5. The ultrasonic diagnostic apparatus according to item 5.
JP6218699A 1994-09-13 1994-09-13 Ultrasonic probe and ultrasonic diagnostic device using the same Pending JPH0880302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6218699A JPH0880302A (en) 1994-09-13 1994-09-13 Ultrasonic probe and ultrasonic diagnostic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6218699A JPH0880302A (en) 1994-09-13 1994-09-13 Ultrasonic probe and ultrasonic diagnostic device using the same

Publications (1)

Publication Number Publication Date
JPH0880302A true JPH0880302A (en) 1996-03-26

Family

ID=16724036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6218699A Pending JPH0880302A (en) 1994-09-13 1994-09-13 Ultrasonic probe and ultrasonic diagnostic device using the same

Country Status (1)

Country Link
JP (1) JPH0880302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098724A (en) * 2011-10-31 2013-05-20 Konica Minolta Holdings Inc Piezoelectric device, ultrasonic probe and manufacturing method of piezoelectric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098724A (en) * 2011-10-31 2013-05-20 Konica Minolta Holdings Inc Piezoelectric device, ultrasonic probe and manufacturing method of piezoelectric device

Similar Documents

Publication Publication Date Title
US4947851A (en) Method and device for acoustic testing of elasticity of biological tissues
JP5889186B2 (en) Surgical tools
US11627935B2 (en) Apparatus and method for characterization of acute otitis media
US5115808A (en) Method and device for noninvasive acoustic testing of elasticity of soft biological tissues
JPH08238243A (en) Self testing method of ultrasonic wave picture processor andultrasonic wave picture processor with said test means
CN107647881B (en) Method for measuring viscoelasticity parameter of human or animal organ
JP2001517105A (en) Inner ear diagnostic device and method
WO1998057581A1 (en) Continuous wave transmitting-receiving ultrasonic imaging device and ultrasonic probe
CN114145769A (en) Wearable health monitoring equipment, flexible sensor thereof and manufacturing method
KR101251204B1 (en) Ultrasonic nondestructive inspection device and ultrasonic nondestructive inspection method
CN109758180B (en) Flexible ultrasonic probe and ultrasonic diagnosis device and method thereof
US7537566B2 (en) Bone strength measuring instrument and method
Irie et al. Transmission of 100-MHz-range ultrasound through a fused quartz fiber
JP3462904B2 (en) Needle-shaped ultrasonic probe
JPH0880302A (en) Ultrasonic probe and ultrasonic diagnostic device using the same
JP3209880B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus having the same
JP3317988B2 (en) Ultrasound bone diagnostic equipment
EP3505926B1 (en) Method and system for determining an optimum drive signal for an acoustic transducer
Soetanto et al. Miniprobe transducer for tissue characterization
JP3860862B2 (en) Ultrasonic diagnostic equipment
JP3578202B2 (en) Acoustic impedance measuring device and method
Grinspan et al. Widening the frontiers of elastography in biomechanics: simultaneous muscle elasticity measurements at high-sample rate with surface wave elastography
Ishikura et al. Visualization experiment of frequency dependent attenuation of tissue by multi-spectral Phase-Contrast Imaging
Payne et al. Sound Skin Models—Acoustic Properties of Epidermis and Dermis
JPH0478299B2 (en)