JPH0879284A - Storing method for address of transmission terminal - Google Patents

Storing method for address of transmission terminal

Info

Publication number
JPH0879284A
JPH0879284A JP6206274A JP20627494A JPH0879284A JP H0879284 A JPH0879284 A JP H0879284A JP 6206274 A JP6206274 A JP 6206274A JP 20627494 A JP20627494 A JP 20627494A JP H0879284 A JPH0879284 A JP H0879284A
Authority
JP
Japan
Prior art keywords
address
terminal
voltage
transmission terminal
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6206274A
Other languages
Japanese (ja)
Inventor
Takeshi Numagami
毅 沼上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6206274A priority Critical patent/JPH0879284A/en
Publication of JPH0879284A publication Critical patent/JPH0879284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)

Abstract

PURPOSE: To provide an economical address storage means which can be constituted of less number of parts by charging a reference capacitor and deciding the address of a transmission terminal from the ratio of first time and second time until reaching a prescribed voltage. CONSTITUTION: This is the method for storing the address of the transmission terminal 5N of a multi-drop transmission system. The reference capacitor C is charged from one electrode P00 of the two electrodes P00 and P01 for outputting an equal constant DC voltage serially through a first registor RS. Then, the first time until the voltage between both terminals of the capacitor C reaches the prescribed voltage from the state of 0 volt is measured. Also, the reference capacitor C is charged from the other electrodes P01 serially through a second resistor VR and the second time until the voltage between both terminals of the capacitor C reaches the prescribed voltage is measured. Then, the address of the transmission terminal 5N is decided from the ratio of the first time and the second time. Thus, the address storage means with less number of terminals and less number of the parts is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一つの送信元と、送信
元から伝送端末に送信される直列信号の番地を同時に受
信する一つ以上の伝送端末からなる、いわゆるマルチド
ロップ伝送方式の信号伝送システムにおける伝送端末の
番地記憶方法において、または任意の一つの伝送端末を
送信元とする同様なマルチドロップ伝送方式の伝送端末
の番地記憶方法において、停電時においても記憶が消え
ない伝送端末の番地の記憶方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal of a so-called multi-drop transmission system, which is composed of one transmission source and one or more transmission terminals which simultaneously receive the addresses of serial signals transmitted from the transmission source to the transmission terminal. In the method of storing the address of the transmission terminal in the transmission system, or in the method of storing the address of the transmission terminal of the similar multi-drop transmission method that uses any one transmission terminal as the source, the address of the transmission terminal that does not lose its memory even in the event of a power failure Memory method.

【0002】[0002]

【従来の技術】図4の(a) にマルチドロップ伝送方式で
接続された送信元と伝送端末の接続関係の一例を示す。
図において、4は送信元、51、52、5Nは伝送端末であ
り、送信元4と伝送端末51,52,5Nはシリアル信号線を経
由して信号の授受を行い、送信元4から送信される番地
信号は各伝送端末51〜5Nにおいて同時に受信される。な
お送信元は常時特定の一つに限定されず、各伝送端末は
送信元としての機能も合わせて持ち、ある場合には送信
元に他の場合には伝送端末として機能するシステムもあ
るが、このシステムにおいても一つの時点をみると送信
元と伝送端末との関係は、図4の(a) によって表現され
るシステムと同じになる。
2. Description of the Related Art FIG. 4A shows an example of a connection relationship between a transmission source and a transmission terminal connected by a multi-drop transmission system.
In the figure, 4 is a transmission source, 51, 52 and 5N are transmission terminals. The transmission source 4 and the transmission terminals 51, 52 and 5N exchange signals via a serial signal line and are transmitted from the transmission source 4. Address signals are simultaneously received by the respective transmission terminals 51-5N. It should be noted that the transmission source is not always limited to a specific one, and each transmission terminal also has a function as a transmission source, and in some cases, there is a system that functions as a transmission source and in other cases as a transmission terminal. In this system as well, at one point in time, the relationship between the transmission source and the transmission terminal is the same as in the system represented by (a) in FIG.

【0003】図4の(b) は一つの伝送端末の主要部を表
すブロック図であり、主としてこの伝送端末の番地設定
の方法を示している。図において51は伝送端末であり、
制御演算手段1、送受信回路2、番地設定器A1とからな
る。制御演算手段1は端子RXに外部から入力される信号
を送受信回路2を介して端子RxD に受信し、受信した信
号が例えば図外の電動機などの操作器を制御する信号で
あるならば、操作器の制御に適合した信号に変換して図
外の出力回路から出力し、伝送端末51で処理される信号
例えば伝送端末51に接続された図外の操作スイッチやセ
ンサなどの信号を上位の装置などに送信する場合は、こ
の信号を端子TxD から送受信回路2を介して端子Txを経
て送信する。
FIG. 4B is a block diagram showing the main part of one transmission terminal, and mainly shows the method of setting the address of this transmission terminal. In the figure, 51 is a transmission terminal,
It is composed of a control calculation means 1, a transmission / reception circuit 2, and an address setting device A1. The control calculation means 1 receives a signal externally input to the terminal RX through the transmission / reception circuit 2 to the terminal RxD, and if the received signal is a signal for controlling an operating device such as a motor (not shown), the operation is performed. Signal converted to a signal suitable for the control of the device and output from an output circuit (not shown) and processed by the transmission terminal 51, for example, a signal such as an operation switch or sensor (not shown) connected to the transmission terminal 51 For example, the signal is transmitted from the terminal TxD via the transmission / reception circuit 2 via the terminal Tx.

【0004】番地設定器A1は抵抗Ri(iは番号の0〜2)
とスイッチSi(iは番号の0〜2)とからなり、スイッチ
Siの一方の端子は電源の基準電位GND (2値信号の0に
相当する電位)に接続され、他の端子は抵抗Riの一方の
端子に接続され、この接続点から制御演算手段1の入力
端子PIi(i は番号の0〜2)に接続されている。また抵
抗RiのスイッチSiに接続されていない端子は電源の正極
Vcc (2値信号の1)に接続されている。スイッチSiが
閉路している場合は、このスイッチと抵抗Riとの接続点
は基準電位GND に短絡されるので制御演算手段1の入力
端子PIi には信号値0が入力される。スイッチSiが開路
している場合は、このスイッチと抵抗Riとの接続点は抵
抗Riを経由して電源の正極VCC に接続し2値信号の1が
制御演算手段1の入力端子PIi に入力される。上述のと
おりにしてスイッチSiの開閉の組み合わせによって、制
御演算手段1の入力端子PIi に番地を表す信号を入力す
ることができる。
The address setter A1 has a resistance Ri (i is a number 0 to 2)
And switch Si (i is the number 0 to 2)
One terminal of Si is connected to the reference potential GND of the power supply (potential corresponding to 0 of the binary signal), the other terminal is connected to one terminal of the resistor Ri, and the input of the control calculation means 1 from this connection point. It is connected to the terminal PIi (i is number 0 to 2). The terminal of the resistor Ri that is not connected to the switch Si is the positive electrode of the power supply.
It is connected to Vcc (1 of binary signal). When the switch Si is closed, the connection point between this switch and the resistor Ri is short-circuited to the reference potential GND, so that the signal value 0 is input to the input terminal PIi of the control calculation means 1. When the switch Si is open, the connection point between this switch and the resistor Ri is connected to the positive terminal VCC of the power supply via the resistor Ri, and the binary signal 1 is input to the input terminal PIi of the control calculation means 1. It As described above, the signal representing the address can be input to the input terminal PIi of the control calculation means 1 by opening and closing the switch Si.

【0005】図4の(c) は番地設定の他の例であり、図
において、1は制御演算手段、2は送受信回路であり、
図4の(b) に示した同一符号のものと同一である。A2は
番地設定回路であり、この回路は電気的に記憶する内容
が消去可能な、データの入出力をビット単位に直列に行
う、不揮発性の記憶素子であるシリアルEEPROMからな
り、この素子の内部に伝送端末の番地を格納しておき、
必要なときに端子PI3 からパルス信号を送り、このパル
ス信号に同期して格納されている番地を表すデータを端
子PI5 から読み出して使用する。
FIG. 4 (c) shows another example of address setting. In the figure, 1 is a control operation means, 2 is a transmission / reception circuit,
It is the same as the one with the same reference numeral shown in FIG. A2 is an address setting circuit, which consists of a serial EEPROM that is a non-volatile memory element that electrically erases the contents to be stored, performs data input / output serially in bit units, and Store the address of the transmission terminal in
When necessary, send a pulse signal from pin PI3, and read the data representing the address stored in synchronization with this pulse signal from pin PI5 for use.

【0006】その他、伝送端末の番地を、電池により停
電時の記憶の喪失を防止したRAMに記憶させておく方
法などもある。
[0006] In addition, there is also a method of storing the address of the transmission terminal in a RAM that prevents loss of memory at the time of power failure by a battery.

【0007】[0007]

【発明が解決しようとする課題】以上に説明したとおり
従来の方法の一つである、図4の(b) のスイッチによっ
て番地を設定する方法においては、必要な番地の数が例
えば10個になると4組のスイッチ回路を必要とし取り
付けスペースが増加し、また番地入力のためにだけ伝送
端末の制御演算手段の入力信号用の端子の多数が専有さ
れてしまう。スイッチについてみると、小型のものもあ
り、小型のものを使用すれば取り付け空間は節約できる
が、反面小さいために番地設定時の取扱い勝手が悪い欠
点がある。2番目の例として上げだEEPROMを使用する方
法や電池を使用する方法は、費用がかさむのが難点であ
る。
As described above, in the method of setting the address by the switch of FIG. 4 (b), which is one of the conventional methods, the required number of addresses is, for example, 10 In this case, four sets of switch circuits are required, the installation space is increased, and a large number of input signal terminals of the control calculation means of the transmission terminal are exclusively used for address input. As for switches, there are some small ones, and if a small one is used, the installation space can be saved, but on the other hand, there is a drawback that handling is difficult at the time of address setting because it is small. As a second example, the method of using the EEPROM and the method of using the battery, which are mentioned above, are difficult to be expensive.

【0008】上述の事情があるので、本発明は記憶され
た番地を表すデータを少ない数の端子から入力でき、し
かも番地の記憶を簡単な低価格の番地設定が容易な回路
で実現する方法を提供することにある。
Because of the above-mentioned circumstances, the present invention provides a method for realizing the storage of an address by a circuit in which the data representing the stored address can be input from a small number of terminals and the address can be stored easily at a low cost. To provide.

【0009】[0009]

【課題を解決するための手段】前述の目的を達成するた
め、本発明によれば、一つの送信元と、送信元から伝送
端末に送信される直列信号の番地を同時に受信する一つ
以上の伝送端末からなる、マルチドロップ伝送方式の信
号伝送システムの伝送端末の番地記憶方法において、直
流の基準電位を基準にして測定された、等しい値の一定
電圧を出力する二つの電極の一方の電極から第1の抵抗
を直列に介して電極の一方を基準電位に接続された基準
のコンデンサに充電し、このコンデンサの両端子間の電
圧が0ボルトの状態から所定電圧になるまでの第1の時
間を計測する。また他方の電極から第2の抵抗を介して
基準のコンデンサに充電し、このコンデンサの両端子間
の電圧が0ボルトの状態から所定電圧になるまでの第2
の時間を計測する。そして計測された第1の時間と第2
の時間の比から、伝送端末の番地を決定することを特徴
とする。
In order to achieve the above-mentioned object, according to the present invention, one sender and one or more receivers for simultaneously receiving the serial signal address transmitted from the sender to the transmission terminal are provided. In the address storage method of the transmission terminal of the signal transmission system of the multi-drop transmission method consisting of the transmission terminal, from one electrode of the two electrodes that output a constant voltage of an equal value measured with reference to the DC reference potential. First time for charging a reference capacitor, one of electrodes of which is connected to a reference potential via a first resistor in series, until the voltage between both terminals of the capacitor reaches a predetermined voltage from 0 volt. To measure. A second capacitor is charged from the other electrode through a second resistor to a reference capacitor until the voltage between both terminals of the capacitor reaches a predetermined voltage from 0 volt.
To measure the time. And the measured first time and second
It is characterized in that the address of the transmission terminal is determined from the ratio of the times.

【0010】また、基準コンデンサの電源の基準電位に
接続する端子にトランジスタのエミッタを接続し、該ト
ランジスタのコレクタに直列に接続された抵抗を基準コ
ンデンサの基準電位に接続しない端子に接続し、該トラ
ンジスタのベースへのベース電流を制御することによ
り、基準コンデンサの充放電を制御することを特徴とす
る。
Further, the emitter of the transistor is connected to the terminal connected to the reference potential of the power source of the reference capacitor, and the resistor connected in series to the collector of the transistor is connected to the terminal not connected to the reference potential of the reference capacitor. It is characterized in that the charge / discharge of the reference capacitor is controlled by controlling the base current to the base of the transistor.

【0011】さらに、基準コンデンサの基準電位に接続
された端子の電位を基準電位とし、該基準コンデンサの
基準電位に接続されない端子の電圧を入力電圧とするシ
ュミット回路の出力電圧によって、所定電圧を検出する
ことを特徴とする。さらにまた、第2抵抗は抵抗値の変
更が容易に行える抵抗値変更手段を有するものであり、
また該第2抵抗は変更後の抵抗値に固定する手段を有す
るものであることを特徴とする。
Further, the predetermined voltage is detected by the output voltage of the Schmitt circuit in which the potential of the terminal connected to the reference potential of the reference capacitor is used as the reference potential and the voltage of the terminal not connected to the reference potential of the reference capacitor is used as the input voltage. It is characterized by doing. Furthermore, the second resistor has a resistance value changing means capable of easily changing the resistance value,
Further, the second resistance is characterized by having means for fixing the resistance value after the change.

【0012】また、伝送端末に着脱可能であって、伝送
端末に装着する場合は伝送端末と交信する交信手段と、
交信手段を介して送信されてくる第2抵抗の抵抗値に基
づく番地信号が表す番地を表示する表示手段と、第2抵
抗の抵抗値の抵抗値変更手段に着脱可能な該抵抗値変更
手段を介して第2抵抗の抵抗値を変更する抵抗駆動機
と、操作入力手段とを有する番地設定器によって、表示
手段に表示された第2抵抗の抵抗値に基づく番地が予定
された番地になるように操作入力手段を介して抵抗駆動
器を制御し、第2抵抗の抵抗値を調整することを特徴と
する。
[0012] Further, a communication means which is detachable from the transmission terminal and communicates with the transmission terminal when attached to the transmission terminal,
Display means for displaying the address represented by the address signal based on the resistance value of the second resistance transmitted through the communication means, and the resistance value changing means detachable from the resistance value changing means for the resistance value of the second resistance. The address setter having the resistance driver for changing the resistance value of the second resistance via the address setting device and the operation input means causes the address based on the resistance value of the second resistance displayed on the display means to be the planned address. In addition, the resistance driver is controlled via the operation input means to adjust the resistance value of the second resistor.

【0013】[0013]

【作用】第1時間は基準コンデンサに第1抵抗を直列に
介して、直流の一定電圧からこのコンデンサの両端子間
の電圧が0ボルトから、所定電圧になるまで充電するの
に要する時間である。従って電気回路の理論から第1時
間は次の式によって計算できる。
The first time is the time required to charge the reference capacitor through the first resistor in series from a constant DC voltage until the voltage between both terminals of this capacitor reaches a predetermined voltage from 0 volt. . Therefore, from the theory of electric circuits, the first time can be calculated by the following formula.

【0014】 第1時間 = −C1 ×R1 × log(1─V/E) 但し、C1 は基準コンデンサの静電容量(単位F)、R
1は第1抵抗の抵抗値、(単位Ω)、Vは所定電圧、E
は直流の一定電圧 第2時間は基準コンデンサに第2抵抗を直列に介して、
直流の一定電圧からこのコンデンサの両端子間の電圧が
0ボルトから、所定電圧になるまで充電するのに要する
時間である。従って電気回路の理論から第2時間は次の
式によって計算できる。
First time = −C1 × R1 × log (1−V / E) where C1 is the capacitance of the reference capacitor (unit F), R
1 is the resistance value of the first resistor (unit: Ω), V is a predetermined voltage, E
Is a constant voltage of direct current for a second time, through a second resistor in series with a reference capacitor,
This is the time required for charging from a constant DC voltage to a predetermined voltage from the voltage between both terminals of this capacitor to 0 V. Therefore, from the theory of electric circuits, the second time can be calculated by the following formula.

【0015】 第2時間 = −C1 ×R2 × log(1─V/E) 但し、R2 は第2抵抗の抵抗値(単位Ω)、他の記号は
第1の時間の計算に使用した記号と同じ 従って、(第1時間)/(第の時間)= (R1)/( R2) 即ち、第1時間と第2時間との比は、第1抵抗の抵抗値
と第2抵抗の抵抗値との比に等しくなる。第1抵抗と第
2抵抗とは、この抵抗を有する伝送端末に固有のもので
あるから、この両方の抵抗値の比をこの伝送端末の番地
に対応させて定め、抵抗値の比を、第1時間と第2時間
との比から求めて伝送端末の番地を決定することができ
る。
Second time = −C1 × R2 × log (1−V / E) where R2 is the resistance value of the second resistance (unit: Ω), and other symbols are the symbols used for the calculation of the first period. Therefore, (first time) / (second time) = (R1) / (R2) That is, the ratio of the first time and the second time is the resistance value of the first resistance and the resistance value of the second resistance. Equal to the ratio of. Since the first resistance and the second resistance are unique to the transmission terminal having this resistance, the ratio of the resistance values of both is determined in correspondence with the address of this transmission terminal, and the ratio of the resistance values is The address of the transmission terminal can be determined from the ratio of 1 hour to the second time.

【0016】また、基準コンデンサの両端の端子間に接
続されたトランジスタのベースに電流を制御演算手段に
よって制御し、ベースに充分な電流を注入することによ
ってトランジスタのエミッタとコレクタの間をキャリア
によって飽和の状態にすると、基準コンデンサの電荷が
トランジスタを経て急速に放電され、基準コンデンサの
両端の端子電圧が短時間で0ボルトになる。
Further, by controlling the current to the base of the transistor connected between the terminals of the reference capacitor by the control calculation means, and injecting a sufficient current into the base, the carrier is saturated between the emitter and collector of the transistor. In this state, the electric charge of the reference capacitor is rapidly discharged through the transistor, and the terminal voltage across the reference capacitor becomes 0 V in a short time.

【0017】さらに、基準コンデンサの基準電位に接続
された端子の電位を基準電位とし、該基準コンデンサの
基準電位に接続されない端子の電圧を入力電圧とするシ
ュミット回路の出力電圧によって所定電圧を検出するの
で、コンデンサの充電電圧がシュミット回路の敷居値電
圧を越えると、シュミット回路の出力電圧が2値信号の
一方を表す電圧から他の値を表す電圧に急変し、この変
化によって所定電圧が検出できるので、シュミット回路
の敷居値電圧に等しい電圧として所定電圧が与えられ
る。
Further, the predetermined voltage is detected by the output voltage of the Schmitt circuit in which the potential of the terminal connected to the reference potential of the reference capacitor is used as the reference potential and the voltage of the terminal not connected to the reference potential of the reference capacitor is used as the input voltage. Therefore, when the charging voltage of the capacitor exceeds the threshold voltage of the Schmitt circuit, the output voltage of the Schmitt circuit suddenly changes from the voltage representing one of the binary signals to the voltage representing the other value, and the predetermined voltage can be detected by this change. Therefore, the predetermined voltage is applied as a voltage equal to the threshold voltage of the Schmitt circuit.

【0018】さらにまた、第2抵抗は抵抗値が可変なも
のとし、しかも変更した抵抗値に固定できるものにする
と好適である。また、番地設定器の抵抗駆動機を伝送端
末の第2抵抗の抵抗値変更手段に装着すると、伝送端末
の第1抵抗と第2抵抗で定まる番地信号が番地設定器に
送信されて、番地が番地設定器の表示手段に表示され
る。その番地が予定した伝送端末の番地に一致しない場
合は、番地設定器の操作手段から番地を増加または減少
する信号を番地設定器に入力する。番地設定器は操作入
力に応じて抵抗駆動機を制御し、第2抵抗の値を変更
し、変更した結果に基づく番地が番地設定器の表示手段
に表示される。
Furthermore, it is preferable that the second resistor has a variable resistance value and can be fixed to the changed resistance value. Further, when the resistance driver of the address setting device is attached to the resistance value changing means of the second resistance of the transmission terminal, the address signal determined by the first resistance and the second resistance of the transmission terminal is transmitted to the address setting device, and the address is changed. It is displayed on the display means of the address setting device. If the address does not match the expected address of the transmission terminal, a signal for increasing or decreasing the address is input to the address setting device from the operating means of the address setting device. The address setting device controls the resistance driver according to the operation input, changes the value of the second resistance, and the address based on the changed result is displayed on the display means of the address setting device.

【0019】[0019]

【実施例】【Example】

(実施例1)図1に本発明の伝送端末の番地記憶方法の
一実施例を示す。図において、5Nは伝送端末であり、制
御演算手段1、送受信回路2、番地記憶回路A11 の要素
から構成される。伝送端末5Nを構成する要素のうち図4
に示したものと同一のものは同一の符号を付して説明を
省略する。また以下の説明では0または1に対応する2
値信号は単に信号と略称する。
(Embodiment 1) FIG. 1 shows an embodiment of an address storage method of a transmission terminal according to the present invention. In the figure, 5N is a transmission terminal, which is composed of the elements of the control calculation means 1, the transmission / reception circuit 2, and the address storage circuit A11. Figure 4 among the elements that make up the transmission terminal 5N
The same parts as those shown in are attached with the same notations and an explanation thereof will be omitted. In the following description, 2 corresponding to 0 or 1
The value signal is simply referred to as a signal.

【0020】番地記憶回路A11 は第1の抵抗としての抵
抗RS(以下の説明では第1抵抗RSと称する)と第2の抵
抗としての可変抵抗VR(以下の説明では第2抵抗VRと称
する)とダイオードD0,D1 とシュミット回路3と抵抗R
i,RB とトランジスタTrと基準コンデンサとしてのコン
デンサC(以下の説明ではコンデンサCと称する)とか
らなる。
The address storage circuit A11 has a resistance RS as a first resistance (hereinafter referred to as a first resistance RS) and a variable resistance VR as a second resistance (hereinafter referred to as a second resistance VR). , Diode D0, D1, Schmitt circuit 3 and resistor R
i, RB, a transistor Tr, and a capacitor C (referred to as capacitor C in the following description) serving as a reference capacitor.

【0021】コンデンサCは一方の端子が電源の基準電
位端子GND (2値信号の0を表す電位の端子)に接続さ
れる。第1抵抗RSは一方の端子が制御演算手段1の出力
端子PO0 に接続され、他方の端子がダイオードD0のアノ
ードに接続され、ダイオードD0のカソードがコンデンサ
Cの基準電位端子GND に接続されない側の端子に接続さ
れて、制御演算手段1の出力信号端子PO0 と基準電位端
子GND の間の電圧によって、第2抵抗RSとダイオードD0
の直列回路を経由するコンデンサCへの充電回路を構成
する。
One terminal of the capacitor C is connected to the reference potential terminal GND of the power source (the terminal of the potential representing 0 of the binary signal). One terminal of the first resistor RS is connected to the output terminal PO0 of the control calculation means 1, the other terminal is connected to the anode of the diode D0, and the cathode of the diode D0 is not connected to the reference potential terminal GND of the capacitor C. The second resistor RS and the diode D0 are connected to the terminal by the voltage between the output signal terminal PO0 of the control calculation means 1 and the reference potential terminal GND.
A charging circuit for the capacitor C via the series circuit of is constructed.

【0022】第2抵抗VRは一方の端子が制御演算手段1
の出力端子PO1 に接続され、他方の端子がダイオードD1
のアノードに接続され、ダイオードD1のカソードがコン
デンサCの基準電位端子GND に接続されない側の端子に
接続されて、制御演算手段1の出力信号端子PO1 と基準
電位端子GND の間の電圧によって、第2抵抗VRとダイオ
ードD1の直列回路を経由するコンデンサCへの充電回路
を構成する。なおダイオードD0とD1とはコンデンサCの
側から制御演算手段1の出力信号端子PO0 またはPO1 に
向かう電流を阻止するために設けられたもので、制御演
算手段1に電流の逆流を阻止する能力が充分にある場合
はこのダイオードは省略できる。
One terminal of the second resistor VR has a control calculation means 1
Is connected to the output terminal PO1 of the
Connected to the anode of, the cathode of the diode D1 is connected to the terminal of the capacitor C that is not connected to the reference potential terminal GND, and the voltage between the output signal terminal PO1 of the control calculation means 1 and the reference potential terminal GND causes A charging circuit for the capacitor C is configured via a series circuit of two resistors VR and the diode D1. The diodes D0 and D1 are provided to block the current flowing from the capacitor C side to the output signal terminal PO0 or PO1 of the control calculation means 1, and the control calculation means 1 has the ability to block the reverse flow of current. If sufficient, this diode can be omitted.

【0023】シュミット回路3は入力端子をコンデンサ
Cの基準電圧端子GND に接続されない側の端子に接続さ
れ、出力端子を制御演算手段1の入力端子PI0 に接続さ
れて、コンデンサCの充電電圧(基準電圧端子GND に接
続する端子と他の端子との間の電圧)がこのシュミット
回路の敷居値電圧値を越えることによって、2値信号の
1を制御演算手段1に出力し、コンデンサCの充電電圧
の検出すべき所定電圧をこのシュミット回路の敷居値電
圧に等しい電圧値として与える。
The Schmitt circuit 3 has its input terminal connected to the terminal of the capacitor C not connected to the reference voltage terminal GND, and its output terminal connected to the input terminal PI0 of the control calculation means 1 so as to charge the capacitor C (reference voltage). When the voltage between the terminal connected to the voltage terminal GND and the other terminal) exceeds the threshold voltage value of this Schmitt circuit, 1 of the binary signal is output to the control calculation means 1 and the charging voltage of the capacitor C The predetermined voltage to be detected is given as a voltage value equal to the threshold voltage of the Schmitt circuit.

【0024】トランジスタTrはエミッタが基準電位端子
GND に接続され、コレクタが抵抗Riを介してコンデンコ
Cの基準電位端子に接続されない側の端子に接続され、
ベースが抵抗RBを介して制御演算手段1の出力信号端子
PO2 に接続される。制御演算手段1の端子PO2 からの出
力信号が0の場合はベースに流入する電流が0となり、
トランジスタTrのコレクタとエミッタ間の抵抗値が非常
に高くなって、実用的にはコンデンサCに並列するトラ
ンジスタTrの回路が開放したことと同様な効果をもたら
す。制御演算手段1の出力信号端子PO2 の出力信号の値
が1になると、この端子からは信号の1に相当する正の
直流電圧が出力されて、この端子からトランジスタTrを
飽和させるために充分なベース電流が供給され、トラン
ジスタTrのエミッタとコレクタ間の抵抗値が小さくな
り、トランジスタTrを経由する回路によってコンデンサ
Cに蓄積された電荷が急速に放電される。
The emitter of the transistor Tr is a reference potential terminal
It is connected to GND and the collector is connected through resistor Ri to the terminal on the side not connected to the reference potential terminal of Condenco C,
The output signal terminal of the control calculation means 1 whose base is through the resistor RB
Connected to PO2. When the output signal from the terminal PO2 of the control calculation means 1 is 0, the current flowing into the base becomes 0,
The resistance value between the collector and the emitter of the transistor Tr becomes extremely high, and practically, the same effect as that of the circuit of the transistor Tr in parallel with the capacitor C being opened is brought about. When the value of the output signal of the output signal terminal PO2 of the control calculation means 1 becomes 1, a positive DC voltage corresponding to 1 of the signal is output from this terminal, which is sufficient to saturate the transistor Tr from this terminal. The base current is supplied, the resistance value between the emitter and collector of the transistor Tr is reduced, and the electric charge accumulated in the capacitor C is rapidly discharged by the circuit passing through the transistor Tr.

【0025】図2は、横軸を時間の座標、縦軸を電圧値
の座標とする電源の基準電位端子GND の電位を基準とす
るコンデンサCの基準電位端子GND に接続されない側の
端子の電圧(この電圧はコンデンサの両端の端子間の電
圧に等しいので以下の説明ではコンデンサCの充電電圧
と称する)の特性を表した図である。図において、曲線
V1は第1抵抗RSを経由してコンデンサCを充電した場合
のコンデンサCの充電電圧の時間に対する変化を表した
曲線であり、曲線V2は第2抵抗VRを経由してコンデンサ
Cを充電した場合のコンデンサCの充電電圧の時間に対
する変化を表した曲線であり、Vtはシュミット回路3の
敷居値電圧であり、前述のとおり検出すべきコンデンサ
Cの充電電圧の所定電圧に等しい。
FIG. 2 shows the voltage of the terminal on the side not connected to the reference potential terminal GND of the capacitor C whose reference is the potential of the reference potential terminal GND of the power supply, where the horizontal axis is the time coordinate and the vertical axis is the voltage value coordinate. It is a diagram showing the characteristics of (the voltage is called the charging voltage of the capacitor C in the following description because this voltage is equal to the voltage across the terminals of the capacitor). In the figure, the curve
V1 is a curve showing the change in the charging voltage of the capacitor C with time when the capacitor C is charged via the first resistor RS, and the curve V2 is the case where the capacitor C is charged via the second resistor VR. Is a curve showing the change of the charging voltage of the capacitor C with respect to time, Vt is the threshold voltage of the Schmitt circuit 3, and is equal to the predetermined voltage of the charging voltage of the capacitor C to be detected as described above.

【0026】図2と図1とを参照して番地決定の方法を
説明する。先ず制御演算手段1の出力信号端子P02 から
信号値1を出力してコンデンサCに蓄積された電荷を放
電する。この状態でコンデンサCの充電電圧は0ボルト
になる。次いで時刻0において、出力信号端子PO2 の信
号値を0にし、制御演算手段1の出力信号端子PO0 から
の出力信号を1にする。コンデンサCは第1抵抗RSとダ
イオードD1の直列回路を経由して出力信号端子PO0 の電
圧で充電され、時間の経過とともに曲線V1に沿って充電
電圧が上昇する。曲線V1は電気回路理論により次に示す
式で表すことができる。
A method of determining an address will be described with reference to FIGS. 2 and 1. First, the signal value 1 is output from the output signal terminal P02 of the control calculation means 1 to discharge the electric charge accumulated in the capacitor C. In this state, the charging voltage of the capacitor C becomes 0 volt. Next, at time 0, the signal value of the output signal terminal PO2 is set to 0, and the output signal from the output signal terminal PO0 of the control calculation means 1 is set to 1. The capacitor C is charged with the voltage of the output signal terminal PO0 via the series circuit of the first resistor RS and the diode D1, and the charging voltage increases along the curve V1 with the passage of time. The curve V1 can be expressed by the following equation according to the electric circuit theory.

【0027】V1 = E1 ×(1─exp─(t/(C1
×R1 ))) 但し、E1 は端子PO0 から信号値1が出力された場合の
基準電圧端子GND を基準とする端子PO0 の電圧からダイ
オードD0の準方向に流れる電流によって生ずる電圧降下
を差し引いた電圧、C1 はコンデンサCの静電容量(単
位F)、R1 は第1抵抗RSの抵抗値(単位Ω)、tは時
刻0からの経過時間(単位秒) 上に示したV1を表す式から、コンデンサCの充電電圧が
シュミット回路3の敷居値電圧Vtになるまでの第1時間
としての時間T1は次式によって求められる。
V1 = E1 × (1−exp− (t / (C1
× R1))) where E1 is the voltage obtained by subtracting the voltage drop caused by the current flowing in the quasi-direction of the diode D0 from the voltage of the terminal PO0 with reference to the reference voltage terminal GND when the signal value 1 is output from the terminal PO0. , C1 is the electrostatic capacity of the capacitor C (unit F), R1 is the resistance value of the first resistor RS (unit Ω), t is the elapsed time from time 0 (unit second) From the formula expressing V1 shown above, The time T1 as the first time until the charging voltage of the capacitor C reaches the threshold value voltage Vt of the Schmitt circuit 3 is obtained by the following equation.

【0028】[0028]

【数1】 T1 = −C1 ×R1 ×log (1−Vt/E1 ) 次に第1抵抗からコンデンサCに充電した操作と同様に
して第2抵抗VRからコンデンサCに充電すると、コンデ
ンサCの充電電圧は図2の曲線V2に沿って上昇する。曲
線V2を表す式は曲線V1を表す式と同様にして、次の式で
表わされる。
[Equation 1] T1 = -C1 * R1 * log (1-Vt / E1) Next, when the capacitor C is charged from the second resistor VR in the same manner as the operation of charging the capacitor C from the first resistor, the capacitor C is charged. The voltage rises along the curve V2 in FIG. The equation representing the curve V2 is similar to the equation representing the curve V1 and is represented by the following equation.

【0029】V2 = E2 ×(1─exp─(t/(C1
×R2 ))) 但し、E2 は端子PO1 から信号値1が出力された場合の
基準電圧端子GND を基準とする端子PO1 の電圧からダイ
オードD1の準方向に流れる電流によって生ずる電圧降下
を差し引いた電圧、R2 は第2 抵抗VRの抵抗値(単位
Ω)、上に示したV2を表す式から、コンデンサCの充電
電圧がシュミット回路3の敷居値電圧Vtになるまでの第
2時間としての時間T2は次式によって求められる。
V2 = E2 × (1−exp− (t / (C1
× R2))) where E2 is the voltage obtained by subtracting the voltage drop caused by the current flowing in the quasi-direction of diode D1 from the voltage of terminal PO1 with reference to the reference voltage terminal GND when signal value 1 is output from terminal PO1. , R2 is the resistance value of the second resistor VR (unit: Ω), and the time T2 as the second time until the charging voltage of the capacitor C reaches the threshold value voltage Vt of the Schmitt circuit 3 from the equation expressing V2 shown above. Is calculated by the following equation.

【0030】[0030]

【数2】 T2 = −C1 ×R2 log (1−Vt/E2 ) 端子PO0 と端子PO1 とから信号値1が出力される場合の
端子電圧は、端子PO0と端子PO1 は同一仕様の制御演算
手段1の回路であり、同一の電源から電力が供給され
る。従って、両方の出力端子から出力される電圧は実用
的には等しい電圧である。またダイオードD0とダイオー
ドD1とは同一仕様のものを使用することによって、両方
のダイオードは同じ環境で使用されるので、準方向電流
による電圧降下も殆ど等しくできる。従って電圧E1 と
電圧E2 とは実用的に等しいとすることができる。そこ
で、E1とE2とが等しいとおいて、第1時間T1と第2
時間T2との比を数1と数2とから求めると、 T2 / T1 = R2 / R1 となり、第1時間と第2時間の比は第1抵抗と第2抵抗
の比に等しい。そこで制御演算手段1において、出力信
号端子PO0 に信号値1を出力してから入力信号端子PI0
に信号値1が入力される迄の時間T1を第1時間、出力信
号端子PO1 に信号値1を出力してから入力信号端子PI0
に信号値1が入力される迄の時間T2を第2時間として計
測して、第1時間と第2時間との比を求めると、第1抵
抗RSの抵抗値と第2抵抗VRの抵抗値との比に等しい比が
得られるので、第1抵抗RSと第2抵抗VRの抵抗値の比を
伝送端末5Nの番地に対応させて定義することにより、停
電時においても恒常的に伝送端末5Nの番地を記憶させる
ことができる。
## EQU00002 ## T2 = -C1 * R2 log (1-Vt / E2) The terminal voltage when the signal value 1 is output from the terminal PO0 and the terminal PO1 is the same as that of the terminal PO0 and the terminal PO1. 1 circuit, and electric power is supplied from the same power source. Therefore, the voltages output from both output terminals are practically equal. Further, by using the diodes D0 and D1 having the same specifications, both diodes are used in the same environment, so that the voltage drop due to the quasi-directional current can be made almost equal. Therefore, the voltage E1 and the voltage E2 can be practically equal. Therefore, assuming that E1 and E2 are equal, the first time T1 and the second time T1
When the ratio to the time T2 is calculated from the equations 1 and 2, T2 / T1 = R2 / R1 and the ratio between the first time and the second time is equal to the ratio between the first resistance and the second resistance. Therefore, in the control calculation means 1, the signal value 1 is output to the output signal terminal PO0 and then the input signal terminal PI0
Input signal terminal PI0 after outputting signal value 1 to output signal terminal PO1 for the first time T1 until signal value 1 is input to
When the time T2 until the signal value 1 is input is measured as the second time and the ratio of the first time and the second time is obtained, the resistance value of the first resistor RS and the resistance value of the second resistor VR are calculated. Since a ratio equal to the ratio to the transmission terminal 5N is obtained, by defining the ratio of the resistance values of the first resistor RS and the second resistor VR in correspondence with the address of the transmission terminal 5N, the transmission terminal 5N can be constantly used even during a power failure. The address of can be stored.

【0031】表1に第1抵抗RSと第2抵抗VRの抵抗値の
比を伝送端末5Nの番地に対応させて定義した例を示す。
表では、表の左欄には番地を記入し、右欄に左欄の番地
に対応する第1抵抗RSを基準とする場合の第2抵抗VRの
抵抗値の倍率が示されている。例えば、第2抵抗VRの抵
抗値が第1抵抗RSの1.8 〜2.2 倍の範囲に設定されてい
る場合は、この比に1番地が対応される。
Table 1 shows an example in which the ratio of the resistance values of the first resistor RS and the second resistor VR is defined in correspondence with the address of the transmission terminal 5N.
In the table, the address is entered in the left column of the table, and the magnification of the resistance value of the second resistor VR when the first resistor RS corresponding to the address in the left column is used as a reference is shown in the right column. For example, when the resistance value of the second resistor VR is set in the range of 1.8 to 2.2 times that of the first resistor RS, the address corresponds to this ratio.

【0032】[0032]

【表1】 [Table 1]

【0033】(実施例2)図3に請求項5に記載の、本
発明の方法に関する、第2抵抗の設定方法の一実施例を
示す。図において、5N1 は伝送端末であり、伝送端末5N
1 は第2抵抗RVにこの抵抗の抵抗値を変更するための抵
抗値変更手段31が設けられている点を除き、図1に示し
た伝送端末5Nと同一であり、伝送端末5Nを構成する各部
分の、図1に示した伝送端末5Nを構成する部分と同じも
のは、同一の符号を付して説明を省略する。なお番地記
憶回路A12 は抵抗値変更手段31が設けられている点を除
き図1に示した番地記憶回路A11 と同一である。抵抗値
変更手段31は外部の回転軸に係合する回転軸32を回転す
ると第2抵抗RVの抵抗値を変化させる機構である。
(Embodiment 2) FIG. 3 shows an embodiment of a method for setting the second resistance according to the method of the present invention. In the figure, 5N1 is a transmission terminal, and
1 is the same as the transmission terminal 5N shown in FIG. 1 except that the second resistance RV is provided with resistance value changing means 31 for changing the resistance value of this resistance, and constitutes the transmission terminal 5N. The same parts as those forming the transmission terminal 5N shown in FIG. 1 are denoted by the same reference numerals and description thereof will be omitted. The address storage circuit A12 is the same as the address storage circuit A11 shown in FIG. 1 except that the resistance value changing means 31 is provided. The resistance value changing means 31 is a mechanism that changes the resistance value of the second resistance RV when the rotary shaft 32 engaged with the external rotary shaft is rotated.

【0034】B1は番地設定器であり、制御演算手段31、
送受信回路21、制御演算手段31によって制御される表示
手段41、制御演算手段31に操作信号を入力する操作入力
手段42、制御演算手段31によって制御される抵抗駆動機
43とからなる。さらに抵抗駆動機43はステッピングモー
タ431 と、ステッピングモータ431 に駆動され伝送端末
5N1 の抵抗値変更手段31の回転軸32に係合する回転軸43
3 を駆動する減速機432 と、ステッピングモータ431 を
駆動し回転方向と回転速度とを制御演算手段31からの信
号に基づいて制御するモータ制御器434 とからなる。
B1 is an address setting device, and the control calculation means 31,
Transmission / reception circuit 21, display means 41 controlled by control calculation means 31, operation input means 42 for inputting an operation signal to control calculation means 31, resistance drive machine controlled by control calculation means 31
It consists of 43 and. Further, the resistance drive machine 43 is driven by the stepping motor 431 and the stepping motor 431 and is transmitted to the transmission terminal.
The rotary shaft 43 engaging with the rotary shaft 32 of the resistance value changing means 31 of 5N1
And a motor controller 434 for driving the stepping motor 431 to control the rotation direction and the rotation speed based on the signal from the control calculation means 31.

【0035】伝送端末5N1 と番地設定機B1とは、図示外
の機構によって機械的に着脱が可能であり、伝送端末5N
1 と番地設定機B1以外の装置などとの交信を遮断した状
態にして、伝送端末5N1 に番地設定機B1を装着すると、
伝送端末5N1 の送信端子TXが番地設定器B1の受信端子RX
S に接続され、伝送端末5N1 の受信端子RXが番地設定器
B1の送信端子TXS に接続され、伝送端末5N1 から番地記
憶回路A12 に基づく番地を表す番地信号が番地設定器B1
に送信され、番地設定器B1はこの信号が入力されると入
力された番地信号に基づく番地を表示手段41に表示す
る。また、減速機構432 の回転軸433 が伝送端末5N1 の
抵抗値変更手段31の回転軸32に係合する。表示手段41に
表示された番地が伝送端末5N1 に予定された番地より小
さい場合は操作入力手段42の押しボタンスイッチ421 を
押すと、このスイッチからの信号を入力されて制御演算
手段31はモータ制御機434 を介してステッピングモータ
431を回転させ、番地を増加させる方向に第2抵抗RVの
抵抗値を変更する。表示された番地が予定された番地よ
り大きい場合は操作入力手段42の押しボタンスイッチ42
2 を押すと、このスイッチからの信号を入力されて制御
演算手段31はモータ制御機434 を介してステッピングモ
ータ431 を回転させ、番地を減少させる方向に第2抵抗
RVの抵抗値を変更する。上述のとおりにして、番地設定
器B1の表示を読みつつ予定の番地に伝送端末5N1 の番地
を設定することができる。
The transmission terminal 5N1 and the address setting machine B1 can be mechanically attached and detached by a mechanism (not shown).
If you block the communication between 1 and devices other than the address setting machine B1 and install the address setting machine B1 on the transmission terminal 5N1,
Transmission terminal TX of transmission terminal 5N1 is reception terminal RX of address setter B1
Connected to S, the receiving terminal RX of the transmission terminal 5N1 is the address setter.
An address signal that is connected to the transmission terminal TXS of B1 and represents the address based on the address storage circuit A12 from the transmission terminal 5N1 is the address setter B1.
When this signal is input, the address setter B1 displays the address based on the input address signal on the display means 41. Further, the rotation shaft 433 of the speed reduction mechanism 432 engages with the rotation shaft 32 of the resistance value changing means 31 of the transmission terminal 5N1. If the address displayed on the display unit 41 is smaller than the address planned for the transmission terminal 5N1, when the push button switch 421 of the operation input unit 42 is pressed, the signal from this switch is input and the control calculation unit 31 controls the motor. Motor through machine 434
Rotate 431 and change the resistance value of the second resistor RV in the direction of increasing the address. If the displayed address is larger than the planned address, the push button switch 42 of the operation input means 42
When 2 is pressed, the signal from this switch is input, and the control calculation means 31 rotates the stepping motor 431 via the motor controller 434, and the second resistance in the direction of decreasing the address.
Change the resistance value of RV. As described above, the address of the transmission terminal 5N1 can be set to the planned address while reading the display of the address setting device B1.

【0036】[0036]

【発明の効果】以上に説明したとおり、本発明の方法に
よれば、一つの送信元と、送信元から伝送端末に送信さ
れる直列信号の番地を同時に受信する一つ以上の伝送端
末からなる、マルチドロップ伝送方式の伝送端末の番地
記憶方法において、直流の等しい一定電圧を出力する二
つの電極の一方の電極から第1の抵抗を直列に介して基
準のコンデンサに充電することにより、このコンデンサ
の両端子間の電圧が0ボルトの状態から所定電圧になる
までの第1の時間を計測し、他方の電極から第2の抵抗
を介して基準のコンデンサに充電することにより、この
コンデンサの両端子間の電圧が0ボルトの状態から所定
電圧になるまでの第2の時間を計測し、第1の時間と第
2の時間の比から、伝送端末の番地を決定する。従っ
て、番地を決定するために必要な端子数は、電源の基準
電位に接続する端子を除くと第1抵抗の回路に一定電圧
を供給する端子と第2抵抗に電圧を供給する端子と基準
コンデンサの端子間の電圧を検出するための端子の3端
子のみで足り、番地記憶に必要な回路は、番地の設定数
に関係なく一定の部品点数の、少ない部品点数で構成で
きるので、取り付け空間の点でも価格の点でも経済的な
番地記憶手段が提供される。
As described above, according to the method of the present invention, one transmission source and one or more transmission terminals which simultaneously receive the serial signal address transmitted from the transmission source to the transmission terminal are provided. In the address storage method of the transmission terminal of the multi-drop transmission system, by charging a reference capacitor through a first resistor from one electrode of two electrodes that output a constant voltage of the same direct current, this capacitor By measuring the first time until the voltage between the two terminals of the capacitor reaches a predetermined voltage from the state of 0 volt, and charging the reference capacitor from the other electrode through the second resistor, both ends of this capacitor A second time from when the voltage between the terminals is 0 volt to a predetermined voltage is measured, and the address of the transmission terminal is determined from the ratio of the first time and the second time. Therefore, the number of terminals required to determine the address is the terminal for supplying a constant voltage to the circuit of the first resistor, the terminal for supplying a voltage to the second resistor, and the reference capacitor except the terminal connected to the reference potential of the power supply. Since only three terminals for detecting the voltage between the terminals are required, the circuit required for address storage can be configured with a small number of parts, which is a fixed number of parts regardless of the number of addresses set, so that the installation space An economical means of address storage is provided both in terms of price and price.

【0037】また、請求項2に記載の本発明の方法によ
れば、基準コンデンサの電源の基準電位に接続する端子
にトランジスタのエミッタを接続し、該トランジスタの
コレクタに直列に接続された抵抗を基準コンデンサの基
準電位に接続しない端子に接続し、該トランジスタのベ
ースへのベース電流を制御することにより、基準コンデ
ンサの充放電を制御するので、トランジスタを通じて基
準コンデンサを放電することにより、番地読み取り後わ
ずかの時間間隔をおくのみで、引き続いて番地を読み取
ることができる。
According to the method of the present invention as set forth in claim 2, the emitter of the transistor is connected to the terminal connected to the reference potential of the power source of the reference capacitor, and the resistor connected in series to the collector of the transistor is connected. By connecting to the terminal that is not connected to the reference potential of the reference capacitor and controlling the base current to the base of the transistor, the charge and discharge of the reference capacitor is controlled, so by discharging the reference capacitor through the transistor, after reading the address. The address can be read subsequently with only a short time interval.

【0038】さらに、請求項3に記載の本発明の方法に
よれば、基準コンデンサの基準電位に接続された端子の
電位を基準電位とし、該基準コンデンサの基準電位に接
続されない端子の電圧を入力電圧とするシュミット回路
の出力電圧によって、所定電圧を検出するので、番地決
定に必要な所定電圧が確実な2値信号として得ることが
でき、番地検出を確実に行うことができる。
Further, according to the method of the present invention as set forth in claim 3, the potential of the terminal connected to the reference potential of the reference capacitor is used as the reference potential, and the voltage of the terminal not connected to the reference potential of the reference capacitor is input. Since the predetermined voltage is detected by the output voltage of the Schmitt circuit, which is a voltage, the predetermined voltage necessary for determining the address can be obtained as a reliable binary signal, and the address can be surely detected.

【0039】さらにまた、請求項4に記載の本発明の方
法によれば、第2抵抗は抵抗値の変更が容易に行える抵
抗値変更手段を有するものであり、また該第2抵抗は変
更後の抵抗値に固定する手段を有するものであるので、
同一に製作された伝送端末において、抵抗値変更手段に
よって第2抵抗の抵抗値を変更するのみで異なる番地に
設定することができ、個々に異なる仕様で製作する手間
が省かれる。
Furthermore, according to the method of the present invention as set forth in claim 4, the second resistor has a resistance value changing means capable of easily changing the resistance value, and the second resistor is changed. Since it has a means for fixing the resistance value of
In the transmission terminals manufactured in the same manner, it is possible to set different addresses only by changing the resistance value of the second resistance by the resistance value changing means, and it is possible to save the time and effort to manufacture the transmission terminals with different specifications.

【0040】また、請求項5に記載の発明によれば、伝
送端末に着脱可能であって、伝送端末に装着する場合は
伝送端末と交信する交信手段と、交信手段を介して送信
されてくる第2抵抗の抵抗値に基づく番地信号が表す番
地を表示する表示手段と、第2抵抗の抵抗値の抵抗値変
更手段に着脱可能な該抵抗値変更手段を介して第2抵抗
の抵抗値を変更する抵抗駆動機と、操作入力手段とを有
する番地設定器によって、表示手段に表示された第2抵
抗の抵抗値に基づく番地が予定された番地になるように
操作入力手段を介して抵抗駆動器を制御し、第2抵抗の
抵抗値を調整するので、伝送端末に設定された番地の現
在地を表示手段によって明瞭にに読み取ることができ、
しかも番地設定を容易に行うことができる。また番地設
定器は多数の伝送端末に共用できるので、番地設定に要
する費用も伝送端末の個々についてみると少なくてす
み、番地設定を確実に容易に行えることによる充分な経
済的効果がもたらされる。
According to the fifth aspect of the invention, it is detachable from the transmission terminal, and when it is attached to the transmission terminal, the communication means communicates with the transmission terminal, and the information is transmitted via the communication means. The resistance value of the second resistor is displayed via the display means for displaying the address represented by the address signal based on the resistance value of the second resistor and the resistance value changing means detachable from the resistance value changing means for the resistance value of the second resistor. By the address setting device having the resistance drive machine to be changed and the operation input means, the resistance drive is performed via the operation input means so that the address based on the resistance value of the second resistance displayed on the display means becomes the planned address. Since the controller controls the resistance value of the second resistor, the present location of the address set in the transmission terminal can be clearly read by the display means,
Moreover, the address can be easily set. Further, since the address setting device can be shared by a large number of transmission terminals, the cost required for the address setting is small for each transmission terminal, and the address setting can be performed reliably and easily, which brings about a sufficient economic effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の番地記憶方法を適用した伝送端末の一
実施例を示す図
FIG. 1 is a diagram showing an embodiment of a transmission terminal to which an address storage method of the present invention is applied.

【図2】図1に示した伝送端末における番地記憶方法を
説明する図
FIG. 2 is a diagram explaining an address storage method in the transmission terminal shown in FIG.

【図3】本発明の方法による伝送端末の番地記憶方法に
おいて、請求項5の発明の方法を適用した伝送端末に記
憶される番地決定方法の一実施例を示す図
FIG. 3 is a diagram showing an embodiment of an address determination method stored in a transmission terminal to which the method of the present invention is applied, in the address storage method of the transmission terminal according to the method of the present invention.

【図4】従来の伝送端末の番地記憶方法を説明する図で
あり、(a) はマルチドロップ伝送方式の伝送端末におい
て、番地記憶の必要を説明する図、(b) はスイッチによ
る伝送端末の番地記憶方法を示す図、(c) は電気消去形
の不揮発性メモリを使用した伝送端末の番地記憶方法を
示す図
4A and 4B are diagrams for explaining an address storage method of a conventional transmission terminal, where FIG. 4A is a diagram for explaining the need for address storage in a transmission terminal of a multi-drop transmission system, and FIG. Figure showing address storage method, (c) shows address storage method of transmission terminal using electrically erasable nonvolatile memory

【符号の説明】[Explanation of symbols]

5N 伝送端末 1 制御演算手段 2 送受信回路 A11 番地記憶回路 C 基準コンデンサ RS1 第1抵抗 RS2 第2抵抗 3 シュミット回路 5N Transmission terminal 1 Control calculation means 2 Transmission / reception circuit A11 Address storage circuit C Reference capacitor RS1 1st resistance RS2 2nd resistance 3 Schmitt circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一つの送信元と、送信元から伝送端末に送
信される直列信号の番地を同時に受信する一つ以上の伝
送端末からなる、マルチドロップ伝送方式の信号伝送シ
ステムの伝送端末の番地記憶方法において、 直流の基準電位を基準にして測定された、等しい値の一
定電圧を出力する二つの電極の一方の電極から第1の抵
抗を直列に介して電極の一方を基準電位に接続された基
準のコンデンサに充電し、このコンデンサの両端子間の
電圧が0ボルトの状態から所定電圧になるまでの第1の
時間を計測し、また他方の電極から第2の抵抗を介して
基準のコンデンサに充電し、このコンデンサの両端子間
の電圧が0ボルトの状態から所定電圧になるまでの第2
の時間を計測し、計測された第1の時間と第2の時間の
比から、伝送端末の番地を決定することを特徴とする伝
送端末の番地記憶方法。
1. The address of a transmission terminal of a signal transmission system of a multi-drop transmission system, which comprises one source and one or more transmission terminals which simultaneously receive the addresses of serial signals transmitted from the source to the transmission terminal. In the storage method, one of the two electrodes that outputs a constant voltage having an equal value, which is measured with reference to a direct current reference potential, is connected to the reference potential via one of the first resistors in series. The first time it takes for the voltage between both terminals of this capacitor to reach a predetermined voltage from the state of 0 volt is charged, and the reference voltage is measured from the other electrode through the second resistor. The second time when the capacitor is charged and the voltage between both terminals of this capacitor reaches the specified voltage from the state of 0 volt.
The address storage method of the transmission terminal, wherein the address of the transmission terminal is determined from the ratio of the measured first time and the measured second time.
【請求項2】請求項1に記載の伝送端末の番地記憶方法
において、 基準コンデンサの電源の基準電位に接続する端子にトラ
ンジスタのエミッタを接続し、該トランジスタのコレク
タに直列に接続された抵抗を基準コンデンサの基準電位
に接続しない端子に接続し、該トランジスタのベースへ
のベース電流を制御することにより、基準コンデンサの
充放電を制御することを特徴とする伝送端末の番地記憶
方法。
2. The address storage method for a transmission terminal according to claim 1, wherein the emitter of the transistor is connected to a terminal connected to the reference potential of the power source of the reference capacitor, and the resistor connected in series to the collector of the transistor is connected. An address storage method for a transmission terminal, characterized in that charging and discharging of a reference capacitor is controlled by connecting to a terminal not connected to a reference potential of a reference capacitor and controlling a base current to the base of the transistor.
【請求項3】請求項1に記載の伝送端末の番地記憶方法
において、基準コンデンサの基準電位に接続された端子
の電位を基準電位とし、該基準コンデンサの基準電位に
接続されない端子の電圧を入力電圧とするシュミット回
路の出力電圧によって、所定電圧を検出することを特徴
とする伝送端末の番地記憶方法。
3. The address storage method for a transmission terminal according to claim 1, wherein a potential of a terminal connected to a reference potential of a reference capacitor is used as a reference potential, and a voltage of a terminal not connected to the reference potential of the reference capacitor is input. A method for storing an address of a transmission terminal, characterized in that a predetermined voltage is detected by the output voltage of the Schmitt circuit which is a voltage.
【請求項4】請求項1に記載の伝送端末の番地記憶方法
において、第2抵抗は抵抗値の変更が容易に行える抵抗
値変更手段を有するものであり、また該第2抵抗は変更
後の抵抗値に固定する手段を有するものであることを特
徴とする伝送端末の番地記憶方法。
4. The address storage method for a transmission terminal according to claim 1, wherein the second resistor has a resistance value changing means capable of easily changing the resistance value, and the second resistor has a resistance after changing. An address storage method for a transmission terminal, characterized in that it has means for fixing the resistance value.
【請求項5】請求項4に記載の伝送端末の番地記憶方法
において、伝送端末に着脱可能であって、伝送端末に装
着する場合は伝送端末と交信する交信手段と、交信手段
を介して送信されてくる第2抵抗の抵抗値に基づく番地
信号が表す番地を表示する表示手段と、第2抵抗の抵抗
値の抵抗値変更手段に着脱可能な該抵抗値変更手段を介
して第2抵抗の抵抗値を変更する抵抗駆動機と、操作入
力手段とを有する番地設定器によって、表示手段に表示
された第2抵抗の抵抗値に基づく番地が予定された番地
になるように操作入力手段を介して抵抗駆動器を制御
し、第2抵抗の抵抗値を調整することを特徴とする伝送
端末の番地記憶方法。
5. The transmission terminal address storage method according to claim 4, wherein the transmission terminal is detachable, and when the transmission terminal is attached to the transmission terminal, communication means communicates with the transmission terminal, and transmission is performed via the communication means. The display means for displaying the address represented by the address signal based on the resistance value of the second resistance, and the resistance value changing means attachable to and detachable from the resistance value changing means for the resistance value of the second resistor An address setting device having a resistance driving machine for changing the resistance value and an operation input means is operated via the operation input means so that the address based on the resistance value of the second resistance displayed on the display means becomes the planned address. Controlling the resistance driver to adjust the resistance value of the second resistance.
JP6206274A 1994-08-31 1994-08-31 Storing method for address of transmission terminal Pending JPH0879284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6206274A JPH0879284A (en) 1994-08-31 1994-08-31 Storing method for address of transmission terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6206274A JPH0879284A (en) 1994-08-31 1994-08-31 Storing method for address of transmission terminal

Publications (1)

Publication Number Publication Date
JPH0879284A true JPH0879284A (en) 1996-03-22

Family

ID=16520616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6206274A Pending JPH0879284A (en) 1994-08-31 1994-08-31 Storing method for address of transmission terminal

Country Status (1)

Country Link
JP (1) JPH0879284A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214261B2 (en) 2009-02-05 2015-12-15 Swcc Showa Cable Systems Co., Ltd. Cable for high-voltage electronic device
GB2536054A (en) * 2015-03-06 2016-09-07 Melexis Tech N V Static address allocation by passive electronics
US11424952B2 (en) 2015-03-06 2022-08-23 Melexis Technologies Nv Static data bus address allocation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214261B2 (en) 2009-02-05 2015-12-15 Swcc Showa Cable Systems Co., Ltd. Cable for high-voltage electronic device
GB2536054A (en) * 2015-03-06 2016-09-07 Melexis Tech N V Static address allocation by passive electronics
US11281614B2 (en) 2015-03-06 2022-03-22 Melexis Technologies Nv Static address allocation by passive electronics
US11424952B2 (en) 2015-03-06 2022-08-23 Melexis Technologies Nv Static data bus address allocation

Similar Documents

Publication Publication Date Title
EP0277302B1 (en) Smart control and sensor devices single wire bus multiplex system
US6437540B2 (en) Battery pack
CA1267463A (en) Switch status monitoring system, single wire bus, smart sensor arrangement therefor
JP5609071B2 (en) Power storage device
JP4815098B2 (en) Modular electronic battery tester
JP4401529B2 (en) Laminate voltage measuring device
US7453236B2 (en) Battery pack of automatically setting master and slave pack, multi-battery pack system including the same and method for controlling the same
KR100660728B1 (en) System for controlling voltage balancing in a plurality of litium-ion cell battery packs and method thereof
US5652498A (en) Charge and discharge monitoring device for serially connected electric storage cells
JP4636163B2 (en) Switch circuit
US6691056B2 (en) Circuit arrangement for error recognition of a two-wire data bus
KR920007635B1 (en) Hourmeter apparatus and method
CN101685897A (en) Battery system and battery pack
JP2002204537A (en) Battery pack device
EP3672006B1 (en) Apparatus and method for preventing short circuit
JP6096225B2 (en) Battery monitoring device
EP4290730A1 (en) Battery management device and method
EP0863611B1 (en) A short-circuit detecting device
JPH0879284A (en) Storing method for address of transmission terminal
US6486566B1 (en) Circuit for monitoring the ignition system for a safety device in an automobile
JP2001045671A (en) Bus address switching device of battery pack for electronic apparatus
JP5511074B2 (en) Binary signal processor for in-vehicle equipment
EP0450930B1 (en) Data transmission system with double lines
JP2015195007A (en) Sensor unit, host device and data communication method of host device
JPH06310179A (en) Loading device and charging device for battery, and battery pack