JPH0878739A - Superconductive junction device and its manufacturing method - Google Patents

Superconductive junction device and its manufacturing method

Info

Publication number
JPH0878739A
JPH0878739A JP6232449A JP23244994A JPH0878739A JP H0878739 A JPH0878739 A JP H0878739A JP 6232449 A JP6232449 A JP 6232449A JP 23244994 A JP23244994 A JP 23244994A JP H0878739 A JPH0878739 A JP H0878739A
Authority
JP
Japan
Prior art keywords
superconducting
junction
junction device
superconductive
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6232449A
Other languages
Japanese (ja)
Other versions
JP3217613B2 (en
Inventor
Toru Den
透 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23244994A priority Critical patent/JP3217613B2/en
Publication of JPH0878739A publication Critical patent/JPH0878739A/en
Application granted granted Critical
Publication of JP3217613B2 publication Critical patent/JP3217613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE: To provide a superconductive junction device which can be utilized by an inexpensive liquid nitrogen and a simple cooler and to provide a superconductive junction device which has a junction to be controlled easily when it is manufactured and can be relatively easily manufactured and its manufacturing method. CONSTITUTION: In a superconductive junction device and its manufacturing method, the superconductive junction device consists of copper oxide superconductive material containing carbon group, the junction part contains one portion of the composition of the copper oxide superconductive material constituting the superconductive part, and the carbonic acid group consists of a non-conductive material which is contained more than the superconductive material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超伝導接合デバイス及び
その製造方法に関し、更に詳しくは、ジョセフソン接合
或はジョセフソン接合を用いたジョセフソンコンピュー
ター、ミキサー、SQUID、センサー及びスイッチン
グ素子等に用いられるデバイスは勿論のこと、それらの
デバイスを組み込んだシステムにも利用することが可能
な超伝導接合デバイス及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting junction device and a method of manufacturing the same, and more particularly, to a Josephson junction or a Josephson computer using a Josephson junction, a mixer, an SQUID, a sensor, a switching element and the like. The present invention relates to a superconducting junction device which can be used not only in the devices described above but also in a system incorporating those devices, and a manufacturing method thereof.

【0002】[0002]

【従来技術】近年、超伝導転移温度の極めて高い銅を含
んだ複合酸化物超伝導体が発明され注目を集めている。
その代表的な材料としては、例えば、YBCO系材料で
あるYBa2Cu37、Bi系材料であるBi2Sr2
nCun+1y(n=0、1、2)及びTl系材料であ
るTl2Ba2CanCun+1y(n=0、1、2)が挙
げられる。これらの材料系の発明により、高価な液体ヘ
リウムを寒剤としなくても、安価な液体窒素や簡易な冷
却器で超伝導状態が得られる為、ジョセフソン素子等の
応用が民生品にまで広がる可能性が出てきている。又、
これらの銅を含んだ複合酸化物超伝導体を利用した超伝
導接合デバイスも各種考案されてきているが、その中で
ジョセフソン接合として知られているものは、殆どが結
晶粒界を利用した弱結合の接合である。この粒界ジョセ
フソン接合は自然に生成した多数の粒界接合であり、こ
れを用いてSQUIDの試作も行われている。
2. Description of the Related Art In recent years, a compound oxide superconductor containing copper having an extremely high superconducting transition temperature has been invented and attracted attention.
Typical materials thereof are, for example, YBa 2 Cu 3 O 7 which is a YBCO type material and Bi 2 Sr 2 C which is a Bi type material.
Examples include a n Cu n + 1 O y (n = 0, 1, 2) and Tl 2 Ba 2 C n Cu n + 1 O y (n = 0, 1, 2) which is a Tl-based material. With the invention of these material systems, the superconducting state can be obtained with inexpensive liquid nitrogen or a simple cooler without using expensive liquid helium as a cryogenic agent, so the application of Josephson devices can be extended to consumer products. The sex is coming out. or,
Various superconducting junction devices using these complex oxide superconductors containing copper have been devised. Among them, what is known as the Josephson junction mostly uses grain boundaries. It is a weak bond. This grain boundary Josephson junction is a large number of grain boundary junctions that are naturally generated, and SQUIDs have been prototyped using this.

【0003】又、積層型の超伝導トンネル型ジョセフソ
ン接合では、上部及び下部電極間にバリア層を有する接
合が一般的であるが、このタイプにおいても各種の方法
が試みられている。例えば、下部電極層に銅を含んだ複
合酸化物超伝導体を用い、上部電極層に従来から知られ
ていた金属系超伝導体を用い、バリア層には上部電極を
成膜する際に下部電極との間に生じる界面の劣化を利用
しようとする、酸化物超伝導体−劣化膜−金属超伝導体
のタイプがある。又、このタイプの上部電極を単なるA
u等の金属とする、酸化物超伝導体−劣化膜−金属で構
成されるSINタイプのトンネル型接合もある。更に、
バリア層に酸化物を用いた、酸化物超伝導体−酸化物バ
リア層−酸化物超伝導体の本格的なSISタイプが提案
されている。このSISタイプで試みられている材料系
としては、超伝導層にYBCO系材料を利用し、且つ酸
化物バリア層にPrBa2Cu37を用いたもの、又、
超伝導層にBi2Sr2CaCu2yを利用し、且つ酸化
物バリア層にBi2Sr2CuOyを用いたもの等がある
が、いずれも良好なトンネル型ジョセフソン素子にはな
っていない。
In addition, in the stacked type superconducting tunnel type Josephson junction, a junction having a barrier layer between the upper and lower electrodes is generally used, and various methods have been tried in this type. For example, a composite oxide superconductor containing copper is used for the lower electrode layer, a conventionally known metal-based superconductor is used for the upper electrode layer, and a lower layer is used for forming the upper electrode on the barrier layer. There is a type of oxide superconductor-degraded film-metal superconductor, which attempts to utilize the deterioration of the interface between the electrode and the electrode. In addition, this type of upper electrode is simply
There is also a SIN type tunnel junction composed of an oxide superconductor-degraded film-metal, which is a metal such as u. Furthermore,
A full-scale SIS type of oxide superconductor-oxide barrier layer-oxide superconductor using an oxide for the barrier layer has been proposed. As a material system tried in this SIS type, a YBCO material is used for the superconducting layer and PrBa 2 Cu 3 O 7 is used for the oxide barrier layer, and
Using Bi 2 Sr 2 CaCu 2 O y in the superconducting layer, and although the oxide barrier layer, and the like that use the Bi 2 Sr 2 CuO y, both have been the good tunneling Josephson element Absent.

【0004】[0004]

【発明が解決しようとしている問題点】上記従来例のう
ちの超伝導体の結晶粒界を用いたジョセフソン接合で
は、接合部の作製が比較的容易ではあるものの、接合部
の作製に偶然性を伴い、応用に適さないという問題があ
った。又、粒界を利用するタイプのトンネル型ジョセフ
ソン接合においては、高温超伝導体では、制御されたも
のとしては作製出来ていないのが現状である。又、前記
従来例のうちの積層タイプのトンネル型ジョセフソン接
合では、上部電極層に従来の金属系超伝導体を用いてい
る為、動作温度が金属系超伝導体の転移温度以下とな
り、寒剤として液体ヘリウムが必要であるという問題が
あった。又、上部電極層に金属を用いたSINタイプの
トンネル型接合は、SISタイプに比べ、素子特性とし
ては劣悪なものであった。
In the Josephson junction using the crystal grain boundaries of the superconductor among the above-mentioned conventional examples, although the joint portion is relatively easy to fabricate, the joint portion is accidentally produced. Accordingly, there is a problem that it is not suitable for application. In the present situation, a tunnel type Josephson junction that uses grain boundaries cannot be manufactured as a controlled one in a high temperature superconductor. Further, in the laminated tunnel type Josephson junction of the above-mentioned conventional examples, since the conventional metal-based superconductor is used for the upper electrode layer, the operating temperature becomes equal to or lower than the transition temperature of the metal-based superconductor. As a result, there was a problem that liquid helium was necessary. Further, the SIN type tunnel junction using a metal for the upper electrode layer is inferior in device characteristics to the SIS type.

【0005】最も好ましいSISタイプの従来例では、
酸化物バリア層にPrBa2Cu37を用いた場合や、
或はBi2Sr2CuOyを用いた場合にも、酸化物バリ
ア層が半導体若しくは金属となり、結果的にSNSタイ
プの接合になってしまい、絶縁性の酸化物バリア層を有
する良好なSISタイプの接合は未だ得られていないの
が現状である。又、酸化物バリア層にMgO等の他の酸
化物を利用する方法も検討されているが、これらの酸化
物を酸化物バリア層に用いる場合には、電極層の銅を含
んだ複合酸化物超伝導体と酸化物バリア層の結晶構造の
違いや、或は成膜温度の違いの為、良好な界面が得られ
ていないのが現状である。従って、本発明の目的は、安
価な液体窒素や簡易な冷却器で利用することの出来る超
伝導接合デバイスを提供することにある。又、本発明の
別の目的は、作製の際に制御し易い接合部を有し、且つ
作製が比較的容易である超伝導接合デバイス、及びその
製造方法を提供することにある。
In the most preferred SIS type conventional example,
When PrBa 2 Cu 3 O 7 is used for the oxide barrier layer,
Alternatively, when Bi 2 Sr 2 CuO y is used, the oxide barrier layer becomes a semiconductor or a metal, resulting in an SNS type junction, and a good SIS type having an insulating oxide barrier layer. The current situation is that the joining of the above has not been obtained yet. Further, methods of using other oxides such as MgO for the oxide barrier layer have also been investigated, but when these oxides are used for the oxide barrier layer, a composite oxide containing copper for the electrode layer is used. At present, a good interface is not obtained due to the difference in crystal structure between the superconductor and the oxide barrier layer or the difference in film forming temperature. Therefore, an object of the present invention is to provide a superconducting junction device that can be used with inexpensive liquid nitrogen or a simple cooler. Another object of the present invention is to provide a superconducting junction device which has a joint part which can be easily controlled at the time of manufacture and which is relatively easy to manufacture, and a manufacturing method thereof.

【0006】[0006]

【問題点を解決するための手段】上記目的は以下の本発
明によって達成される。即ち、本発明は、超伝導部と接
合部とからなる超伝導接合デバイスであって、超伝導部
が炭酸基を含有する銅酸化物超伝導材料からなり、接合
部が超伝導部を構成する銅酸化物超伝導材料の組成の一
部を有し、且つその組成のうち炭酸基が該超伝導材料よ
りも多く含まれている非超伝導材料からなることを特徴
とする超伝導接合デバイス及びその製造方法である。
The above object can be achieved by the present invention described below. That is, the present invention is a superconducting junction device including a superconducting portion and a joint portion, wherein the superconducting portion is made of a copper oxide superconducting material containing a carbonate group, and the joint portion constitutes the superconducting portion. A superconducting junction device having a part of the composition of a copper oxide superconducting material, and consisting of a non-superconducting material containing more carbonic acid groups in the composition than the superconducting material, and That is the manufacturing method.

【0007】[0007]

【作用】本発明の超伝導接合デバイスにおいては、超伝
導電極部と接合部に同じ元素を有する材料が用いられて
いる為、接合部を作成する際に生じる元素の拡散による
界面劣化の問題が解決される。又、接合部に高抵抗の炭
酸塩が用いられているので、超伝導特性のよいデバイス
特性が期待される。更に、接合部の特性を成膜後のアニ
ール条件により制御することが出来るので、素子の特性
を制御し易いものとすることが出来る。尚、ここでいう
アニール条件とは、酸素分圧、二酸化炭素分圧、アニー
ル温度及びアニール後冷却速度が主な条件となる。
In the superconducting junction device of the present invention, since the material having the same element is used for the superconducting electrode portion and the joint portion, there is a problem of interface deterioration due to diffusion of elements which occurs when the joint portion is formed. Will be resolved. Further, since a high resistance carbonate is used for the joint portion, good superconducting device characteristics are expected. Furthermore, since the characteristics of the junction can be controlled by the annealing conditions after film formation, the characteristics of the element can be easily controlled. The annealing conditions here mainly include oxygen partial pressure, carbon dioxide partial pressure, annealing temperature and cooling rate after annealing.

【0008】[0008]

【好ましい実施態様】次に、好ましい実施態様を挙げて
本発明を詳細に説明する。本発明の超伝導接合デバイス
は、超伝導部と接合部とからなる超伝導接合デバイスで
あって、超伝導部が炭酸基を含有する銅酸化物超伝導材
料からなり、接合部が超伝導部を構成する銅酸化物超伝
導材料の組成の一部を有し、且つその組成のうち炭酸基
が該超伝導材料よりも多く含まれている非超伝導材料か
らなることを特徴とする。更に好ましい態様としては、
超伝導部を構成する炭酸基を含有する銅酸化物超伝導材
料として、下記の一般式で表わされものを使用し、 LnaCabSrcBadCu2+e6+fg (式中、a+b+c+d=3、且つ0.2≦a≦0.
8、且つ0.2≦b≦1.0、且つ0.5≦c≦2.
2、且つ0≦d≦1.6、且つ0≦e≦0.8、且つ0
<f<2、且つ0.2≦g≦1である)、且つ接合部を
構成する非超伝導材料が、一般式MCO3(式中、Mは
Ca、Sr及びBaからなる群から選ばれた1種類以上
の元素又は原子団)と表わされるものを使用する。又、
本発明の上記の超伝導接合デバイスを作製する方法は、
超伝導接合部を、二酸化炭素と酸素が混合されている雰
囲気の元で熱処理する工程を有することを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in detail with reference to preferred embodiments. The superconducting junction device of the present invention is a superconducting junction device comprising a superconducting portion and a joint portion, wherein the superconducting portion is made of a copper oxide superconducting material containing a carbonate group, and the joint portion is the superconducting portion. Is composed of a non-superconducting material having a part of the composition of the copper oxide superconducting material, and having a carbonate group in the composition in a larger amount than that of the superconducting material. In a further preferred embodiment,
As a copper oxide superconducting material containing a carbonic acid group that constitutes the superconducting portion, one represented by the following general formula is used. Ln a Ca b Sr c Bad d Cu 2 + e O 6 + f C g (In the formula, a + b + c + d = 3, and 0.2 ≦ a ≦ 0.
8 and 0.2 ≦ b ≦ 1.0 and 0.5 ≦ c ≦ 2.
2, 0 ≦ d ≦ 1.6, 0 ≦ e ≦ 0.8, and 0
<F <2 and 0.2 ≦ g ≦ 1), and the non-superconducting material forming the joint is selected from the group consisting of the general formula MCO 3 (wherein M is Ca, Sr and Ba). And one or more elements or atomic groups). or,
The method for producing the above superconducting junction device of the present invention is
The method is characterized by having a step of heat-treating the superconducting junction in an atmosphere in which carbon dioxide and oxygen are mixed.

【0009】本発明の超伝導接合デバイスを構成する超
伝導電極部の材料としては、炭酸基を含有する銅酸化物
超伝導材料であればいずれの材料も好ましく使用される
が、炭酸基を含有する高温超伝導酸化物材料を用いるの
がより好ましい。又、本発明の超伝導接合デバイスを構
成する接合部に使用される材料としては、上記した超伝
導電極部を構成する超伝導体に使用されている元素の一
部と同様のもので構成されている非超伝導体材料を用い
るのが好ましいが、特に、制御のし易さ及び高抵抗率を
考慮すると、超伝導層の形成材料よりも炭酸基が多く含
有されている非超伝導材料で構成するのが好ましい。
As the material of the superconducting electrode portion constituting the superconducting junction device of the present invention, any material is preferably used as long as it is a copper oxide superconducting material containing a carbonic acid group. It is more preferable to use a high temperature superconducting oxide material. In addition, the material used for the joint portion that constitutes the superconducting junction device of the present invention is the same as some of the elements used for the superconductor that constitutes the above-mentioned superconducting electrode portion. It is preferable to use a non-superconducting material that has a carbonic acid group, which is more contained than the forming material of the superconducting layer, especially in view of ease of control and high resistivity. It is preferable to configure.

【0010】本発明の超伝導接合デバイスにおいて、特
に、超伝導層として、超伝導転移温度の高い、所謂12
12構造を有する材料を使用するのが好ましいが、この
様な1212構造を有する材料としては、組成式Lna
CabSrcBadCu2+e6+fgで表わされる材料が挙
げられる。一方、超伝導層の形成材料として上記の様な
組成を有する1212構造の材料を選択した場合に、接
合部の構成材料の組成をMCO3(ここで、MはCa、
Sr、Baから選ばれた1種類以上の元素又は原子団)
にすると、該材料は、上記した超伝導層の構成材料に用
いられている元素と同様のものを利用しているばかりで
なく、非常に高抵抗であり、なお且つ接合部を構成する
材料の特性を成膜後のアニールプロセスでうまく制御す
ることが可能となり、特に好ましい。
In the superconducting junction device of the present invention, in particular, the so-called 12 superconducting layer having a high superconducting transition temperature is used.
It is preferable to use a material having a 12 structure, but as such a material having a 1212 structure, a composition formula Ln a
Ca b Sr c Ba d Cu 2 + e O 6 + f material represented by C g and the like. On the other hand, when a material having a 1212 structure having the above-mentioned composition is selected as the material for forming the superconducting layer, the composition of the constituent material of the joint is MCO 3 (where M is Ca,
(One or more elements or atomic groups selected from Sr and Ba)
Then, the material not only utilizes the same elements as those used for the constituent material of the superconducting layer described above, but also has a very high resistance and is This is particularly preferable because the characteristics can be well controlled in the annealing process after film formation.

【0011】一般的に超伝導層と接合部との結晶粒界の
特性は、成膜時に概ね決定されてしまうが、本発明の超
伝導接合デバイスの様に、超伝導層と接合部を構成する
材料が共に炭酸基を含有している場合には、成膜後に行
うアニール処理工程において接合部の結晶粒界の特性を
制御することが出来る。即ち、これは、超伝導層と接合
部との結晶粒界における接合部の絶縁層を、酸素と二酸
化炭素の雰囲気下で成長或いは消滅させることが可能と
なるからである。例えば、成膜後に行うアニール処理工
程において、アニール温度が低くかったり、二酸化炭素
分圧が高い雰囲気や、冷却速度が遅い場合には、接合部
の絶縁層の成長が促進され、逆に酸素分圧が高く、又、
アニール温度も高く冷却速度が速い場合には、接合部を
構成する材料から炭酸基が抜け出し、結果的に接合部の
絶縁層自体が消滅していくことになる。この作用は可逆
的に起こり、又、二酸化炭素や酸素が出入り可能な結晶
粒界で起こる為に、アニール条件を種々変えることによ
り接合部の特性を制御することが出来ることとなる為と
考えられる。
Generally, the characteristics of the grain boundaries between the superconducting layer and the junction are generally determined at the time of film formation. However, like the superconducting junction device of the present invention, the superconducting layer and the junction are formed. When both the materials to be used contain a carbonate group, it is possible to control the characteristics of the crystal grain boundaries of the junction in the annealing process performed after the film formation. That is, this is because it is possible to grow or eliminate the insulating layer at the junction at the crystal grain boundary between the superconducting layer and the junction in an atmosphere of oxygen and carbon dioxide. For example, in the annealing process performed after film formation, if the annealing temperature is low, the carbon dioxide partial pressure is high, or the cooling rate is slow, the growth of the insulating layer at the junction is promoted, and conversely the oxygen content is increased. High pressure,
When the annealing temperature is high and the cooling rate is high, carbonic acid groups escape from the material forming the joint, and as a result, the insulating layer itself at the joint disappears. It is considered that this action occurs reversibly, and because it occurs at the crystal grain boundaries where carbon dioxide and oxygen can flow in and out, the characteristics of the joint can be controlled by changing the annealing conditions variously. .

【0012】以上述べた様に、本発明では、上記の様な
材料選定を行うことにより、従来では得られなかった絶
縁性の高いバリア層が極めて良好に得られ、界面の接合
性、更には制御性も向上する結果、銅を含む複合酸化物
超伝導体の粒界接合型ジョセフソン素子には勿論のこ
と、トンネル型ジョセフソン接合素子にも利用すること
が可能である。又、超伝導層に用いる超伝導体として1
212構造の高温超伝導材料を選べば、超伝導転移温度
が高いので液体窒素では勿論のこと、簡易な冷却器でも
使用することが可能となる。又、得られる素子の形状と
しては、マイクロブリッジタイプが適当ではあるが、ス
ネークパターン等の細長いパターンとし、その結果得ら
れる多数のジョセフソン接合をデバイスとすることも可
能である。尚、本発明の超伝導接合デバイスの作製に
は、物理的蒸着法や化学的な蒸着法等の一般的な成膜装
置の利用が可能である。
As described above, in the present invention, by selecting the materials as described above, a barrier layer having a high insulating property, which has not been obtained in the past, can be obtained very well, and the bondability of the interface and further As a result of improving the controllability, it can be used not only for the grain boundary junction type Josephson element of the complex oxide superconductor containing copper but also for the tunnel type Josephson junction element. Also, as a superconductor used for the superconducting layer, 1
If a high-temperature superconducting material having a structure of 212 is selected, it can be used not only in liquid nitrogen but also in a simple cooler because the superconducting transition temperature is high. Although the microbridge type is suitable for the shape of the obtained element, it is also possible to make a long and narrow pattern such as a snake pattern and use a large number of resulting Josephson junctions as a device. In addition, a general film forming apparatus such as a physical vapor deposition method or a chemical vapor deposition method can be used for manufacturing the superconducting junction device of the present invention.

【0013】[0013]

【実施例】以下、実施例を挙げて本発明を更に具体的に
説明する。 実施例1 図1に本発明にかかる一実施例の超伝導接合デバイスの
断面図を示す。図中、11は超伝導薄膜、12は接合
部、13はMgO基板、14は電極、15は電流モニタ
ー、16は駆動電源である。図1に示した超伝導接合デ
バイスの作製方法としては、先ず、複合酸化物超伝導体
材料であるY0.5Ca0.5Sr0.7Ba1.3Cu2.67
0.4を、マグネトロンスパッタ法によってMgO基板1
3上に基板温度800度で、膜厚400nmとなる様に
成膜して超伝導薄膜11を作成した。成膜後、上記で形
成された超伝導薄膜11にフォトリソグラフィー法によ
り、幅10μm、長さ10μmのブリッジ12を作製し
た。更に、アニール処理を施した後、電極14を取り付
け、図1の様な断面を有する本発明の超伝導接合デバイ
スを作製した。図2は、ブリッジ12の部分を拡大した
結晶粒界の概略図を示す。図中21は結晶粒、22は接
合部、23は基板である。
EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 FIG. 1 shows a sectional view of a superconducting junction device of an example according to the present invention. In the figure, 11 is a superconducting thin film, 12 is a junction, 13 is a MgO substrate, 14 is an electrode, 15 is a current monitor, and 16 is a drive power supply. As a method for manufacturing the superconducting junction device shown in FIG. 1, first, a composite oxide superconductor material Y 0.5 Ca 0.5 Sr 0.7 Ba 1.3 Cu 2.6 O 7 C was used.
0.4 for MgO substrate 1 by magnetron sputtering method
A superconducting thin film 11 was formed by depositing a film on the substrate 3 at a substrate temperature of 800 degrees so as to have a film thickness of 400 nm. After the film formation, a bridge 12 having a width of 10 μm and a length of 10 μm was formed on the superconducting thin film 11 formed above by a photolithography method. Further, after the annealing treatment, the electrode 14 was attached, and the superconducting junction device of the present invention having a cross section as shown in FIG. 1 was produced. FIG. 2 shows a schematic view of a crystal grain boundary in which the portion of the bridge 12 is enlarged. In the figure, 21 is a crystal grain, 22 is a bonding portion, and 23 is a substrate.

【0014】次に、アニール条件(アニール温度、酸素
分圧、二酸化炭素分圧、冷却速度)の素子特性に及ぼす
影響についての評価する為に、表1に示す様に、成膜後
のアニール処理条件を種々変えて、得られた夫々の超伝
導接合デバイスの素子特性を下記の方法で調べた。超伝
導接合デバイスの素子特性を評価する為に、電極14
に、図1の様に金線を取り付け、駆動電源16及び電流
モニター15により直流の電流−電圧特性を、4.2〜
80Kの温度範囲において測定した。表1に、得られた
評価結果を示した。
Next, in order to evaluate the influence of annealing conditions (annealing temperature, oxygen partial pressure, carbon dioxide partial pressure, cooling rate) on the device characteristics, as shown in Table 1, the annealing treatment after film formation is performed. The element characteristics of each of the obtained superconducting junction devices were examined by the following methods under various conditions. In order to evaluate the element characteristics of the superconducting junction device, the electrode 14
Then, a gold wire is attached as shown in FIG. 1, and the direct current-voltage characteristic is 4.2 to 4.2 by the drive power source 16 and the current monitor 15.
It was measured in the temperature range of 80K. Table 1 shows the obtained evaluation results.

【0015】表1中、No.1は比較の為に、成膜後にア
ニール処理を施さない場合の評価結果を示すが、表1に
示されている様に、この場合は、接合は単なるオーミッ
クなものでありジョセフソン接合とはなっていなかっ
た。又、この接合部をEPMAにより分析したところ、
炭酸基を過剰に含む粒界接合部は観測されなかった。
又、表1中、No.2、3、4及び5には、アニール処理
条件を夫々表中の条件にで行った場合の結果を示すが、
上記No.1の場合と異なり、成膜後にアニール処理を施
すことによりジョセフソン接合が出来ていることが分か
る。又、ここで、二酸化炭素分圧を高くするか、又は冷
却速度を遅くした場合には、接合の型がマイクロブリッ
ジ型からトンネル型に移行しているのが分かる。
For comparison, No. 1 in Table 1 shows the evaluation result in the case where the annealing treatment is not performed after the film formation. As shown in Table 1, in this case, the junction is merely ohmic. However, it was not a Josephson junction. In addition, when this junction was analyzed by EPMA,
No grain boundary junction containing excess carbonate groups was observed.
Also, in Table 1, Nos. 2, 3, 4 and 5 show the results when the annealing treatment conditions were respectively set to the conditions in the table.
It can be seen that unlike the case of No. 1 above, the Josephson junction is formed by performing the annealing treatment after the film formation. Further, here, it is understood that when the carbon dioxide partial pressure is increased or the cooling rate is decreased, the bonding type is changed from the microbridge type to the tunnel type.

【0016】[0016]

【表1】 [Table 1]

【0017】図3に、表1のNo.2の条件で得られた超
伝導接合デバイスの77Kにおける電流−電圧特性のグ
ラフを示す。この結果から、本発明により良好なマイク
ロブリッジ接合型ジョセフソンデバイスが得られている
ことが分かる。尚、表1のNo.3のデバイスにおいて
も、上記No.2の場合とほぼ同様の結果が得られた。図
4に、表1のNo.4で得られたデバイスの4.2Kにおけ
る電流−電圧特性のグラフを示す。この結果から、本発
明により良好なトンネル接合型ジョセフソンデバイスが
得られていることが分かる。尚、表1のNo.5のデバイ
スはNo.4とほぼ同様の結果が得られた。
FIG. 3 shows a graph of current-voltage characteristics at 77K of the superconducting junction device obtained under the conditions of No. 2 in Table 1. From this result, it is understood that a good microbridge junction type Josephson device was obtained by the present invention. In addition, also in the device of No. 3 in Table 1, almost the same result as the case of No. 2 was obtained. FIG. 4 shows a graph of current-voltage characteristics at 4.2K of the device obtained in No. 4 of Table 1. From this result, it can be seen that a good tunnel junction type Josephson device was obtained by the present invention. Incidentally, the device of No. 5 in Table 1 obtained almost the same result as that of No. 4.

【0018】又、これらNo.2〜No.5の各デバイスの接
合部の組成を、EPMA及びTEMで分析したところ、
炭酸基が過剰に含まれており、MCO3(M=Ca、S
r、Ba) も検出された。以上の結果から、本発明の超
伝導接合デバイスを構成する超伝導部と接合部とを構成
する材料の組み合わせと、その後に行う接合部に対する
アニール条件とによって、良好なジョセフソン接合が得
られていることが分かる。
The composition of the junction of each of the devices No. 2 to No. 5 was analyzed by EPMA and TEM.
Carbonic acid groups are contained in excess, and MCO 3 (M = Ca, S
r, Ba) were also detected. From the above results, it is possible to obtain a good Josephson junction by the combination of the materials forming the superconducting portion and the junction constituting the superconducting junction device of the present invention, and the annealing condition for the junction thereafter. I know that

【0019】実施例2 先ず、下記の表2に示す組成の炭酸基を含有する複合酸
化物超伝導体を、マグネトロンスパッタ法によりMgO
基板上に、実施例1と同様の条件で膜厚400nmの厚
さに成膜した。次に、実施例1と同様に、成膜後フォト
リソグラフィー法により、上記の超伝導膜上に、幅10
μm、長さ10μmのブリッジを作製した。その後アニ
ール温度=800℃、酸素分圧=1atm、二酸化炭素
分圧=0.01〜0.1atm、冷却速度=−1〜−10
℃/min.の条件でアニール処理を施した後、電極を
取り付け、図1に示す様な断面を有する超伝導接合デバ
イスを作製した。上記の様にして得られた接合デバイス
の素子特性を評価する為に、電極14に図1の様に金線
を付け、駆動電源16及び電流モニター15により、
4.2〜80Kの温度範囲における電流−電圧特性を測
定した。
Example 2 First, a complex oxide superconductor having a composition shown in Table 2 below and containing a carbonate group was formed into MgO by magnetron sputtering.
A film having a thickness of 400 nm was formed on the substrate under the same conditions as in Example 1. Then, in the same manner as in Example 1, a width of 10 is formed on the superconducting film by photolithography after film formation.
A bridge having a size of 10 μm and a length of 10 μm was prepared. Thereafter, annealing temperature = 800 ° C., oxygen partial pressure = 1 atm, carbon dioxide partial pressure = 0.01 to 0.1 atm, cooling rate = −1 to −10.
° C / min. After performing the annealing treatment under the conditions described above, electrodes were attached and a superconducting junction device having a cross section as shown in FIG. 1 was produced. In order to evaluate the element characteristics of the junction device obtained as described above, a gold wire is attached to the electrode 14 as shown in FIG.
The current-voltage characteristic in the temperature range of 4.2-80K was measured.

【0020】次に、表2に示した様に、超伝導材料組成
を種々変えて超伝導接合デバイスを作製し、上記の方法
で得られた超伝導接合デバイスの素子特性を評価した。
表2にその評価結果を示したが、No.1は比較の為に、
炭酸基を含んでいないBi−2212組成の材料を用い
た場合の結果を示す。表2に示されている様に、この場
合の接合は単なるオーミックなものであり、ジョセフソ
ン接合とはなっていなかった。又、この超伝導結晶粒を
EPMAにより分析したところ、炭酸基を含む部分は観
測されなかった。
Next, as shown in Table 2, various superconducting material compositions were changed to produce superconducting junction devices, and the element characteristics of the superconducting junction devices obtained by the above method were evaluated.
The evaluation results are shown in Table 2, but No. 1 is for comparison.
The result when using the material of Bi-2212 composition which does not contain a carbonate group is shown. As shown in Table 2, the junction in this case was merely ohmic, and was not a Josephson junction. Further, when the superconducting crystal grains were analyzed by EPMA, no portion containing a carbonate group was observed.

【0021】表2中、No.2は、所謂Bi−CO3系の超
伝導材料を使用した場合の例であり、No.3は、Tl−
CO3系の超伝導材料を使用した場合の例であり、No.4
は、所謂0211系の超伝導材料を使用した場合の例で
あり、No.5は、1212系の超伝導材料を使用した場
合の例についての結果である。これらの結果、本発明の
組成とプロセスとを組み合わせることによって、ジョセ
フソン接合が出来ているのが分かる。尚、この際に、2
次元性の大きい材料と考えられる、Bi−CO3系材料
を使用した場合とTl−CO3系材料を使用した場合で
は、トンネル型ジョセフソン接合は得られなかった。
又、これらNo.2〜5で得られた超伝導接合デバイスの
接合部の組成をEPMA及びTEMで分析したところ、
炭酸基が過剰に含まれており、No.4のデバイスの接合
部では超伝導層より炭酸基が多いSrBaCuO5
が、No.5のデバイスの接合部ではMCO3(M=Ca、
Sr、Ba) が検出された。以上の結果から本発明の材
料の組み合わせでは良好なジョセフソン接合が得られる
ことが分かる。
In Table 2, No. 2 is an example of using a so-called Bi-CO 3 type superconducting material, and No. 3 is Tl-.
This is an example of using a CO 3 -based superconducting material, No. 4
No. 5 is an example of using a so-called 0211-based superconducting material, and No. 5 is a result of an example of using a 1212-based superconducting material. From these results, it can be seen that the Josephson junction is formed by combining the composition and the process of the present invention. At this time, 2
A tunnel type Josephson junction was not obtained in the case of using the Bi—CO 3 system material and the case of using the Tl—CO 3 system material, which are considered to have high dimensional properties.
Moreover, when the composition of the junction of the superconducting junction devices obtained in Nos. 2 to 5 was analyzed by EPMA and TEM,
SrBaCuO 5 C containing a large amount of carbonic acid groups and more carbonic acid groups than the superconducting layer at the junction of the No. 4 device.
However, at the joint of No. 5 device, MCO 3 (M = Ca,
Sr, Ba) was detected. From the above results, it can be seen that a good Josephson junction can be obtained with the combination of the materials of the present invention.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】以上説明した様に、本発明によれば、 (1)炭酸基を含有する超伝導材料及び接合材料を組み
合わせることにより、良好な特性を有する超伝導接合デ
バイスが得られる。 (2)接合部の炭酸基の含有量を超伝導材料のそれより
も多くすることで、成膜後の接合部へのアニール条件を
変えるだけで特性の良好な超伝導接合デバイスが得ら
れ、且つ特性を制御することが出来る。 (3)安価な液体窒素や簡易な冷却器でも利用すること
の出来る高温酸化物超伝導を用いた超伝導接合デバイス
が得られる。
As described above, according to the present invention, (1) a superconducting junction device having good characteristics can be obtained by combining a superconducting material containing a carbonate group and a joining material. (2) By making the content of carbonic acid groups in the junction greater than that of the superconducting material, a superconducting junction device with good characteristics can be obtained simply by changing the annealing conditions for the junction after film formation. In addition, the characteristics can be controlled. (3) A superconducting junction device using high-temperature oxide superconductivity that can be used even with inexpensive liquid nitrogen or a simple cooler can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超伝導接合デバイスの断面図である。FIG. 1 is a sectional view of a superconducting junction device of the present invention.

【図2】実施例1のブリッジの拡大図である。FIG. 2 is an enlarged view of the bridge of the first embodiment.

【図3】表1のNo.2のデバイスの電流−電圧特性を示
すグラフである。
FIG. 3 is a graph showing the current-voltage characteristics of the device No. 2 in Table 1.

【図4】表1のNo.4のデバイスの電流−電圧特性を示
すグラフである。
FIG. 4 is a graph showing the current-voltage characteristics of the device No. 4 in Table 1.

【符号の説明】[Explanation of symbols]

11;超伝導薄膜 12;ブリッジ 13;MgO基板 14;電極 15;電流モニター 16;駆動電源 21;超伝導結晶粒 22;接合部 23;MgO基板 11; Superconducting thin film 12; Bridge 13; MgO substrate 14; Electrode 15; Current monitor 16; Driving power supply 21; Superconducting crystal grain 22; Junction 23; MgO substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超伝導部と接合部とからなる超伝導接合
デバイスであって、超伝導部が炭酸基を含有する銅酸化
物超伝導材料からなり、接合部が超伝導部を構成する銅
酸化物超伝導材料の組成の一部を有し、且つその組成の
うち炭酸基が該超伝導材料よりも多く含まれている非超
伝導材料からなることを特徴とする超伝導接合デバイ
ス。
1. A superconducting joint device comprising a superconducting portion and a joint portion, wherein the superconducting portion is made of a copper oxide superconducting material containing a carbonate group, and the joint portion constitutes the superconducting portion. A superconducting junction device having a part of the composition of an oxide superconducting material, and comprising a non-superconducting material in which a carbonate group is contained in a larger amount than the superconducting material.
【請求項2】 超伝導部を構成する銅酸化物超伝導材料
が、下記の一般式で表わされ、 LnaCabSrcBadCu2+e6+fg (式中、a+b+c+d=3、且つ0.2≦a≦0.
8、且つ0.2≦b≦1.0、且つ0.5≦c≦2.
2、且つ0≦d≦1.6、且つ0≦e≦0.8、且つ0
<f<2、且つ0.2≦g≦1)、且つ接合部を構成す
る非超伝導材料が、一般式MCO3(式中、MはCa、
Sr及びBaからなる群から選ばれた1種類以上の元素
又は原子団)で表される請求項1に記載の超伝導接合デ
バイス。
2. A copper oxide superconducting material constituting a superconducting part is represented by the following general formula: Ln a Ca b Sr c Bad d Cu 2 + e O 6 + f C g (wherein a + b + c + d = 3, and 0.2 ≦ a ≦ 0.
8 and 0.2 ≦ b ≦ 1.0 and 0.5 ≦ c ≦ 2.
2, 0 ≦ d ≦ 1.6, 0 ≦ e ≦ 0.8, and 0
<F <2, and 0.2 ≦ g ≦ 1), and the non-superconducting material forming the joint is represented by the general formula MCO 3 (where M is Ca,
The superconducting junction device according to claim 1, which is represented by one or more kinds of elements or atomic groups selected from the group consisting of Sr and Ba.
【請求項3】 請求項1に記載の超伝導接合デバイスの
製造方法において、接合部を二酸化炭素と酸素とが混合
されている雰囲気の元で熱処理する工程を有することを
特徴とする超伝導接合デバイスの製造方法。
3. The method for manufacturing a superconducting junction device according to claim 1, further comprising the step of heat-treating the joint portion in an atmosphere in which carbon dioxide and oxygen are mixed. Device manufacturing method.
JP23244994A 1994-09-02 1994-09-02 Superconducting junction device and manufacturing method thereof Expired - Fee Related JP3217613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23244994A JP3217613B2 (en) 1994-09-02 1994-09-02 Superconducting junction device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23244994A JP3217613B2 (en) 1994-09-02 1994-09-02 Superconducting junction device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0878739A true JPH0878739A (en) 1996-03-22
JP3217613B2 JP3217613B2 (en) 2001-10-09

Family

ID=16939463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23244994A Expired - Fee Related JP3217613B2 (en) 1994-09-02 1994-09-02 Superconducting junction device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3217613B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017533572A (en) * 2011-03-30 2017-11-09 アンバチュア インコーポレイテッドAMBATURE Inc. Electrical devices, mechanical devices, computer devices, and / or other devices formed of very low resistance materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017533572A (en) * 2011-03-30 2017-11-09 アンバチュア インコーポレイテッドAMBATURE Inc. Electrical devices, mechanical devices, computer devices, and / or other devices formed of very low resistance materials

Also Published As

Publication number Publication date
JP3217613B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
US5106823A (en) Josephson junctions made with thin superconductive layers
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
Takano et al. d-like symmetry of the order parameter and intrinsic Josephson effects in Bi 2 Sr 2 CaCu 2 O 8+ δ cross-whisker junctions
US5063200A (en) Ceramic superconductor article
US7132388B1 (en) High-temperature oxide superconductor
JP2590275B2 (en) Manufacturing method of oxide superconducting material
AU751958B2 (en) Copper-based high-temperature superconducting material
JP2939544B1 (en) Mg-doped low-anisotropic high-temperature superconductor and method for producing the same
Takano et al. A cross-whiskers junction as a novel fabrication process for intrinsic Josephson junctions
CN100552833C (en) The manufacture method of superconducting wire
JP3217613B2 (en) Superconducting junction device and manufacturing method thereof
JP3155641B2 (en) Superconducting tunnel junction device
US5399312A (en) Method for fabricating high-jc thallium-based superconducting tape
JPH02391A (en) Superconductive field-effect transistor
JP2656531B2 (en) Oxide superconductor
JP2955641B2 (en) In situ Josephson junction structure
JP2763075B2 (en) Oxide superconductor
JP2679610B2 (en) Superconducting element manufacturing method
JP2856577B2 (en) Superconducting element
JP3284010B2 (en) Metal oxide material and superconducting device using the same
JPH06119829A (en) Superconductive wire and manufacture thereof
JP3313908B2 (en) Bi-based superconducting material, Bi-based superconducting wire having the same, and method of manufacturing the superconducting wire
JPH029101B2 (en)
JP2888650B2 (en) Superconducting member manufacturing method
Tallon et al. The Systematics of Irreversibility in Superconducting Thallium Cuprates

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees