JPH0878202A - Ceramic resistor - Google Patents

Ceramic resistor

Info

Publication number
JPH0878202A
JPH0878202A JP6208375A JP20837594A JPH0878202A JP H0878202 A JPH0878202 A JP H0878202A JP 6208375 A JP6208375 A JP 6208375A JP 20837594 A JP20837594 A JP 20837594A JP H0878202 A JPH0878202 A JP H0878202A
Authority
JP
Japan
Prior art keywords
aluminum nitride
group
periodic table
resistor
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6208375A
Other languages
Japanese (ja)
Other versions
JP3145575B2 (en
Inventor
Hiroshi Aida
比呂史 会田
Kazuhiko Mikami
一彦 三上
Kenji Kitazawa
謙治 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20837594A priority Critical patent/JP3145575B2/en
Priority to US08/385,774 priority patent/US5668524A/en
Publication of JPH0878202A publication Critical patent/JPH0878202A/en
Priority to US08/841,605 priority patent/US5777543A/en
Application granted granted Critical
Publication of JP3145575B2 publication Critical patent/JP3145575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a resistor having small thermal variation by controlling the quantity of element of periodic table 4b group in aluminum nitride and lattice constant. CONSTITUTION: An aluminum nitride film, on which a periodic table 4b group element is, excessively solidified on the surface of a substrate consisting of an aluminum nitride sintered body, is compounded by a CVD method. As a result, a ceramic resistor, containing 0.005 to 30atom% of the element of 4b group on the periodic table, on which the lattice constant of aluminum nitride is shifted by 0.003 to 0.030 Angstrome on a-axis and 0.004 to 0.080 Angstrome on c-axis, can be obtained. Besides, the volume intrinsic resistance at 25 deg.C becomes 10<13> Ω/cm or smaller, and the volume intrinsic resistance becomes 10<13> to 10<11> Ω/cm in the temperature range from room temperature to 300 deg.C. Accordingly, the usefulness of the ceramic resistor is high when it is used for the electrostatic chuck of a semiconductor manufacturing device on which stabilized resistance is required for a wide temperature range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ヒータ材料、真空管外
囲管や半導体製造装置における帯電除去材料、ウエハ搬
送用アーム、ウエハハンドリング用治具などに適した窒
化アルミニウムを主体とするセラミック抵抗体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic resistor mainly composed of aluminum nitride, which is suitable for a heater material, a vacuum tube envelope, an antistatic material in a semiconductor manufacturing apparatus, a wafer transfer arm, a wafer handling jig and the like. Regarding

【0002】[0002]

【従来技術】従来より、絶縁性のセラミックスの電気抵
抗を調整するための方法としては、絶縁性セラミックス
に対して、導電性材料を添加して抵抗値を制御すること
が一般に行われている。例えば、アルミナに対して窒化
チタンを添加して電気抵抗を小さくすることが行われて
いる。
2. Description of the Related Art Conventionally, as a method for adjusting the electric resistance of insulating ceramics, it has been generally practiced to add a conductive material to the insulating ceramics to control the resistance value. For example, titanium nitride is added to alumina to reduce the electric resistance.

【0003】一方、窒化アルミニウムは、非酸化性セラ
ミックスの1種であり、構造材料や高温材料としての応
用が期待され、最近では耐プラズマに対しても優れた耐
久性を有することが報告されている。よって、この窒化
アルミニウムを静電チャックなど半導体製造装置内の部
品としての応用が考慮されている。しかしながら、この
窒化アルミニウム自体、高絶縁材料であり、室温でも1
16Ω−cm以上の抵抗値を有するために実用化には至
っていないのが現状である。
On the other hand, aluminum nitride is a kind of non-oxidizing ceramics and is expected to be applied as a structural material or a high temperature material, and it has recently been reported that it has excellent durability against plasma resistance. There is. Therefore, application of this aluminum nitride as a component in a semiconductor manufacturing apparatus such as an electrostatic chuck is considered. However, this aluminum nitride itself is a highly insulating material, and even at room temperature, 1
At present, it has not been put into practical use because it has a resistance value of 0 16 Ω-cm or more.

【0004】このような窒化アルミニウムに対しても、
電気抵抗を小さくする試みが行われている。例えば、窒
化アルミニウムや窒化ホウ素の絶縁性セラミックスに対
してもAlなどの導電性材料を添加して比抵抗を調整す
ることが特開昭56ー4509号に提案されている。ま
た、薄膜状セラミックスにおいては、例えば窒化アルミ
ニウムに金属アルミニウムを分散させて抵抗温度係数の
小さな薄膜抵抗体を得ることも特公昭55ー50364
号に提案されている。
Even with respect to such aluminum nitride,
Attempts have been made to reduce the electrical resistance. For example, JP-A-56-4509 proposes that a conductive material such as Al is added to an insulating ceramic such as aluminum nitride or boron nitride to adjust the specific resistance. In the case of thin film ceramics, it is also possible to obtain a thin film resistor having a small temperature coefficient of resistance by dispersing metallic aluminum in aluminum nitride, for example.
Has been proposed in the issue.

【0005】[0005]

【発明が解決しようとする問題点】一般に、絶縁体の体
積固有抵抗値は温度とともに低下する傾向にあるが、例
えば窒化アルミニウムの場合には室温で1016Ω−cm
から300℃で1011Ω−cm以下まで減少する傾向に
ある。そのため、室温から300℃の高温まで使用する
場合、抵抗値が変化して安定した動作が得られないため
に、使用温度条件に制限があるなどの問題があった。
Generally, the volume resistivity of an insulator tends to decrease with temperature. For example, aluminum nitride has a resistivity of 10 16 Ω-cm at room temperature.
To 300 ° C. to 10 11 Ω-cm or less. Therefore, when used from room temperature to a high temperature of 300 ° C., there is a problem that the operating temperature condition is limited because the resistance value changes and stable operation cannot be obtained.

【0006】また、導電性材料を加えることにより電気
抵抗を制御する方法においては、導電性材料自体の特性
により、絶縁性セラミックスが本来有する特性が損なわ
れるなどの問題があった。例えば、耐食性や耐久性に欠
けたり、窒化アルミニウムの特性が劣化したりした。
Further, in the method of controlling the electric resistance by adding the conductive material, there is a problem that the characteristics originally possessed by the insulating ceramics are impaired due to the characteristics of the conductive material itself. For example, the corrosion resistance and durability were poor, and the properties of aluminum nitride were deteriorated.

【0007】[0007]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して特に電気抵抗が1013Ω−cm以下のセラ
ミック抵抗体としてその組成および組織の観点から検討
を重ねた結果、例えば化学気相合成法により形成された
窒化アルミニウムを主成分とする絶縁体中に周期律表第
4b族元素族の元素を0.005〜30原子%含有さ
せ、そして、その元素を窒化アルミニウム結晶中に固溶
させて窒化アルミニウムの格子定数を特定の範囲に制御
することによって、絶縁層の体積固有抵抗が1013Ω−
cm以下の範囲に調整でき、かつ温度変化が小さく広い
温度域において安定した材料特性が得られることを見い
だし本発明に至った。
The inventors of the present invention have made repeated studies on the above problems from the viewpoints of composition and structure as a ceramic resistor having an electric resistance of 10 13 Ω-cm or less. For example, an insulator mainly composed of aluminum nitride formed by a chemical vapor deposition method contains 0.005 to 30 atomic% of an element of the 4b group element group of the periodic table, and the element is an aluminum nitride crystal. The volume resistivity of the insulating layer is 10 13 Ω− by controlling the lattice constant of aluminum nitride to be in a specific range by making a solid solution therein.
It has been found that the material properties can be adjusted to a range of cm or less, the temperature change is small, and stable material properties can be obtained in a wide temperature range, and the present invention has been accomplished.

【0008】即ち、本発明のセラミック抵抗体は、窒化
アルミニウム結晶相を主体とするセラミック抵抗体であ
って、該抵抗体中に周期律表第4b族元素が0.005
〜30原子%存在し、前記結晶相における格子定数がa
軸で0.003〜0.030オングストローム、c軸で
0.004〜0.080オングストロームだけシフトし
た値でであるとともに、25℃における体積固有抵抗が
1013Ω−cm以下であることを特徴とするものであ
る。
That is, the ceramic resistor of the present invention is a ceramic resistor mainly composed of an aluminum nitride crystal phase, and the element of Group 4b of the periodic table is 0.005 in the resistor.
.About.30 atomic%, and the lattice constant in the crystal phase is a
It is a value shifted by 0.003 to 0.030 angstrom on the axis and 0.004 to 0.080 angstrom on the c-axis, and the volume resistivity at 25 ° C. is 10 13 Ω-cm or less. To do.

【0009】以下、本発明を詳述する。本発明における
セラミック抵抗体は、窒化アルミニウムを主体とするも
のであるが、組成上、周期律表第4b族元素を0.00
5〜30原子%含有するものである。この周期律表第4
b族元素量は、窒化アルミニウムに対して導電性を付与
するための重要な元素であり、この元素量が0.005
原子%より少ないと所望の抵抗が得られず、30原子%
を越えると、他の結晶相が生成しやすくなり抵抗制御が
難しくなり、また薄膜においては剥離やクラックが発生
しやすくなる。なお、周期律表第4b族元素とは、具体
的にはC、Si、Ge,Sn、Pbであり、特にCとS
iが成膜性の点で望ましい。
The present invention will be described in detail below. The ceramic resistor in the present invention is mainly composed of aluminum nitride, but has a composition of 0.004 elements of Group 4b of the periodic table.
5 to 30 atom% is contained. This Periodic Table No. 4
The b-group element amount is an important element for imparting conductivity to aluminum nitride, and the element amount is 0.005
If it is less than 30% by atom, the desired resistance cannot be obtained.
If it exceeds the range, another crystal phase is likely to be generated, resistance control becomes difficult, and peeling and cracks are likely to occur in the thin film. The Group 4b element of the periodic table is specifically C, Si, Ge, Sn, Pb, and particularly C and S.
i is desirable in terms of film forming property.

【0010】また、このセラミック抵抗体は、組織上、
窒化アルミニウム結晶を主体とするものであるが、この
抵抗体中の周期律表第4b族元素の一部は窒化アルミニ
ウム結晶中に固溶するが、この結晶中に固溶しきれない
周期律表第4b族元素により周期律表第4b族元素族の
窒化物等の結晶相が20重量%以下の割合で存在する場
合もある。また、窒化アルミニウム結晶は、周期律表第
4b族元素の固溶により格子定数が窒化アルミニウムの
格子定数からa軸0.003〜0.030オングストロ
ーム、c軸で0.004〜0.080オングストローム
だけ大きく又は小さくシフトした値の範囲にあるもの
で、窒化アルミニウム単体からなる結晶の格子定数(a
軸3.120オングストローム、c軸4.994オング
ストローム)とは明らかに異なる格子定数を有するもの
である。
This ceramic resistor is structurally
Although mainly composed of an aluminum nitride crystal, a part of the periodic table group 4b element in this resistor is solid-solved in the aluminum nitride crystal, but cannot be completely dissolved in this crystal. There may be a case where a crystal phase such as a nitride of the group 4b element group of the periodic table is present in a proportion of 20% by weight or less due to the group 4b element. The aluminum nitride crystal has a lattice constant of 0.003 to 0.030 angstroms on the a axis and 0.004 to 0.080 angstroms on the c axis from the lattice constant of aluminum nitride due to the solid solution of the Group 4b element of the periodic table. It is in the range of values shifted by a large amount or a small amount, and the lattice constant (a
Axis 3.120 angstroms, c-axis 4.994 angstroms), which have a clearly different lattice constant.

【0011】本発明のセラミック抵抗体は、上記の構成
により25℃において1013Ω−cm以下の体積固有抵
抗を有するもので、その下限値はおよそ320Ω−cm
である。しかも、この抵抗体は後述する実施例から明ら
かなように、室温から300℃までの温度領域におい
て、25℃の抵抗値に対する変化が3桁以下の優れた抵
抗安定性を有することも大きな特徴である。また、−1
00℃でも室温と変わらない抵抗値を有するものであ
る。
The ceramic resistor of the present invention has a volume resistivity of 10 13 Ω-cm or less at 25 ° C. with the above structure, and its lower limit value is about 320 Ω-cm.
Is. Moreover, as is apparent from the examples described later, this resistor has a great feature that it has an excellent resistance stability in which the change with respect to the resistance value at 25 ° C. is 3 digits or less in the temperature range from room temperature to 300 ° C. is there. Also, -1
It has a resistance value that is the same as room temperature even at 00 ° C.

【0012】本発明のセラミック抵抗体を製造する方法
としては、上記の構成を満足する限りにおいて格別その
製法を限定するものではないが、その製造の容易性の点
で、特に気相成長法が好ましく、具体的には、スパッタ
リング、イオンプレーティングなどの物理気相合成法
(PVD法)や、プラズマCVD、光CVD、MO(M
etal−organic)CVDなどの化学気相合成
法(CVD法)により形成されるが、これらの中でもC
VD法がよい。これらの成膜法によれば、周期律表第4
b族元素を過剰に固溶させた窒化アルミニウムを合成で
き、本発明により採用される周期律表第4b族元素を
0.01〜30原子%含有して窒化アルミニウム結晶の
格子定数の変化したセラミック抵抗体を得ることができ
る。
As a method for manufacturing the ceramic resistor of the present invention, the manufacturing method is not particularly limited as long as the above-mentioned constitution is satisfied, but the vapor phase growth method is particularly preferable in view of the ease of manufacturing. Preferably, specifically, a physical vapor phase synthesis method (PVD method) such as sputtering or ion plating, plasma CVD, photo CVD, MO (M
It is formed by a chemical vapor deposition method (CVD method) such as metal-organic CVD.
The VD method is good. According to these film forming methods,
A ceramic which can synthesize aluminum nitride in which a group b element is excessively solid-solved and which contains 0.01 to 30 atom% of a group 4b element of the periodic table adopted by the present invention and whose lattice constant of an aluminum nitride crystal is changed. A resistor can be obtained.

【0013】周期律表第4b族元素としてSiを選択
し、CVD法を用いた具体的な製法としては、原料ガス
としてN2 ガス、NH3 ガス、SiCl4 およびAlC
3 ガスを用い、これらのガスの流量比をN2 /AlC
3 =5〜70、SiCl4 /NH3 =0.001〜
3、NH3 /AlCl3 =0.1〜10とし、成膜温度
を850℃以上の比較的高めに設定することにより作製
することができる。SiCl4 の代わりにSiHC
3 、SiH2 Cl2 、SiH4 、Si2 6 等を用い
てもよく又、AlCl3 の代わりにAlBrなどのハロ
ゲン化物やトリメチルアルミニウム等の有機アルミを用
いてもよい。
Si is selected as a Group 4b element of the periodic table, and a specific manufacturing method using the CVD method is as follows: N 2 gas, NH 3 gas, SiCl 4 and AlC as raw material gas.
L 3 gas is used, and the flow rate ratio of these gases is N 2 / AlC.
l 3 = 5-70, SiCl 4 / NH 3 = 0.001-
3, NH 3 / AlCl 3 = 0.1 to 10 and the film forming temperature is set to a relatively high temperature of 850 ° C. or higher. SiHC instead of SiCl 4
l 3 , SiH 2 Cl 2 , SiH 4 , Si 2 H 6 or the like may be used, and instead of AlCl 3 , a halide such as AlBr or an organic aluminum such as trimethylaluminum may be used.

【0014】一方、膜を形成する基体としては、あらゆ
るものが使用できるが、具体的にはAl2 3 、AlO
N、Si3 4 、ダイヤモンド、ムライト、ZrO2
W、Mo、Mo−Mn、TiN、SiC、WC、カーボ
ンやSi半導体材料(n型あるいはp型)も挙げられる
が、これらの中でも窒化アルミニウムを主体とする焼結
体が密着性を考慮すると最も望ましい。
On the other hand, as the substrate for forming the film, any substrate can be used, but specifically, Al 2 O 3 and AlO are used.
N, Si 3 N 4 , diamond, mullite, ZrO 2 ,
Examples include W, Mo, Mo-Mn, TiN, SiC, WC, carbon, and Si semiconductor materials (n-type or p-type). Among these, a sintered body mainly composed of aluminum nitride is the most suitable in consideration of adhesion. desirable.

【0015】[0015]

【作用】通常、窒化アルミニウムは体積固有抵抗1014
Ω−cmを越える高絶縁体であるが、その窒化アルミニ
ウム結晶中に周期律表第4b族元素を固溶させてアルミ
ニウムまたは窒素を周期律表第4b族元素で置換させる
と、ドナーまたはアクセプターとして導電性に寄与し結
晶の導電率を高める作用となすものと考えられる。ま
た、窒化アルミニウム結晶への周期律表第4b族元素の
固溶は格子定数の変化により判定できる。例えば、周期
律表第4b族元素を含まない窒化アルミニウムの格子定
数はa軸で3.120オングストローム、c軸で4.9
94オングストロームであったが、周期律表第4b族元
素が固溶するに従い、a軸、c軸とも変化する。そして
格子定数をこれらの値からa軸で0.003〜0.03
0オングストローム、c軸で0.004〜0.080オ
ングストロームだけ大きい値または小さい値にシフトし
た値にすると体積固有抵抗を1013Ω−cm以下に制御
することができる。
[Function] Normally, aluminum nitride has a volume resistivity of 10 14
Although it is a high insulator exceeding Ω-cm, when a group 4b element of the periodic table is dissolved in the aluminum nitride crystal and aluminum or nitrogen is replaced by the group 4b element of the periodic table, it acts as a donor or an acceptor. It is considered that it contributes to conductivity and acts to increase the conductivity of the crystal. Further, the solid solution of the group 4b element of the periodic table in the aluminum nitride crystal can be determined by the change in the lattice constant. For example, the lattice constant of aluminum nitride containing no group 4b element of the periodic table is 3.120 angstroms on the a-axis and 4.9 on the c-axis.
Although it was 94 Å, both the a-axis and the c-axis change as the Group 4b element of the Periodic Table becomes a solid solution. The lattice constant is 0.003 to 0.03 on the a-axis from these values.
The volume resistivity can be controlled to 10 13 Ω-cm or less by setting the value to 0 angstrom and a value shifted to a larger or smaller value by 0.004 to 0.080 angstrom on the c-axis.

【0016】しかも本発明のセラミック抵抗体は温度に
対する抵抗変化が小さく、例えば、一般的窒化アルミニ
ウムの場合、室温(25℃)から300℃までの温度範
囲では1016Ω−cmから1011Ω−cmまで変化する
のに対して、本発明のセラミック抵抗体では例えば、1
13Ω−cmから1011Ω−cmまでと3桁以下しか変
化しないという特徴を有するものであり、また、−10
0℃の低温までもその変化率の小さな体積固有抵抗値を
維持するものである。
Further, the ceramic resistor of the present invention has a small resistance change with temperature. For example, in the case of general aluminum nitride, 10 16 Ω-cm to 10 11 Ω-in the temperature range from room temperature (25 ° C.) to 300 ° C. While it varies up to cm, in the ceramic resistor of the present invention, for example, 1
It has a characteristic that it changes from 0 13 Ω-cm to 10 11 Ω-cm by 3 digits or less, and -10
It maintains the volume resistivity with a small change rate even at a low temperature of 0 ° C.

【0017】従って、広い温度範囲にわたって安定した
抵抗が必要とされる半導体製造装置中の静電チャックな
どの用途に対しては特に有用性が高いものである。
Therefore, it is particularly useful for applications such as electrostatic chucks in semiconductor manufacturing equipment that require stable resistance over a wide temperature range.

【0018】[0018]

【実施例】【Example】

実施例1 窒化アルミニウム質焼結体からなる基体表面に化学気相
合成法によってAlN膜を形成した。AlN膜の成膜
は、基体を外熱式によって900℃に加熱した炉に入
れ、窒素を8SLM、アンモニアを1SLM、0〜0.
5SLMのSiCl4ガスを流して圧力を50torr
とした。さらに、塩化アルミニウム(AlCl3 )を
0.3SLMの流量で導入して反応を開始し、400μ
mの膜厚の膜を形成した(試料No.1〜9)。
Example 1 An AlN film was formed on the surface of a substrate made of an aluminum nitride sintered body by a chemical vapor deposition method. The AlN film is formed by placing the substrate in a furnace heated to 900 ° C. by an external heating method, nitrogen 8 SLM, ammonia 1 SLM, 0 to 0.
Flowing 5 SLM of SiCl4 gas to raise the pressure to 50 torr
And Further, aluminum chloride (AlCl 3 ) was introduced at a flow rate of 0.3 SLM to start the reaction, and
A film having a thickness of m was formed (Sample Nos. 1 to 9).

【0019】得られた膜に対してX線回折法でSi(S
RM640b)を標準試料として角度補正を行い、ピー
クトップ法により算出した。測定面指数は(100)、
(002)、(101)、(102)、(110)、
(103)、(112)、(004)であった。また、
−100℃、室温および300℃の体積固有抵抗を測定
し、表1に示した。また、No.5の−100〜600
℃の体積固有抵抗を図1に示した。
The obtained film was analyzed by X-ray diffraction to obtain Si (S
The angle was corrected using RM640b) as a standard sample, and the peak top method was used for calculation. The measurement plane index is (100),
(002), (101), (102), (110),
The values were (103), (112), and (004). Also,
The volume resistivity at −100 ° C., room temperature and 300 ° C. was measured and shown in Table 1. In addition, No. 5 of -100 to 600
The volume resistivity at ° C is shown in Fig. 1.

【0020】実施例2 窒化アルミニウム質焼結体からなる基体表面に化学気相
合成法によってAlN膜を形成した。AlN膜の成膜
は、基体を外熱式によって900℃に加熱した炉に入
れ、窒素を8SLM、アンモニアを1SLM、0〜0.
5SLMのCH4 、GeH4 、SnCl4 、Pb(CH
3 4 ガスを流して圧力を50torrとした。さら
に、塩化アルミニウム(AlCl3 )を0.3SLMの
流量で導入して反応を開始し、およそ400μmの膜厚
の膜を形成した(試料No.10〜13)。得られた膜に
対して実施例1と同様に格子定数をX線回折法から算出
するとともに−100℃、室温および300℃における
体積固有抵抗を測定しその結果を表1に示した。
Example 2 An AlN film was formed on the surface of a substrate made of an aluminum nitride sintered body by a chemical vapor deposition method. The AlN film is formed by placing the substrate in a furnace heated to 900 ° C. by an external heating method, nitrogen 8 SLM, ammonia 1 SLM, 0 to 0.
CH 4 of 5SLM, GeH 4, SnCl 4, Pb (CH
3 ) 4 gas was flowed to adjust the pressure to 50 torr. Further, aluminum chloride (AlCl 3 ) was introduced at a flow rate of 0.3 SLM to start the reaction, and a film having a thickness of about 400 μm was formed (Sample No. 10 to 13). The lattice constant of the obtained film was calculated by the X-ray diffraction method as in Example 1, and the volume resistivity at −100 ° C., room temperature and 300 ° C. was measured, and the results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表1の試料No.1〜9の結果から明らかな
ように、窒化アルミニウム中のSi原子量および格子定
数はSiCl4 流量によって変化し、SiCl4 を全く
導入せず、Si原子量も不純物レベルの0.0001原
子%の場合には、体積固有抵抗も9×1015Ω−cmと
高絶縁性であったが、SiCl4 の流量を徐々に増加さ
せるに伴い、膜中のSi原子量が増加するとともに、格
子定数も次第に小さくなったが、試料No.9の膜は窒化
ケイ素相を主相とするものであった。なお、得られた窒
化アルミニウム膜はX線回折測定から(002)に配向
するAlN膜であった。しかし、透過型電子顕微鏡観察
では窒化ケイ素結晶相が存在しており、その量はSiC
4 流量と相関がみられた。
[0022] As apparent from the results of Table 1 sample Nanba1~9, Si atomic weight and the lattice constant of nitride in the aluminum changes by SiCl 4 flow rate, without any introduction of SiCl 4, Si atomic amount impurity levels In the case of 0.0001 at%, the volume resistivity was 9 × 10 15 Ω-cm, which was highly insulating, but the amount of Si atoms in the film increased as the flow rate of SiCl 4 was gradually increased. At the same time, the lattice constant gradually decreased, but the film of Sample No. 9 had a silicon nitride phase as a main phase. The obtained aluminum nitride film was an AlN film oriented in (002) according to X-ray diffraction measurement. However, a transmission electron microscope observation shows that there is a silicon nitride crystal phase, and the amount thereof is SiC.
There was a correlation with the l 4 flow rate.

【0023】また、Si以外の周期律表第4b族元素に
ついて、窒化アルミニウム中の周期律表第4b族元素原
子量および格子定数は周期律表第4b族元素を含む添加
ガスの流量によって変化し、周期律表第4b族元素を含
む添加ガスの流量を徐々に増加させるに伴い、膜中の周
期律表第4b族元素量が増加するとともに、格子定数も
次第に変化し、体積固有抵抗が低下した。なお、得られ
た窒化アルミニウム膜はX線回折測定から(002)に
配向するAlN膜であり、窒化物結晶相が存在しいるも
のも存在した。
For elements of Group 4b of the periodic table other than Si, the atomic weight and lattice constant of the element of Group 4b of the periodic table in aluminum nitride change depending on the flow rate of the additive gas containing the element of Group 4b of the periodic table. As the flow rate of the additive gas containing the group 4b element of the periodic table was gradually increased, the amount of the group 4b element of the periodic table in the film increased, the lattice constant also gradually changed, and the volume resistivity decreased. . The obtained aluminum nitride film was an AlN film oriented in (002) according to the X-ray diffraction measurement, and there was also a film having no nitride crystal phase.

【0024】[0024]

【発明の効果】以上詳述した通り、本発明によれば、窒
化アルミニウム中の周期律表第4b族元素量及び格子定
数を制御することにより、室温における体積固有抵抗が
1013Ω−cm以下で、かつ温度変化の小さな抵抗体を
得ることができる。従って、窒化アルミニウムの特性、
例えば耐食性を失うことなく抵抗値を変化できる。
As described above in detail, according to the present invention, the volume resistivity at room temperature is 10 13 Ω-cm or less by controlling the amount of the Group 4b element in the periodic table and the lattice constant in aluminum nitride. It is possible to obtain a resistor whose temperature change is small. Therefore, the characteristics of aluminum nitride,
For example, the resistance value can be changed without losing the corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】試料No.5の−100℃〜600℃の体積固
有抵抗の変化を示す図である。
FIG. 1 is a sample No. It is a figure which shows the change of the volume specific resistance of No. 5 of -100 degreeC-600 degreeC.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 29/38 C 9261−4G // C04B 35/581 C04B 35/58 104 J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C30B 29/38 C 9261-4G // C04B 35/581 C04B 35/58 104 J

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒化アルミニウム結晶相を主体とするセラ
ミック抵抗体であって、該抵抗体中に周期律表第4b族
元素が0.005〜30原子%存在し、前記結晶相にお
ける格子定数が窒化アルミニウム単相の格子定数からa
軸で0.003〜0.030オングストローム、c軸で
0.004〜0.080オングストロームだけシフトし
た値であるとともに、25℃における体積固有抵抗が1
13Ω−cm以下であることを特徴とするセラミック抵
抗体。
1. A ceramic resistor mainly composed of an aluminum nitride crystal phase, in which 0.005 to 30 atom% of a Group 4b element of the periodic table is present in the resistor, and the lattice constant in the crystal phase is From the lattice constant of aluminum nitride single phase a
The value is shifted by 0.003 to 0.030 angstrom on the axis and 0.004 to 0.080 angstrom on the c axis, and the volume resistivity at 25 ° C. is 1
A ceramic resistor having a resistance of 0 13 Ω-cm or less.
【請求項2】前記抵抗体が化学気相合成法により形成さ
れたものである請求項1記載のセラミック抵抗体。
2. The ceramic resistor according to claim 1, wherein the resistor is formed by a chemical vapor deposition method.
JP20837594A 1994-01-09 1994-09-01 Ceramic resistor Expired - Fee Related JP3145575B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20837594A JP3145575B2 (en) 1994-09-01 1994-09-01 Ceramic resistor
US08/385,774 US5668524A (en) 1994-02-09 1995-02-09 Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase
US08/841,605 US5777543A (en) 1994-01-09 1997-04-30 Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20837594A JP3145575B2 (en) 1994-09-01 1994-09-01 Ceramic resistor

Publications (2)

Publication Number Publication Date
JPH0878202A true JPH0878202A (en) 1996-03-22
JP3145575B2 JP3145575B2 (en) 2001-03-12

Family

ID=16555249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20837594A Expired - Fee Related JP3145575B2 (en) 1994-01-09 1994-09-01 Ceramic resistor

Country Status (1)

Country Link
JP (1) JP3145575B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225249B1 (en) 1998-07-08 2001-05-01 Toshiba Ceramics Co., Ltd. Aluminum nitride sintered body, method of producing thereof, electrostatic chuck, susceptor, dummy wafer, clamp ring and particle catcher using the same
JP2007191383A (en) * 2005-12-19 2007-08-02 Ngk Insulators Ltd Aluminum nitride powder, aluminum nitride-based ceramic sintered body, member for semiconductor manufacturing device, aluminum nitride luminescent material, and method of manufacturing aluminum nitride powder
US7371282B2 (en) * 2006-07-12 2008-05-13 Northrop Grumman Corporation Solid solution wide bandgap semiconductor materials
US7929269B2 (en) 2008-09-04 2011-04-19 Momentive Performance Materials Inc. Wafer processing apparatus having a tunable electrical resistivity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225249B1 (en) 1998-07-08 2001-05-01 Toshiba Ceramics Co., Ltd. Aluminum nitride sintered body, method of producing thereof, electrostatic chuck, susceptor, dummy wafer, clamp ring and particle catcher using the same
JP2007191383A (en) * 2005-12-19 2007-08-02 Ngk Insulators Ltd Aluminum nitride powder, aluminum nitride-based ceramic sintered body, member for semiconductor manufacturing device, aluminum nitride luminescent material, and method of manufacturing aluminum nitride powder
US7371282B2 (en) * 2006-07-12 2008-05-13 Northrop Grumman Corporation Solid solution wide bandgap semiconductor materials
US7929269B2 (en) 2008-09-04 2011-04-19 Momentive Performance Materials Inc. Wafer processing apparatus having a tunable electrical resistivity

Also Published As

Publication number Publication date
JP3145575B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
US5777543A (en) Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase
KR920004173B1 (en) Method of growing a single crystalline beta-sic layer on a silicon substrate
EP0669412B1 (en) Aluminim nitride thin film substrate and process for producing same
EP0899358B1 (en) Silicon carbide fabrication
Smith et al. Chemical vapor deposition of titanium–silicon–nitride films
JP2004319737A (en) Material for thermistor, and method for manufacturing the same
Shiau et al. Epitaxial growth of CrSi2 on (111) Si
JP3145574B2 (en) Ceramic resistor
KR101628691B1 (en) Control method of electrical conductivity for CVD SiC
US5350720A (en) Triple-layered ceramic heater
JP3145575B2 (en) Ceramic resistor
EP0768389B1 (en) Pyrolytic boron nitride compact and method of manufacture
Lee et al. The effect of diluent gases on the growth behavior of CVD SiC films with temperature
JP3273110B2 (en) Ceramic resistor
JP3145588B2 (en) Ceramic resistor
JPH08102485A (en) Electrostatic chuck
JP3297571B2 (en) Electrostatic chuck
JP3152857B2 (en) Electrostatic chuck
US6365460B1 (en) Production of silicon carbide bodies
Shiozawa et al. The Formation of Boron‐Doped Polycrystalline Si with Extremely Low Resistivities at Low Temperatures
JPH06163201A (en) Resistance thin film
JPH0855899A (en) Electrostatic chuck
JP2620293B2 (en) Diamond modification method
JPH03252307A (en) Polycrystal silicon carbide
US20240052521A1 (en) Methods of forming silicon carbide coated base substrates at multiple temperatures

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees