JPH08781B2 - Glucagon-like bioactive agent - Google Patents

Glucagon-like bioactive agent

Info

Publication number
JPH08781B2
JPH08781B2 JP61307504A JP30750486A JPH08781B2 JP H08781 B2 JPH08781 B2 JP H08781B2 JP 61307504 A JP61307504 A JP 61307504A JP 30750486 A JP30750486 A JP 30750486A JP H08781 B2 JPH08781 B2 JP H08781B2
Authority
JP
Japan
Prior art keywords
glucagon
gsp
bioactive agent
synthesis
glycogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61307504A
Other languages
Japanese (ja)
Other versions
JPS63159323A (en
Inventor
博 内藤
忠 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP61307504A priority Critical patent/JPH08781B2/en
Publication of JPS63159323A publication Critical patent/JPS63159323A/en
Publication of JPH08781B2 publication Critical patent/JPH08781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高アンモニア血症,低血糖症等に有効な、
下記の構造からなるグルカゴン様生理活性剤(以下、GS
Pと記す)に関するものである。Ala−Val−Pro−Tyr−P
ro−Gln−Arg(Alaはアラニン、Valはバリン、Proはプ
ロリン、Tyrはチロシン、Glnはグルタミン、Argはアル
ギニンを示す。) (従来技術) 生体内では、アミノ酸,蛋白質の代謝の一環として、
生成されるアンモニアを尿素に転換し、体外へ排泄する
尿素サイクルという機構が作働しているが、この尿素サ
イクルの酵素系の欠陥あるいは促進ホルモンの不足など
により高アンモニア血症が生じる場合がある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is effective for hyperammonemia, hypoglycemia, etc.
Glucagon-like bioactive agent consisting of the following structure (hereinafter GS
P)). Ala-Val-Pro-Tyr-P
ro-Gln-Arg (Ala is alanine, Val is valine, Pro is proline, Tyr is tyrosine, Gln is glutamine, and Arg is arginine.) (Prior art) In vivo, as part of metabolism of amino acids and proteins,
The mechanism of the urea cycle, which converts the produced ammonia into urea and excretes it to the outside of the body, operates, but hyperammonemia may occur due to defects in the enzyme system of this urea cycle or lack of stimulating hormones. .

従来、この高アンモニア血症に有効なペプチドホルモ
ンとしてグルカゴンが知られている。正常肝臓の培養細
胞には尿素合成の機能があるが、この培養細胞にグルカ
ゴンを加えることにより、尿素合成は促進される。
Heretofore, glucagon has been known as a peptide hormone effective for this hyperammonemia. Although cultured cells of normal liver have a function of urea synthesis, addition of glucagon to the cultured cells promotes urea synthesis.

また、グルカゴンは、アデニルサイクラーゼを活性化
し、サイクリックAMP依存性プロテインキナーゼ,グリ
コーゲンホスホリラーゼを介してグリコーゲン分解を促
進し、一方で、グリコーゲン合成酵素の活性抑制により
グリコーゲン合成を抑制する。このことから、グルカゴ
ンは、経口糖尿病薬やインシュリンによる低血糖症の治
療などにも用いられている。
In addition, glucagon activates adenyl cyclase and promotes glycogen degradation via cyclic AMP-dependent protein kinase and glycogen phosphorylase, while suppressing glycogen synthesis by suppressing the activity of glycogen synthase. For this reason, glucagon is also used for oral diabetes drugs and treatment of hypoglycemia with insulin.

(発明が解決しようとする問題点) しかしながら、グルカゴンを膵臓からの抽出によって
得る場合、得られるグルカゴンは微量であり、かつ操作
は多工程を要し繁雑である。合成によって得る場合は、
グルカゴンはアミノ酸29個からなる長いペプチドである
ため、合成する時間、費用等がかかり経済的に有利でな
い。
(Problems to be solved by the invention) However, when glucagon is obtained by extraction from the pancreas, the amount of glucagon obtained is very small, and the operation requires many steps and is complicated. If you get it by synthesis,
Since glucagon is a long peptide consisting of 29 amino acids, it takes time and cost to synthesize it, which is not economically advantageous.

(問題を解決するための手段) 本発明者らは、グルカゴンと同様の効果を有する物質
を経済的に有利にかつ容易な方法で得ることを目的に鋭
意研究を重ねた結果、牛由来カゼインをトリプシンなど
で分解することにより得られたペプチドがグルカゴン様
生理活性を有することを見い出し、この知見に基づいて
本発明に至った。すなわち本発明は、下記の構造からな
るグルカゴン様生理活性剤である。
(Means for Solving the Problem) The present inventors have conducted extensive studies to obtain a substance having the same effect as glucagon by an economically advantageous and easy method, and as a result, obtain bovine casein. It was found that the peptide obtained by decomposing with trypsin etc. has glucagon-like physiological activity, and the present invention was completed based on this finding. That is, the present invention is a glucagon-like bioactive agent having the following structure.

Ala−Val−Pro−Tyr−Pro−Gln−Arg本発明のGSPと同
一のペプチドは、アンジオテンシン転換酵素阻害剤とし
て知られているものであるが(特公昭61−51562)、こ
のペプチドがグルカゴン様生理活性を有することは、本
発明者らが始めて見い出した知見である。
Ala-Val-Pro-Tyr-Pro-Gln-Arg The same peptide as GSP of the present invention is known as an angiotensin converting enzyme inhibitor (Japanese Patent Publication No. 61-51562), but this peptide is glucagon-like. Having physiological activity is a finding that the present inventors first discovered.

本発明によるGSPを得るには、特公昭61−51562に記載
されているように、牛由来カゼインをpH5.5〜9.0の条件
下、トリプシンにより分解し、分解物を100℃程度の加
熱処理又は酸を加えて処理することによりトリプシン及
び未分解のカゼインを沈澱させ、この沈澱物を遠心分離
などにより除去する。このようにして得た母液を水酸化
ナトリウムなどのアルカリで中和したのち、減圧下で2
〜3倍に濃縮する。このようにして得た濃縮液を精製し
て製品を得る。
To obtain GSP according to the present invention, as described in JP-B-61-51562, cattle-derived casein is decomposed with trypsin under conditions of pH 5.5 to 9.0, and the decomposed product is subjected to heat treatment at about 100 ° C. or Trypsin and undecomposed casein are precipitated by adding an acid to the precipitate, and the precipitate is removed by centrifugation or the like. The mother liquor thus obtained is neutralized with an alkali such as sodium hydroxide, and then it is concentrated under reduced pressure.
Concentrate ~ 3 times. The concentrate thus obtained is purified to obtain a product.

また、公知のペプチド合成手段を利用して得ることも
可能である。
It can also be obtained by utilizing a known peptide synthesis means.

すなわち、一方のアミノ酸のアミノ基をベンジルオキ
シカルボニル基又は、t−ブトキシカルボニル基等で保
護、他方のアミノ酸又はペプチドのカルボキシル基をベ
ンジルエステル等で保護し、DCC(N,N′−ジシクロヘキ
シルカルボジイミド)等でカップリングさせる。この操
作を繰り返し、保護基を脱離させ、精製して製品を得る
ことができる。
That is, the amino group of one amino acid is protected with a benzyloxycarbonyl group or a t-butoxycarbonyl group, the carboxyl group of the other amino acid or peptide is protected with a benzyl ester, and DCC (N, N'-dicyclohexylcarbodiimide) Etc. This operation can be repeated to remove the protecting group, and the product can be obtained by purification.

(効果) 本発明のGSPは、経済的に有利に、かつ容易な方法で
得ることができ、尿素合成促進作用及びグリコーゲン合
成抑制作用を有し、高アンモニア血症および低血糖症に
対して有効である。
(Effect) The GSP of the present invention is economically advantageous and can be obtained by an easy method, has a urea synthesis promoting action and a glycogen synthesis inhibiting action, and is effective against hyperammonemia and hypoglycemia. Is.

またGSPは、単独でも尿素合成促進作用及びグリコー
ゲン分解促進作用を表わすが、グルカゴンと併用するこ
とにより、GSPはグルカゴンの該二作用を増強する作用
もある。
GSP alone exhibits urea synthesis promoting action and glycogen decomposition promoting action, but when used in combination with glucagon, GSP also has the action of enhancing the dual action of glucagon.

(実施例) 次に実施例により本発明のGSPの生理作用について説
明する。
(Example) Next, the physiological action of GSP of the present invention will be described with reference to Examples.

実施例1 GSPの尿素合成に及ぼす影響 ウィスター(Wistar)系雄ラット(体重約250g)よ
り、セグレンらの方法(P.O.Seglen,Methods in Cell B
iology 13,29(1976))を改良した中村らの方法(蛋
白質核酸酵素 別冊No.24動物実験の手技手法,P.55)に
より、肝臓細胞を単離し、10%仔牛血清を含むウィリア
ムズE培地(Flow Laboratories社製)で、1×105細胞
/培養皿底面1cm2(培養液125μを含む)の濃度で24
時間培養した後、血清およびアルギニンを含まないウィ
リアムズE培地でさらに24時間培養した。
Example 1 Effect of GSP on urea synthesis From a Wistar male rat (body weight: about 250 g), the method of Seglen et al. (POSeglen, Methods in Cell B) was used.
( 13 ), 29 (1976)), a modified method of Nakamura et al. (Protein / Nucleic Acid and Enzyme, Separate Volume No. 24, Techniques for Animal Experiments, P.55), to isolate liver cells and Williams E medium containing 10% fetal calf serum. (Flow Laboratories) at a concentration of 1 × 10 5 cells / bottom of culture dish 1 cm 2 (including 125 μl of culture solution).
After culturing for an hour, the cells were further cultivated for 24 hours in Williams E medium containing no serum and arginine.

培養3日目の細胞(2×105細胞/培養皿底面2cm
2(培養液250μを含む))に、図1−1,1−2に示し
たようなGSPの各濃度を加え、6時間後に培養上清を取
り、ジェームズらによるジアセチルモノオキシム法(W.
James and D.Danica,Anal.Biochem.,37,412(1971))
による540nmの吸光度を測定し、尿素の相対合成量とし
た。
Cells on day 3 of culture (2 x 10 5 cells / bottom 2 cm of culture dish)
2 (including 250 μl of culture broth), each concentration of GSP as shown in FIGS. 1-1 and 1-2 was added, and after 6 hours, the culture supernatant was taken and the diacetyl monooxime method (W.
James and D. Danica, Anal. Biochem., 37 , 412 (1971))
The absorbance at 540 nm was measured and used as the relative amount of urea synthesized.

また、グルカゴンの一定量(10-7M)をGSPの各濃度と
併用したものについても同様の方法で実施した。
In addition, the same method was performed using a certain amount of glucagon (10 −7 M) in combination with each concentration of GSP.

結果を図1−1に示す。 The results are shown in Figure 1-1.

次に、同様の方法でグルカゴンの各濃度に一定量のGS
Pを加えたものおよびグルカゴン単独のものについても
実施した。
Next, in the same way, a certain amount of GS was added to each concentration of glucagon.
It was also carried out for those with P added and for glucagon alone.

結果を図1−2に示す。 The results are shown in Figure 1-2.

図1−1および図1−2から、GSPが尿素合成を促進
していること、およびグルカゴンの尿素合成促進作用を
増強していることがわかる。特に、グルカゴンの濃度が
10-7M付近のときにGSPはグルカゴンを最も強く増強して
いる。
It can be seen from FIGS. 1-1 and 1-2 that GSP promotes urea synthesis and that glucagon enhances the urea synthesis promoting action. Especially when the concentration of glucagon is
At around 10 -7 M, GSP strengthens glucagon most strongly.

実施例2 GSPのグリコーゲン合成に及ぼす影響 実施例1と同様の方法で培養した培養3日目のラット
の肝臓細胞(1×106細胞/培養皿底面10cm2(培養液1m
lを含む))に、GSPの各濃度および14C−D−グルコー
ス(0.5μCi)を加え、3時間培養後、上清を捨て、30
%水酸化カリウムで細胞を可溶化後(100℃,30分)、冷
エタノールでグリコーゲンを沈澱させた。次に、冷エタ
ノールで沈澱を2回洗浄した後、液体シンチレーション
カウンターにより、14C取り込み量(DPM)を測定し、グ
リコーゲンの相対合成量とした。
Example 2 Effect of GSP on glycogen synthesis Rat liver cells cultured on day 3 in the same manner as in Example 1 (1 × 10 6 cells / bottom 10 cm 2 of culture dish (culture medium 1 m
l))), each concentration of GSP and 14 C-D-glucose (0.5 μCi) were added, the mixture was incubated for 3 hours, and the supernatant was discarded.
After solubilizing the cells with 100% potassium hydroxide (100 ° C., 30 minutes), glycogen was precipitated with cold ethanol. Next, after washing the precipitate twice with cold ethanol, the amount of 14 C uptake (DPM) was measured by a liquid scintillation counter and used as the relative amount of glycogen synthesized.

また、GSPにグリコーゲン合成促進作用を有するイン
シュリン(2nM)を加えたものについても同様に実施し
た。
The same procedure was performed for GSP to which insulin (2 nM) having a glycogen synthesis promoting action was added.

結果を図2に示す。 The results are shown in Figure 2.

図2より、GSPは、インシュリンの存在にかかわら
ず、グリコーゲンの合成を抑制することがわかる。
From FIG. 2, it can be seen that GSP suppresses glycogen synthesis regardless of the presence of insulin.

【図面の簡単な説明】[Brief description of drawings]

図1−1および図1−2は、本発明のGSPの、尿素合成
に及ぼす作用を540nmにおける吸光度によって示した図
である。 図2は、本発明のGSPの、グリコーゲン合成に及ぼす作
用を、液体シンチレーションカウンターにより測定した
14C取り込み量(DPM)によって示した図である。
FIG. 1-1 and FIG. 1-2 are diagrams showing the action of GSP of the present invention on urea synthesis by the absorbance at 540 nm. FIG. 2 shows the effect of GSP of the present invention on glycogen synthesis, which was measured by a liquid scintillation counter.
It is the figure shown by the amount of 14 C uptake (DPM).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 A61K 37/02 AEE ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area A61K 37/02 AEE

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】下記の構造からなるグルカゴン様生理活性
剤Ala−Val−Pro−Tyr−Pro−Gln−Arg
1. A glucagon-like bioactive agent having the following structure: Ala-Val-Pro-Tyr-Pro-Gln-Arg
【請求項2】グルカゴン様生理活性が尿素の合成促進作
用である特許請求の範囲第1項記載の生理活性剤
2. The bioactive agent according to claim 1, wherein the glucagon-like bioactivity is an action of promoting the synthesis of urea.
【請求項3】グルカゴン様生理活性がグリコーゲン合成
抑制作用である特許請求の範囲第1項記載の生理活性剤
3. The bioactive agent according to claim 1, wherein the glucagon-like bioactivity is an action of inhibiting glycogen synthesis.
JP61307504A 1986-12-23 1986-12-23 Glucagon-like bioactive agent Expired - Lifetime JPH08781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61307504A JPH08781B2 (en) 1986-12-23 1986-12-23 Glucagon-like bioactive agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61307504A JPH08781B2 (en) 1986-12-23 1986-12-23 Glucagon-like bioactive agent

Publications (2)

Publication Number Publication Date
JPS63159323A JPS63159323A (en) 1988-07-02
JPH08781B2 true JPH08781B2 (en) 1996-01-10

Family

ID=17969878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61307504A Expired - Lifetime JPH08781B2 (en) 1986-12-23 1986-12-23 Glucagon-like bioactive agent

Country Status (1)

Country Link
JP (1) JPH08781B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008297911A1 (en) * 2007-09-11 2009-03-19 Mondobiotech Laboratories Ag Use of gluten Exorphin C : as a therapeutic agent

Also Published As

Publication number Publication date
JPS63159323A (en) 1988-07-02

Similar Documents

Publication Publication Date Title
Rhinesmith et al. A quantitative study of the hydrolysis of human dinitrophenyl (DNP) globin: the number and kind of polypeptide chains in normal adult human hemoglobin
Wieland et al. The world of peptides: a brief history of peptide chemistry
Tang Specificity of pepsin and its dependence on a possible ‘hydrophobic binding site’
Isowa et al. The synthesis of peptides by means of proteolytic enzymes.
Fruton et al. The mechanism of pepsin action
Levy et al. The synthesis of triaminoacyl-insulins and the use of the t-butyloxycarbonyl group for the reversible blocking of the amino groups of insulin
JP3318622B2 (en) Prolyl endopeptidase inhibitor
Ruttenberg Human insulin: facile synthesis by modification of porcine insulin
Botbol et al. Peptide intermediates in the degradation of cellular proteins. Bestatin permits their accumulation in mouse liver in vivo.
Nakagawa et al. Implications of invariant residue LeuB6 in insulin-receptor interactions
Krieger et al. Chemical studies of histone acetylation: Substrate specificity of a histone deacetylase from calf thymus nuclei
Li et al. The synthesis of L-histidyl-L-phenylalanyl-L-ornithyl-L-tryptophyl-glycine and L-histidyl-D-phenylalanyl-L-ornithyl-L-tryptophyl-glycine and their melanocyte-stimulating activity
DE3151738C2 (en)
Elson et al. Hemoglobin switching in sheep and goats: III. Cell-free initiation of sheep globin synthesis
JPH08781B2 (en) Glucagon-like bioactive agent
Bensusan Investigation of the products of an enzymic hydrolysis of collagens
YANAIHARA et al. Studies on the synthesis of proinsulin. I. Synthesis of partially protected tritriacontapeptide related to the connecting peptide fragment of porcine proinsulin
Glass et al. Enzymes as reagents in peptide synthesis: enzyme-labile protection for carboxyl groups.
JPH07316195A (en) New pthrp-related peptide and use thereof
Lande et al. Racemization of α-melanotropin
JP4470152B2 (en) Novel tripeptide and method for producing the same
Jackson et al. Oligopeptide transport in proline peptidase mutants of Salmonella typhimurium.
Brunfeldt et al. Human crystalline insulin from non-diabetic and diabetic patients
Naithani et al. Studies on Polypeptides, VII. Synthesis, Circular Dichroism and Immunological Studien of Tyrosyl C-Peptide of Human Proinsulin
Fortier et al. Substrate-and stereo-specificities in clostripain-catalyzed peptide synthesis