JPH0875137A - Method and device for controlling soot blower by divided furnace model - Google Patents

Method and device for controlling soot blower by divided furnace model

Info

Publication number
JPH0875137A
JPH0875137A JP21619494A JP21619494A JPH0875137A JP H0875137 A JPH0875137 A JP H0875137A JP 21619494 A JP21619494 A JP 21619494A JP 21619494 A JP21619494 A JP 21619494A JP H0875137 A JPH0875137 A JP H0875137A
Authority
JP
Japan
Prior art keywords
furnace
fouling
heat transfer
degree
soot blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21619494A
Other languages
Japanese (ja)
Inventor
Koji Yamamoto
晃二 山本
Hiroshi Oshima
拓 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP21619494A priority Critical patent/JPH0875137A/en
Publication of JPH0875137A publication Critical patent/JPH0875137A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a soot blower control device for a boiler furnace which is constituted to start a soot blower in a place where the interior of a furnace is really fouled, and effectively remove the fouling and to provide a method therefor. CONSTITUTION: In a boiler having a plurality of soot blowers corresponding to a furnace and the heat transfer surfaces of a bank part, the heat transfer surface of the interior of the furnace is divided into a plurality of spots, and the degree of fouling of each division heat transfer surface is evaluated by an integral type degree of fouling computing part 2 to effect computation of the degree of fouling by a furnace integral model based on process data inputted to an input part 1 and a division type degree of fouling computing part 3 to effect computation of the degree of fouling by a furnace division model. When fouling of a heat transfer surface exceeds an allowable limit, a corresponding soot blower is operated. The degree of fouling is not calculated integrally with the furnace but the furnace is vertically divided to effect heat transfer calculation. The degree of fouling of each division is calculated, and a portion (a section) to which coal ash is adhered is reliably detected. Only a soot blower corresponding to the portion is started to remove fouling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はボイラの伝熱面の汚れ除
去用のスートブロワ制御装置に係り、火炉内の汚れを効
果的に除去し、あらゆる燃料性状に対しても高効率運転
を可能とするスートブロワ制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soot-blower control device for removing dirt on a heat transfer surface of a boiler, which effectively removes dirt in a furnace and enables highly efficient operation regardless of fuel properties. The present invention relates to a soot blower control device.

【0002】[0002]

【従来の技術】従来のスートブロワは石炭の燃焼によっ
て、ボイラの火炉壁や過熱器等の伝熱面への付着灰分を
蒸気噴射により取り除き、燃焼効率の向上やボイラ特性
の回復を図るために用いられる。スートブロワは火炉
壁、過熱器、再熱器、節炭器に設置され、短抜差型、長
抜差型、半抜差型のものがある。短抜差型スートブロワ
は360度回転しながら、ノズルより噴射される媒体で
火炉壁をクリーニングする。また、長抜差型スートブロ
ワは高温ガス部に使用されるスートブロワで、360度
回転しながら先端部ノズルから噴射媒体をボイラ管群に
吹き付けて清掃するものである。半抜差型スートブロワ
は低温ガス部(節炭器部)に使用されるスートブロワ
で、長抜差型と同様の機能を有する。
2. Description of the Related Art Conventional soot blowers are used to improve combustion efficiency and recover boiler characteristics by removing the ash adhering to the heat transfer surface of the furnace wall of a boiler or superheater by steam injection by burning coal. To be Soot blowers are installed on furnace walls, superheaters, reheaters, and economizers, and there are short-drag, long-drag, and half-drag types. The short slip type sootblower cleans the furnace wall with the medium jetted from the nozzle while rotating 360 degrees. Further, the long pull-out type soot blower is a soot blower used for a high temperature gas part, and sprays an injection medium from a tip end nozzle to a boiler pipe group while rotating it for 360 degrees for cleaning. The half-drag soot blower is a soot blower used for the low temperature gas part (coal saving part) and has the same function as the long-drag difference type.

【0003】多品種の石炭を使用するボイラでは炭種に
より伝熱面へ付着する石炭灰量の程度が異なるため、ス
ートブロワを予め決められたサイクルで起動させるシー
ケンス制御では、真に起動が必要なときとのズレが生
じ、これが過度の起動回数になる場合にはスートブロワ
噴射媒体消費量を増加させ、またはスートブロワ噴射媒
体消費量の不足を来たし、いずれの場合にもボイラ効率
の低下といった事態が発生する。このため、伝熱面の汚
れ状態や節炭器出口ガス温度などのボイラの運転状態の
変化を総合的に判断し、最適なスートブロワ起動箇所を
決定して自動的に制御するAIスートブロワ制御システ
ムについて、我々は先に発明した(特公昭62−467
68号、特公昭62−46769号など)。これらの発
明は手動モード、シーケンサモード(シーケンサによる
一律自動起動の起動キックは運転員による)以外に、伝
熱面汚れ度およびボイラ状態よりスートブロワの最適起
動箇所を決定し、完全自動で運転するモード(インテリ
ジェントモード)を有するスートブロワ自動制御装置に
関するものである。上記発明において、伝熱面の汚れ度
などの計算を実施する単位は一般に火炉および各バンク
面毎となっている。すなわち火炉は全体で一つの単位と
して汚れ度計算がなされ、火炉内のスートブロワの起動
は順番にサイクリックに選択されている。
In a boiler using many kinds of coal, the degree of the amount of coal ash adhering to the heat transfer surface varies depending on the type of coal. Therefore, the sequence control for starting the soot blower in a predetermined cycle requires a true start. If there is a deviation from the time, and if this is an excessive number of start-ups, the soot blower injection medium consumption amount is increased, or the soot blower injection medium consumption amount becomes insufficient, and in each case a situation such as a decrease in boiler efficiency occurs. To do. Therefore, regarding the AI soot blower control system that comprehensively judges changes in the operating conditions of the boiler such as the fouling state of the heat transfer surface and the gas temperature at the outlet of the economizer, and determines the optimum soot blower starting point and automatically controls it. , We invented earlier (Japanese Patent Publication No. 62-467)
68, Japanese Patent Publication No. 62-46769, etc.). In addition to the manual mode and the sequencer mode (the operator starts the kick for uniform automatic start by the sequencer), these inventions determine the optimum start point of the soot blower from the degree of fouling on the heat transfer surface and the boiler state, and operate completely automatically. The present invention relates to a soot blower automatic control device having (intelligent mode). In the above invention, the unit for calculating the degree of contamination of the heat transfer surface is generally the furnace and each bank surface. That is, the fouling degree is calculated as one unit in the entire furnace, and the activation of the sootblower in the furnace is cyclically selected in order.

【0004】[0004]

【発明が解決しようとする課題】最もスートブロワが重
要となる石炭焚ボイラの例で説明すると、火炉内の伝熱
面の汚れは石炭灰がプラスチック領域(固体状でも液体
状でも無い)にある温度帯の場所で多く発生する。火炉
内の伝熱面の汚れの目安として灰の初期変化温度と流動
点(温度)があるが、それは炭種により大きく異なる。
また、炭種により火炉内での汚れる部位はそれぞれ異な
る。その理由は、炭種によってプラスチック領域にある
温度が異なり、火炉内の温度分布も均一でないことか
ら、炭種によって火炉内での汚れ発生の場所が異なると
いうことである。さらに、火炉内の温度分布は燃料ゾー
ンから火炉止まりまで1000〜1500℃程度の温度
範囲で分布している。
Explaining with an example of a coal-fired boiler in which soot blower is most important, dirt on the heat transfer surface in the furnace is the temperature at which coal ash is in the plastic region (not solid or liquid). It often occurs in places of obi. The initial change temperature of ash and the pour point (temperature) are a measure of contamination on the heat transfer surface in the furnace, but they vary greatly depending on the type of coal.
Also, the soiled parts in the furnace differ depending on the type of coal. The reason is that the temperature in the plastic region varies depending on the type of coal, and the temperature distribution in the furnace is not uniform, so the location of fouling in the furnace varies depending on the type of coal. Furthermore, the temperature distribution in the furnace is distributed in the temperature range of about 1000 to 1500 ° C. from the fuel zone to the end of the furnace.

【0005】ところが、上記本出願人のAIスートブロ
ワ制御装置の発明は、以上の点については配慮がされて
おらず、火炉は全体で一つの汚れ度の計算がされるのみ
で、火炉内の複数のスートブロワは順次サイクリックに
起動されるだけで、火炉の伝熱面の汚れ度が最も著しい
箇所にスートブロワ起動をすることができない問題点が
あった。また、前記本出願人の発明では、火炉の伝熱面
の汚れ度は、火炉有効面積が計算値と同一(すなわち汚
れていない)であれば1.0、汚れてくれば有効面積が
小さくなるので、1.1、1.2と大きな値となる。そ
こで火炉内の伝熱面の汚れ度があるしきい値(例えば
1.2)を超えた場合に火炉内のスートブロワを起動
(噴射)する。この起動により伝熱面の汚れが除去され
るならば、汚れ度は低下するので、火炉内の複数のスー
トブロワはすべて停止する。このため、前記炭種によっ
て火炉内での汚れ発生の場所が異なるということに対す
る配慮がなかった。本発明の目的は、火炉内の真に汚れ
た場所のスートブロワを起動し、汚れを効果的に除去す
るボイラ火炉のスートブロワ制御装置と方法を提供する
ことにある。
However, the above-mentioned invention of the AI sootblower control device of the present applicant does not consider the above points, and only one fouling degree is calculated for the entire furnace. There was a problem that the sootblower could only be activated cyclically in sequence, and the sootblower could not be activated at a location where the heat transfer surface of the furnace had the highest degree of contamination. Further, in the invention of the present applicant, the degree of fouling of the heat transfer surface of the furnace is 1.0 if the effective area of the furnace is the same as the calculated value (that is, not dirty), and the smaller the effective area is if it becomes dirty. Therefore, the values are large, 1.1 and 1.2. Therefore, when the degree of contamination of the heat transfer surface in the furnace exceeds a certain threshold value (for example, 1.2), the soot blower in the furnace is activated (injected). If the dirt on the heat transfer surface is removed by this start-up, the dirt level will be reduced, so all of the soot blowers in the furnace will be stopped. For this reason, no consideration was given to the fact that the location of contamination in the furnace differs depending on the type of coal. SUMMARY OF THE INVENTION It is an object of the present invention to provide a soot blower control device and method for a boiler furnace that activates the soot blower in a truly dirty place in the furnace and effectively removes the dirt.

【0006】[0006]

【課題を解決するための手段】本発明の上記目的は、次
の構成によって達成される。すなわち、火炉およびバン
ク部の各伝熱面にそれぞれ対応した複数のスートブロワ
を備えたボイラにおいて、火炉内部の伝熱面を複数箇所
に分割して、それぞれの分割伝熱面の汚れ度を評価し、
当該伝熱面の汚れが許容限界を超えると各分割火炉伝熱
面に対応するスートブロワを運転する分割火炉モデルに
よるスートブロワ制御方法、または、プロセスデータを
入力する入力部と、入力部に入力されたプロセスデータ
に基づき、火炉一体モデルによる汚れ度演算を行う一体
化汚れ度演算部と、火炉分割モデルによる汚れ度演算を
行う分割型汚れ度演算部と、各火炉分割セクション毎の
汚れ度から個別に起動すべき各分割火炉伝熱面に対応し
たスートブロワを判定する起動判定部と、外部装置にス
ートブロワ起動キックを行う出力部とを備えた分割火炉
モデルによるスートブロワ制御装置である。
The above object of the present invention can be achieved by the following constitutions. That is, in a boiler equipped with a plurality of soot blowers corresponding to the heat transfer surfaces of the furnace and bank, the heat transfer surface inside the furnace is divided into multiple parts, and the degree of contamination of each divided heat transfer surface is evaluated. ,
When dirt on the heat transfer surface exceeds the allowable limit, the soot blower control method by the split furnace model that operates the soot blower corresponding to each split furnace heat transfer surface, or the input section for inputting process data and the input section Based on the process data, the integrated fouling degree calculation unit that calculates the fouling degree by the furnace integrated model, the division type fouling degree calculation unit that calculates the fouling degree by the furnace division model, and the fouling degree for each furnace division section individually A soot blower control device according to a split furnace model including a start determination unit that determines a soot blower corresponding to each divided furnace heat transfer surface to be started, and an output unit that performs a soot blower start kick to an external device.

【0007】[0007]

【作用】本発明による各分割火炉毎の汚れ度は以下のよ
うに計算する。 1、各セクション毎の火炉熱吸収量Qwwi(n)の算
出 火炉を分布モデル化つまり火炉内を各段バーナ部、ポー
ト部などに分割し、セクション毎に輻射伝熱計算を行
い、出口ガス温度Tgi(n)および火炉熱吸収量Qw
wi(n)を算出する。(nはセクションのサフィック
ス) 分割火炉モデルの基本演算式を(1)式に示す。本モデ
ルでは、分割セクション毎に燃料発熱量Q1と空気、再
循環ガスなどが火炉へ持ち込む入熱量Q2との和が、伝
熱面(水壁)への伝熱量Q3とセクションからの出熱量
4との和に等しいという熱バランス式を解くことによ
りセクション出口ガス温度TGとセクション伝熱量Q4
とを算出する。 Q1(発熱量)+Q2(入熱量)=Q3(伝熱量)+Q4(出熱量) (1)
The fouling degree of each divided furnace according to the present invention is calculated as follows. 1. Calculation of furnace heat absorption Qwi (n) for each section The furnace is modeled as a distribution, that is, the inside of the furnace is divided into burner sections, port sections, etc., and radiant heat transfer is calculated for each section, and the outlet gas temperature is calculated. Tgi (n) and furnace heat absorption Qw
Calculate wi (n). (N is a section suffix) The basic arithmetic expression of the split furnace model is shown in Expression (1). In this model, the sum of the fuel calorific value Q 1 and the heat input Q 2 that air, recirculation gas, etc. bring into the furnace for each divided section is the heat transfer amount Q 3 to the heat transfer surface (water wall) and By solving the heat balance equation that is equal to the sum of the heat output amount Q 4 , the section outlet gas temperature TG and the section heat transfer amount Q 4
And calculate. Q 1 (heat generation amount) + Q 2 (heat input amount) = Q 3 (heat transfer amount) + Q 4 (heat output amount) (1)

【0008】また各熱量の演算式を(2)〜(5)式に
示すが、入熱量Q2の計算式における出熱量Q4(n−
1)は下部セクションから持ち込まれる熱量を示す。 Q1=GFUEL*HU*F1*SRBNR (2) Q2=GAIR*CP1*TAIR+GFUEL*CP2*TFUEL+GGR *CP3*TGR+Q4(n−1) (3) Q3=A*F*FCG*σ*((TG/100)4−(TM/100)4)+ A*α*(TG−TM) (4) Q4=(GGAS+GRAIR+GRFUEL+GGR)*CP4*TG (5) (GFUEL:燃料流量 GAIR:空気流量 GG
R:再循環ガス流量 GGAS:燃焼ガス流量 GRAIR:余剰空気流量 GRFUEL:余剰燃料流量 TFUEL:燃料温度 TAIR:空気温度 TGR:再循環ガス温度 TG:
セクションガス温度 TM:メタル温度 HU:発熱量 SRBNR:バーナ
空気比 CP:比熱 A:伝熱面積 σ:ステファン・ポルツマ
ン定義 α:接触熱伝達率 F1:燃焼率係数 F:輻射係数
FCG:放射率) ここで伝熱量Q3がセクションnでの火炉への熱吸収量
Qwwi(n)に相当する。
Further out heat Q 4 in each heat of the arithmetic expression (2) to (5) shown in the expression of the heat input Q 2 formula (n-
1) shows the amount of heat carried in from the lower section. Q 1 = GFUEL * HU * F1 * SRBNR (2) Q 2 = GAIR * CP 1 * TAIR + GFUEL * CP 2 * TFUEL + GGR * CP 3 * TGR + Q 4 (n-1) (3) Q 3 = A * F * FCG * σ * ((TG / 100) 4 − (TM / 100) 4 ) + A * α * (TG-TM) (4) Q 4 = (GGAS + GRAIR + GRFUEL + GGR) * CP 4 * TG (5) (GFUEL: Fuel flow rate GAIR : Air flow rate GG
R: Recirculation gas flow rate GGAS: Combustion gas flow rate GRAIR: Excess air flow rate GRFUEL: Excess fuel flow rate TFUEL: Fuel temperature TAIR: Air temperature TGR: Recirculation gas temperature TG:
Section gas temperature TM: Metal temperature HU: Calorific value SRBNR: Burner air ratio CP: Specific heat A: Heat transfer area σ: Stefan-Poltsman definition α: Contact heat transfer coefficient F1: Burning coefficient F: Radiation coefficient
FCG: emissivity) Here, the heat transfer amount Q 3 corresponds to the heat absorption amount Qw i (n) to the furnace in the section n.

【0009】2、火炉内の各セクション毎の火炉汚れ度
df(n)の算出 各セクションの火炉汚れ度df(n)を以下のように定
義する。 セクションnの現状有効火炉面積(n) =現状有効火炉面積×(Qwwi(n)/ΣQwwi(n)) (6) ここで現状有効火炉面積は、前記従来技術で用いられて
いる火炉全体の有効火炉面積であり、後述する方法で算
出する。 セクションnの火炉汚れ度df(n) =セクションnの設計有効火炉面積(n) /セクションnの現状有効火炉面積(n) (7) ここでセクションnの設計有効火炉面積(n)は予め決
定された設計数値である。こうして、火炉を一体とした
汚れ度計算を行うのではなく、火炉を縦方向に分割して
伝熱計算を実施し、分割面毎に汚れ度計算を実施し、石
炭灰などの付着部位(セクション)を確実に検出し、そ
の部位に対応したスートブロワのみを起動させ、汚れを
除去する。
2. Calculation of the degree of furnace fouling df (n) for each section in the furnace The degree of furnace fouling df (n) of each section is defined as follows. Current effective furnace area of section n (n) = Current effective furnace area x (Qwwi (n) / ΣQwi (n)) (6) Here, the current effective furnace area is the total effective furnace area used in the above-mentioned conventional technique. It is the area of the furnace and is calculated by the method described below. Furnace fouling degree in section n df (n) = design effective furnace area in section n (n) / current effective furnace area in section n (n) (7) Here, the design effective furnace area in section n (n) is determined in advance. It is the designed numerical value. In this way, instead of performing the fouling degree calculation with the furnace integrated, the furnace is divided in the vertical direction to perform the heat transfer calculation, the fouling degree calculation is performed for each divided surface, and the adhesion site (section ) Is surely detected, only the sootblower corresponding to the part is activated, and the dirt is removed.

【0010】[0010]

【実施例】本発明の一実施例を図面とともに説明する。
図1には本実施例のスートブロワ制御装置のブロック図
を示し、図2にはボイラの火炉のセクションの分割例を
示す。図2において、燃焼ガスの流れ方向にそって、火
炉内のバーナ部を複数のセクションに分割し、さらに、
ポート部から過熱器にかけて複数のセクションを設け
る。そして、図1のスートブロワ制御装置は、プロセス
量は入力部1に入力され、火炉一体モデルによる汚れ度
演算を行う一体型汚れ度演算部2と図2に示す火炉分割
モデルによる汚れ度演算を行う分割型汚れ度演算部3と
各セクション毎の汚れ度から個別に起動するスートブロ
ワを判定する起動判定部4と外部装置にスートブロワ起
動キックを行う出力部5を備えている。また、個別スー
トブロワの起動はスートブロワの起動上のインタロック
条件を有するスートブロワ駆動制御装置6を介し、スー
トブロワコンダクタ盤7にて電気的起動がかかるように
構成される。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a block diagram of a soot blower control device of this embodiment, and FIG. 2 shows an example of division of a section of a furnace of a boiler. In FIG. 2, the burner section in the furnace is divided into a plurality of sections along the flow direction of the combustion gas.
Provide multiple sections from the port to the superheater. In the sootblower controller of FIG. 1, the process amount is input to the input unit 1, and the fouling degree calculation is performed by the integrated fouling degree computing unit 2 that performs the fouling degree computation by the furnace integrated model and the furnace split model shown in FIG. It is provided with a division type dirtiness degree calculation section 3, an activation determination section 4 for individually determining a sootblower to be activated from the dirtiness degree for each section, and an output section 5 for performing a sootblower activation kick to an external device. Further, the activation of the individual sootblower is configured to be electrically activated by the sootblower conductor panel 7 via the sootblower drive control device 6 having an interlock condition on the activation of the sootblower.

【0011】入力部1ではプロセスデータのインタフェ
ースおよび平均化、異常判定などが実施され、一体型汚
れ度演算部2と分割型汚れ度演算部3に送られる。一体
型汚れ度演算部2では従来手法による火炉全体の現状有
効火炉面積を演算し、分割型汚れ度演算部3に送る。火
炉一体モデルによる汚れ度演算を行う一体型汚れ度演算
部2での汚れ度の演算は図3に示すフローに従い、次の
式に従って行われる。 火炉汚れ度df=設計有効火炉面積/現状有効火炉面積 (8)
In the input unit 1, interface of process data, averaging, abnormality determination, etc. are carried out, and the result is sent to the integrated stain degree calculation unit 2 and the split stain degree calculation unit 3. The integrated fouling degree calculation unit 2 calculates the current effective furnace area of the entire furnace by the conventional method and sends it to the divided fouling degree calculation unit 3. The fouling degree calculation in the fouling degree fouling calculation unit 2 which performs fouling degree calculation by the furnace integrated model is performed according to the following equation according to the flow shown in FIG. Furnace fouling degree df = Design effective furnace area / Current effective furnace area (8)

【0012】ここで、設計有効火炉面積は設定値である
ので、現状有効火炉面積が求められれば、火炉汚れ度d
fが求められる。火炉全体の現状有効火炉面積の求め方
は次のようにして行う。図2に示す火炉出口ガス温度
(FEGT)を図3に示すフローから求め、この値から
図4に示すように、予め求められている火炉出口ガス温
度(FEGT)と火炉に対する有効熱量/現状有効火炉
面積(HA/SC)の関係を示すグラフからHA/SC
を求める。そして、火炉に対する有効熱量は燃料の種類
等により計算により求められるので、火炉全体の現状有
効火炉面積が決定する。
Since the design effective furnace area is a set value, if the current effective furnace area is obtained, the degree of furnace contamination d
f is required. The current effective furnace area for the entire furnace is determined as follows. The furnace outlet gas temperature (FEGT) shown in FIG. 2 is obtained from the flow shown in FIG. 3, and as shown in FIG. 4 from this value, the furnace outlet gas temperature (FEGT) and the effective heat quantity / currently effective state for the furnace are obtained. From the graph showing the relationship between furnace area (HA / SC), HA / SC
Ask for. Since the effective heat quantity for the furnace is calculated by the type of fuel, etc., the current effective furnace area of the entire furnace is determined.

【0013】火炉出口ガス温度(FEGT)は図3に示
すフローに従い、次のようにして求めておく。各バンク
(コイル)部の吸熱量は図5に示す水系のエネルギーバ
ランス式(9)により求める。 Q=F×(Ho−Hi) (9) ここで、Qは水系の吸熱量(kcal/s)、Hoは水
系出口のエンタルピ(kcal/kg)、Hiは水系入
口のエンタルピ(kcal/kg)、Fは流量(kg/
s)である。ガス側各部の温度の算出は図6に示すエネ
ルギーバランスにより算出する。 tgi=tgo+Q/Cpg・Wg (10) ここでQは(9)式から求められる水系の吸熱量、tg
iは節炭器入口ガス温度、tgoは節炭器出口ガス温度、
Cpgはガス比熱(ガス温度より算出)(kcal/k
g℃)、Wgは計算より求められるガス量(kg/s)
である。したがって、節炭器出口ガス温度tgoが判明
していれば、(10)式より節炭器入口ガス温度tgi
を得ることができる。このようにして、ガス上流側の伝
熱面について同様の計算をすることで、最終的に火炉出
口ガス温度(FEGT)を求めることができる。
The furnace outlet gas temperature (FEGT) is determined as follows according to the flow shown in FIG. The amount of heat absorbed by each bank (coil) portion is determined by the water system energy balance equation (9) shown in FIG. Q = F × (H o -H i) (9) where, Q is heat absorption amount of the aqueous (kcal / s), H o enthalpy (kcal / kg) of aqueous outlet, H i the aqueous inlet enthalpy ( kcal / kg), F is the flow rate (kg /
s). The temperature of each part on the gas side is calculated by the energy balance shown in FIG. tg i = tg o + Q / Cpg · Wg (10) where Q is the amount of heat absorbed water obtained from equation (9), tg
i is the economizer inlet gas temperature, tg o the economizer outlet gas temperature,
Cpg is gas specific heat (calculated from gas temperature) (kcal / k
g ° C), Wg is the gas amount (kg / s) obtained by calculation
Is. Therefore, if found to economizer outlet gas temperature tg o, (10) economizer from the equation inlet gas temperature tg i
Can be obtained. In this way, by performing the same calculation for the heat transfer surface on the gas upstream side, the furnace outlet gas temperature (FEGT) can be finally obtained.

【0014】次に、過熱管等の配置されている各バンク
(コイル)部の伝熱面の汚れ度の算出方法を述べる。現
状熱貫流率Kは次式(11)から求められる。 Q=K・A・△t (11) ここでQは(9)式から求められる水系の吸熱量、Aは
設計値である伝熱面積、△tは次式(12)から求めら
れる対数平均温度差である。 △t={(tgi−tso)−(tgo−tsi)} /{ln(tgi−tso)/(tgo−tsi)} (12) 基準熱貫流率K0は次式(13)から求められる。 K0={(Ucg+Urg)×Ucs}/(Ucg+Urg+Ucs)(13) ここで、Ucgはガス側対流熱伝達率(ガス量とガス温
度より算出する)、Urgはガス側輻射熱伝達率(ガス
温度より算出する)、Ucsは水蒸気側対流熱伝達率
(蒸気温度、蒸気流量より算出する)である。こうし
て、バンク(コイル)部の各伝熱面の汚れ度dfは df=K0/K (14) で算出される。
Next, a method of calculating the degree of contamination of the heat transfer surface of each bank (coil) portion in which the superheated tubes and the like are arranged will be described. The current heat transmission coefficient K is obtained from the following equation (11). Q = K · A · Δt (11) where Q is the amount of heat absorption of the water system obtained from equation (9), A is the heat transfer area that is the design value, and Δt is the logarithmic average obtained from equation (12) below. It is the temperature difference. △ t = {(tg i -ts o) - (tg o -ts i)} / {ln (tg i -ts o) / (tg o -ts i)} (12) the reference heat transfer coefficient K 0 is the following It is obtained from the equation (13). K 0 = {(Ucg + Urg) × Ucs} / (Ucg + Urg + Ucs) (13) where Ucg is the gas-side convection heat transfer coefficient (calculated from the gas amount and gas temperature), and Urg is the gas-side radiant heat transfer coefficient (from the gas temperature). Ucs is a steam-side convection heat transfer coefficient (calculated from steam temperature and steam flow rate). Thus, the contamination degree df of each heat transfer surface of the bank (coil) portion is calculated by df = K 0 / K (14).

【0015】次に、図1の分割型汚れ演算部3では各セ
クション毎の汚れ度演算を前記式(6)(7)により行
い、起動判定部4に送られる。起動判定部4では、各セ
クションの汚れ度と予め設定されているしきい値の比較
を行い、同一セクション内での順番に従い、どのスート
ブロワを起動すべきかを選択し、出力部5に送る。出力
部5は起動すべきスートブロワの起動キックをスートブ
ロワ駆動制御装置6に指令する。なお、過熱管等の配置
されているバンク(コイル)部は従来技術で開示した汚
れ度計算方法により行う。
Next, in the division type dirt calculator 3 of FIG. 1, the dirt degree calculation for each section is carried out by the above equations (6) and (7), and the result is sent to the start judging section 4. The activation determination unit 4 compares the dirt level of each section with a preset threshold value, selects which soot blower should be activated according to the order in the same section, and sends it to the output unit 5. The output unit 5 commands the sootblower drive control device 6 to start the sootblower to be started. In addition, the bank (coil) portion in which the superheated tubes and the like are arranged is performed by the contamination degree calculation method disclosed in the related art.

【0016】こうして、火炉伝熱面の石炭灰などの付着
部位(セクション)を確実に検出し、石炭灰などの付着
による汚れを除去できるのでボイラ効率の低下を防止で
きるばかりでなく、スートブロワをむやみに起動させる
必要がなくなり、スートブロワ起動頻度が多いことによ
るエロージョンの発生、機器の損傷を防止し、さらにス
ートブロワに使用する蒸気量の大幅な低減を図ることが
できる。さらに従来技術では灰の付着場所によりボイラ
の静特性のズレを生じ、そのことによって制御装置の制
御裕度がなくなり(例えばダンパ全開でも制御値に入ら
ないなど)、そのため使用できない燃料、石炭があっ
た。しかし、本実施例によれば、あらゆる燃料、石炭に
対しても対応可能となる。また同時に静特性の適正化に
より、動特性も向上し、負荷変化率の向上に大いに寄与
できる。
[0016] In this way, the area (section) where the coal ash or the like adheres to the heat transfer surface of the furnace can be reliably detected, and the dirt due to the adhesion of the coal ash or the like can be removed. Therefore, it is possible to prevent the occurrence of erosion due to the frequent activation of the sootblower and the damage to the equipment, and it is possible to significantly reduce the amount of steam used for the sootblower. Further, in the conventional technology, the static characteristics of the boiler are deviated depending on the ash adhesion location, which reduces the control margin of the control device (for example, the damper does not reach the control value even when the damper is fully opened). It was However, according to this embodiment, it is possible to deal with any fuel and coal. At the same time, by optimizing the static characteristics, the dynamic characteristics are also improved, which can greatly contribute to the improvement of the load change rate.

【0017】[0017]

【発明の効果】本発明によれば火炉の汚れ部位を確実に
検出し、汚れを除去できるのでボイラ効率の低下を防止
できるばかりでなく、スートブロワ起動頻度大によるエ
ロージョンの発生、機器の損傷を防止し、さらにスート
ブロワに使用する蒸気量の大幅な低減を図ることができ
る。さらに本発明によれば、静特性の適正化により、あ
らゆる燃料、石炭に対しても対応可能となり、同時に動
特性も向上し、負荷変化率の向上に大いに寄与できる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to reliably detect the dirt part of the furnace and remove the dirt, so that it is possible to prevent not only the decrease in boiler efficiency but also the occurrence of erosion and the damage to the equipment due to the frequent activation of the sootblower. In addition, the amount of steam used in the soot blower can be significantly reduced. Further, according to the present invention, by optimizing the static characteristics, it becomes possible to deal with all kinds of fuel and coal, and at the same time, the dynamic characteristics are improved, which can greatly contribute to the improvement of the load change rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例のスートブロワ制御装置の
ブロック図である。
FIG. 1 is a block diagram of a sootblower control device according to an embodiment of the present invention.

【図2】 本発明の一実施例のボイラの火炉のセクショ
ンの分割例を示す図である。
FIG. 2 is a diagram showing an example of division of sections of a furnace of a boiler according to an embodiment of the present invention.

【図3】 本発明の一実施例のボイラの火炉一体モデル
による汚れ度演算を行う一体型汚れ度演算部での汚れ度
の演算を行うフローを示す図である。
FIG. 3 is a diagram showing a flow of calculating a degree of fouling in an integrated fouling degree calculation unit that performs a degree of fouling calculation by a furnace integrated model of a boiler according to an embodiment of the present invention.

【図4】 本発明の一実施例のボイラの予め求められて
いる火炉出口ガス温度(FEGT)と火炉に対する有効
熱量/現状有効火炉面積(HA/SC)の関係を示す図
である。
FIG. 4 is a diagram showing a relationship between a furnace outlet gas temperature (FEGT) and a effective heat quantity / current effective furnace area (HA / SC) for the furnace, which is obtained in advance for the boiler according to the embodiment of the present invention.

【図5】 本発明の一実施例のボイラのバンク部の吸熱
量の計算をするための水系のエネルギーバランスを説明
する図である。
FIG. 5 is a diagram illustrating an energy balance of a water system for calculating a heat absorption amount of a bank portion of a boiler according to an embodiment of the present invention.

【図6】 本発明の一実施例のボイラのガス側各部の温
度の算出をするためのエネルギーバランスを説明する図
である。
FIG. 6 is a diagram illustrating an energy balance for calculating the temperature of each part on the gas side of the boiler according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…入力部、2…一体型汚れ度演算部、3…分割型汚れ
度演算部、4…起動判定部、5…出力部、6…スートブ
ロワ駆動制御装置、7…スートブロワコンダクタ盤
DESCRIPTION OF SYMBOLS 1 ... Input part, 2 ... Integrated dirt degree calculation part, 3 ... Divided type dirt degree calculation part, 4 ... Activation determination part, 5 ... Output part, 6 ... Soot blower drive control device, 7 ... Soot blower conductor board

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 火炉およびバンク部の各伝熱面にそれぞ
れ対応した複数のスートブロワを備えたボイラにおい
て、 火炉内部の伝熱面を複数箇所に分割して、それぞれの分
割伝熱面の汚れ度を評価し、当該伝熱面の汚れが許容限
界を超えると各分割火炉伝熱面に対応するスートブロワ
を運転することを特徴とする分割火炉モデルによるスー
トブロワ制御方法。
1. A boiler having a plurality of soot blowers respectively corresponding to the heat transfer surfaces of the furnace and the bank part, wherein the heat transfer surface inside the furnace is divided into a plurality of parts, and the degree of contamination of each divided heat transfer surface. And a soot blower corresponding to each split furnace heat transfer surface is operated when the contamination of the heat transfer surface exceeds an allowable limit.
【請求項2】 プロセスデータを入力する入力部と、入
力部に入力されたプロセスデータに基づき、火炉一体モ
デルによる汚れ度演算を行う一体化汚れ度演算部と、火
炉分割モデルによる汚れ度演算を行う分割型汚れ度演算
部と、各火炉分割セクション毎の汚れ度から個別に起動
すべき各分割火炉伝熱面に対応したスートブロワを判定
する起動判定部と、外部装置にスートブロワ起動キック
を行う出力部とを備えたことを特徴とする分割火炉モデ
ルによるスートブロワ制御装置。
2. An input section for inputting process data, an integrated fouling degree calculation section for calculating a fouling degree by a furnace integrated model based on the process data input to the input section, and a fouling degree calculation by a furnace divided model. The division type fouling degree calculation part to perform, the start determination part to judge the soot blower corresponding to each divided furnace heat transfer surface to be started individually from the fouling degree of each furnace division section, and the output to perform the soot blower start kick to the external device A soot-blower control device based on a split-furnace model, characterized in that
JP21619494A 1994-09-09 1994-09-09 Method and device for controlling soot blower by divided furnace model Pending JPH0875137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21619494A JPH0875137A (en) 1994-09-09 1994-09-09 Method and device for controlling soot blower by divided furnace model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21619494A JPH0875137A (en) 1994-09-09 1994-09-09 Method and device for controlling soot blower by divided furnace model

Publications (1)

Publication Number Publication Date
JPH0875137A true JPH0875137A (en) 1996-03-19

Family

ID=16684757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21619494A Pending JPH0875137A (en) 1994-09-09 1994-09-09 Method and device for controlling soot blower by divided furnace model

Country Status (1)

Country Link
JP (1) JPH0875137A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021540A1 (en) * 1996-11-15 1998-05-22 Abb Air Preheater, Inc. On-line regenerative air preheater fouling sensing system
US6758168B2 (en) 2000-11-30 2004-07-06 Metso Automation Oy Method and apparatus for sootblowing recovery boiler
JP2008014590A (en) * 2006-07-07 2008-01-24 Babcock Hitachi Kk Boiler device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021540A1 (en) * 1996-11-15 1998-05-22 Abb Air Preheater, Inc. On-line regenerative air preheater fouling sensing system
US6758168B2 (en) 2000-11-30 2004-07-06 Metso Automation Oy Method and apparatus for sootblowing recovery boiler
JP2008014590A (en) * 2006-07-07 2008-01-24 Babcock Hitachi Kk Boiler device

Similar Documents

Publication Publication Date Title
US5181482A (en) Sootblowing advisor and automation system
CA2548211C (en) Method and apparatus for controlling soot blowing using statistical process control
KR890000451B1 (en) Enhanced sootblowing system
US4996951A (en) Method for soot blowing automation/optimization in boiler operation
US4718376A (en) Boiler sootblowing control system
JPH034808B2 (en)
JP5142508B2 (en) Operation method of soot blower device
JPH0246845B2 (en)
JPH0875137A (en) Method and device for controlling soot blower by divided furnace model
US3274979A (en) Soot blower operation for vapor generator furnaces
US6928937B2 (en) Sootblowing control based on boiler thermal efficiency optimization
JP3809981B2 (en) Intelligent soot blower controller for coal fired boiler facilities
JPH0248807B2 (en) SUUTOBUROWANOSEIGYOHOHO
EP0101226B1 (en) Sootblowing optimization
JP3018039B2 (en) Soot blower activation control method and device
JPH0258528B2 (en)
Bujalski et al. The algorithm of steam soot blowers operation based on the monitoring of fouling factors of heating surfaces of a coal-fired boiler under operating conditions
JP3615776B2 (en) Control method and control device for boiler suit blower and deslagger
JPH0510564B2 (en)
JP4200862B2 (en) Boiler firewood cleaning device
JP2625439B2 (en) Sootblower control device
KR0157001B1 (en) Method of preventing biling noise of heat exchanger of a gas boiler
JPH06347017A (en) Automatic soot blower controller
JP2023069628A (en) Heat transfer surface cleaning system
JPH01266416A (en) Control method for operation of soot blowers in boiler

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050315

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050516

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A02 Decision of refusal

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A02