JPH0875109A - Control method of furnace temperature distribution combustion - Google Patents

Control method of furnace temperature distribution combustion

Info

Publication number
JPH0875109A
JPH0875109A JP6207690A JP20769094A JPH0875109A JP H0875109 A JPH0875109 A JP H0875109A JP 6207690 A JP6207690 A JP 6207690A JP 20769094 A JP20769094 A JP 20769094A JP H0875109 A JPH0875109 A JP H0875109A
Authority
JP
Japan
Prior art keywords
fuel
air
combustion
furnace
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6207690A
Other languages
Japanese (ja)
Inventor
Sho Yasuoka
省 安岡
Mikio Matsumoto
幹雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6207690A priority Critical patent/JPH0875109A/en
Publication of JPH0875109A publication Critical patent/JPH0875109A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE: To provide a uniform furnace temperature distribution combustion control method with use of low-cost stable flame. CONSTITUTION: A pair of regenerative air spray part 2 are mounted on a furnace body, and a fuel spray part 4 is mounted for spraying a fuel at an angle with respect to a center axis of each regenerative air spray part 2 whereby the fuel and preheated air are mixed and combusted. The regenerative air spray parts 2 are alternately switched and operated such that when one of them sprays air, stored heat is exhausted from the other thereof. Thereupon, the fuel spray part 4 selectively sprays the fuel from part or the whole or varying a spray angle in response to a furnace temperature region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炉内温度分布燃焼制御方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace temperature distribution combustion control method.

【0002】[0002]

【従来の技術】通常、加熱炉では加熱に必要な燃焼量を
計算し、その容量を持ったバーナを設置することになる
が、炉体構造をシンプルかつ低コストに抑えるため、で
きるだけ大容量のバーナを選定し、数を減らす努力をす
る。また同じ趣旨から燃焼装置を片側に集中させ省スペ
ースを図ることも多い。
2. Description of the Related Art Normally, in a heating furnace, the amount of combustion required for heating is calculated and a burner with that capacity is installed, but in order to keep the furnace structure simple and low cost Select burners and make efforts to reduce the number. In addition, for the same purpose, the combustion device is often concentrated on one side to save space.

【0003】[0003]

【発明が解決しようとする課題】前記従来装置では、処
理材が移動しないバッチ型の加熱炉の場合、加熱炉内の
水平方向(火炎の推進方向)の温度分布が悪化すること
が多い。特に加熱処理の最終段階である均熱時にこれが
発生すると致命傷になる。これを回避するために従来の
加熱炉では処理材の均質な処理を目的として、炉内の温
度分布を狭い範囲の中に収める努力をしてきたが、その
代表的な方法としてマルチバーナ方式がある。この方法
は、天井から下向きもしくは炉体の両側面に多本数の小
容量バーナを配置し、炉内の複数の温度センサーからの
信号を演算しながらその各小容量バーナの点火・消化を
制御する方式である。輻射加熱の要素の高い高温炉にも
適し、水平方向のX,Y両軸共に温度制御がしやすい。
各小容量バーナの制御ルールはいくつかの方法がある
(例えば温度の低い部分だけ点火する。炉の特性から点
火する順序や時間が決まっているなど)が、どの場合も
温度分布を良好にするために、沢山のバーナを必要と
し、バーナ本体のみならず、配管・配線・それに伴う制
御装置や部品など工事を含めそれに掛かる費用は膨大と
なる。このように、加熱炉の水平方向の温度分布を良好
に制御するには、多本数のバーナを回りに並べ、ゾーン
を分けてコントロールすれば良いが、複雑極まりなく、
コストも掛かる。また廃熱回収の手段として熱交換器を
設け予熱空気として熱を回収しようとする場合は、特に
バーナ回りが複雑かつ高価になり、マルチバーナ方式を
採用するのは極めて困難となる。
In the conventional apparatus described above, in the case of a batch type heating furnace in which the treatment material does not move, the temperature distribution in the horizontal direction (flame propelling direction) in the heating furnace often deteriorates. In particular, if this occurs during soaking, which is the final stage of heat treatment, it is fatal. In order to avoid this, in the conventional heating furnace, efforts have been made to keep the temperature distribution in the furnace within a narrow range for the purpose of homogeneous treatment of the treated material, and a typical method is the multi-burner method. . In this method, a large number of small-capacity burners are placed downward from the ceiling or on both sides of the furnace body, and the ignition / extinction of each small-capacity burner is controlled by calculating the signals from multiple temperature sensors in the furnace. It is a method. It is also suitable for high-temperature furnaces with high radiant heating factors, and temperature control is easy for both horizontal X and Y axes.
There are several control rules for each small-capacity burner (for example, ignition is performed only in the low temperature part. The order and time of ignition are determined based on the characteristics of the furnace), but in any case, the temperature distribution is improved. Therefore, a large number of burners are required, and not only the burner body but also the costs for piping, wiring, and the control device and parts associated therewith are enormous. In this way, in order to control the temperature distribution in the horizontal direction of the heating furnace well, it is sufficient to arrange a large number of burners around and control the zones separately, but it is not complicated.
It also costs. Further, when a heat exchanger is provided as a means for recovering waste heat and heat is to be recovered as preheated air, the burner circumference is particularly complicated and expensive, and it is extremely difficult to adopt the multi-burner system.

【0004】[0004]

【課題を解決すべき手段】前記課題を解決するために、
本発明は、炉体に対をなすリジェネレイティブ空気噴出
部を装置し、その各リジェネレイティブ空気噴出部の中
心軸に対して角度を持たせて燃料を噴出する燃料噴出部
を装置し、その燃料噴出部から燃料を噴出させると共に
前記空気噴出部からは空気を噴出させて混合燃焼させ、
前記リジェネレイティブ空気噴出部は、一方が空気を噴
出している時は、他方から蓄熱排気するように、交互に
切換えて運転し、その際、燃料噴出部は、炉内温度域に
応じて選択的に噴出するようにして燃焼させることを特
徴とする炉内温度分布燃焼制御方法を提供するものであ
る。
[Means for Solving the Problems] In order to solve the above problems,
The present invention provides a pair of regenerative air jets to a furnace body, and installs a fuel jet that jets fuel at an angle to the central axis of each of the regenerative air jets, Fuel is jetted from the fuel jetting section and air is jetted from the air jetting section for mixed combustion.
The regenerative air jetting portion is alternately operated so that heat is discharged from the other when one is jetting air, and the fuel jetting portion is operated depending on the temperature range in the furnace. It is intended to provide a method for controlling combustion in a furnace temperature distribution, which is characterized in that combustion is performed by selectively ejecting the fuel.

【0005】また、本発明は、燃料噴出部の全部から分
割的に且つ同時に燃料を噴出して燃焼させることを特徴
とする炉内温度分布燃焼制御方法を提供するものであ
る。
Further, the present invention provides a furnace temperature distribution combustion control method characterized in that fuel is jetted from all of the fuel jetting portions in a divided manner and simultaneously to be burned.

【0006】また、本発明は、前記燃料噴出部に角度可
変機能を持たせて炉内温度域に応じて燃料を噴出して燃
焼させることを特徴とする炉内温度分布燃焼制御方法を
提供するものである。
Further, the present invention provides a furnace temperature distribution combustion control method, characterized in that the fuel jetting portion is provided with a variable angle function to jet and burn the fuel in accordance with the furnace temperature range. It is a thing.

【0007】[0007]

【作用】炉内温度域に応じて燃料を噴出し、又は燃料噴
出部の全部から燃料を噴出し、予熱空気と混合燃焼さ
せ、炉内温度分布の均一化を図かり、熱効率を向上さ
せ、窒素酸化物の発生を抑制する。
[Function] The fuel is jetted according to the temperature range in the furnace, or the fuel is jetted from all of the fuel jetting parts and mixed and burned with preheated air to make the temperature distribution in the furnace uniform and improve the thermal efficiency. Suppress generation of nitrogen oxides.

【0008】[0008]

【実施例】符号1は炉体を示す。2はこの炉体1に装置
した対をなすリジェネレイティブ空気噴出部である。こ
の対をなすリジェネレイティブ空気噴出部の各々は、蓄
熱材を内蔵し、一方から空気を噴出している時は、他方
から排気し、その排気の際蓄熱材3を予熱するものであ
る。この各空気噴出部2の中心軸に対して角度を持たせ
て燃料噴出部4を装置する。図中部分拡大図は、燃料噴
出部4が回動により角度可変とした状態を示すものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference numeral 1 indicates a furnace body. Reference numeral 2 is a pair of regenerative air jetting units installed in the furnace body 1. Each of the paired regenerative air ejecting units has a built-in heat storage material, and when air is ejected from one side, it is exhausted from the other side and preheats the heat storage material 3 during the exhaust. The fuel jetting unit 4 is installed at an angle with respect to the central axis of each air jetting unit 2. The partially enlarged view in the figure shows a state in which the angle of the fuel injection unit 4 is variable by rotation.

【0009】いま、一方のリジェネレイティブ空気噴出
部2から予熱空気を噴出している状態に於いて、燃料噴
出部4から燃料を噴出すると、燃料と空気は混合して燃
焼する。燃料の噴出は燃料噴出部4を炉内温度域に応じ
て複数の燃料噴出部から選択的に燃料を噴出する又は燃
料噴出部4の全部から分割的に燃料を噴出する。排気は
他方の空気噴出部2から行なわれるが、排気の際に蓄熱
材3を予熱する。空気噴出部2からの空気の噴出は例え
ば、数分から10数分毎に交互に切換え噴出する.
Now, when the preheated air is ejected from one of the regenerative air ejecting portions 2 and the fuel is ejected from the fuel ejecting portion 4, the fuel and the air are mixed and burned. The fuel is jetted by selectively jetting fuel from a plurality of fuel jetting portions in the fuel jetting portion 4 according to the temperature range in the furnace, or jetting fuel in a divided manner from all the fuel jetting portions 4. Exhaust is performed from the other air jetting unit 2, but the heat storage material 3 is preheated at the time of exhaust. Air is jetted from the air jetting unit 2 alternately and alternately, for example, every several minutes to several tens of minutes.

【0010】前記燃焼に際して、空気を噴出しているリ
ジェネレイティブ空気噴出部2側の燃料噴出部4のみか
ら、燃料を噴出するのではなく、炉内温度域を検出して
その温度状況に応じてY側の燃料噴出部4を含めて適宜
選択的に運転する。例えば、図中X側だけの燃料噴出部
4ではなく、Y側の燃料噴出部4も炉内温度状況に応じ
て選択的に噴出させて燃焼する。この燃焼によってX側
及びY側の炉内温度の均一化が確保できる。かかる燃焼
の結果は、ほぼ、図4に示すと同様の燃焼特性を得るこ
とができる。
At the time of the combustion, instead of jetting the fuel only from the fuel jetting portion 4 on the side of the regenerative air jetting portion 2 jetting air, the temperature range in the furnace is detected and the temperature condition is determined according to the temperature condition. The fuel injection section 4 on the Y side is selectively operated as appropriate. For example, not only the fuel injection portion 4 on the X side in the figure, but also the fuel injection portion 4 on the Y side is selectively ejected and burned according to the temperature inside the furnace. By this combustion, it is possible to ensure that the temperatures inside the furnace on the X side and the Y side are uniform. As a result of such combustion, almost the same combustion characteristics as shown in FIG. 4 can be obtained.

【0011】更に、例えば、全部の燃料噴出部4から同
時に分割的に燃料を噴出させて燃焼させてもよい。この
場合の燃焼特性は、図4に示す通りである。図4に示す
本発明の燃焼特性を、図1に示すリジェネレイティブバ
ーナを使用した従来装置の燃焼特性と比較して、炉内温
度分布が、被処理材5に対して、X側及びY側共に均一
化されていること及びNOxの発生が頗る低減化されて
いること等が明瞭に理解することができる。以上の燃焼
に際しては、総エネルギー量が、計算されているので、
その範囲内で燃料を噴出させるが、各燃料噴出部4から
の燃料の噴出量は炉内温度状況に応じて変化させること
ができる。
Further, for example, the fuel may be jetted in a divided manner at the same time from all the fuel jetting portions 4 and burned. The combustion characteristics in this case are as shown in FIG. The combustion characteristics of the present invention shown in FIG. 4 are compared with the combustion characteristics of the conventional apparatus using the regenerative burner shown in FIG. It can be clearly understood that both sides are made uniform and the generation of NOx is significantly reduced. In the above combustion, the total energy amount is calculated, so
The fuel is ejected within that range, but the amount of fuel ejected from each fuel ejection portion 4 can be changed according to the temperature inside the furnace.

【0012】燃料噴出部4は、噴出角度が定まった固定
式のものでもよいが、図に示すように角度可変式のもの
でもよい、角度可変式の場合、炉内の所望の位置に所望
の大きさの火炎を単数個又は複数個同時に又は交互に切
換えながら得ることができる。そして、燃焼形態の選択
の仕方によって、図4に示すような優れた燃焼特性を得
ることができる。
The fuel injection part 4 may be of a fixed type having a fixed injection angle, but may be of a variable angle type as shown in the figure. In the case of a variable angle type, a desired position in the furnace is desired. It is possible to obtain a single flame or a plurality of flames at the same time or by switching them alternately. Then, depending on how the combustion mode is selected, excellent combustion characteristics as shown in FIG. 4 can be obtained.

【0013】[0013]

【発明の効果】本発明は以上の通りであるので、次の諸
効果がある。通常、いわゆるリジェネレイティブバー
ナを使用する場合、装置の片側に設置する場合が多く、
この場合、火炎の推進方向の温度分布が悪いが本発明の
場合は、火炎の推進方向のみならず、炉内全域の温度分
布を均一化することができる。安定した火炎が自在に
作れるよう、使用する燃料の着火温度以上の加熱炉に適
するが、着火源が維持できれば基本的に高温から低温ま
での全ての温度範囲に利用することができる。燃焼装
置のコストの大部分を占める空気供給装置の数が半減す
るため、付属設備を含め設備費用の大幅な節約となる
(従来のマルチバーナ方式に対し有利)。片側にバー
ナを配列するタイプの炉は、スペースやコスト扱いの簡
便さといった面から利点もあり、実際に数が多く存在し
ているが、この炉の温度分布改善を行う場合に、大掛か
りな改造をせずに目的が達せられる。つまり同軸・マル
チ両タイプ共に、これまでのバーナを単に空気供給装置
として位置付け、小口径の燃料ノズルだけ付加すれば良
い。従来装置に比較してNOxの発生が非常に低い、
即ち,図1に比較して図4の高温ゾーンZNが非常に少
なく,サーマルNOxが発生しにくいことが実証されて
いる.
As described above, the present invention has the following effects. Usually, when using a so-called regenerative burner, it is often installed on one side of the device,
In this case, the temperature distribution in the flame propelling direction is poor, but in the case of the present invention, not only the flame propagating direction but also the temperature distribution in the entire furnace can be made uniform. It is suitable for heating furnaces with an ignition temperature higher than that of the fuel used so that a stable flame can be freely generated, but basically it can be used in all temperature ranges from high temperature to low temperature if the ignition source can be maintained. Since the number of air supply devices, which occupy most of the cost of the combustion device, is halved, there is a great saving in equipment cost including auxiliary equipment (advantageous to the conventional multi-burner system). There are many types of furnaces with burners arranged on one side, in terms of space and ease of handling the cost. Actually, there are many furnaces, but when improving the temperature distribution of this furnace, it is a major modification. The purpose is achieved without doing. In other words, for both the coaxial type and the multi type, it suffices to position the conventional burner simply as an air supply device and add only the small-diameter fuel nozzle. The generation of NOx is very low compared to conventional devices,
That is, it is proved that the high temperature zone ZN in FIG. 4 is much smaller than that in FIG. 1 and thermal NOx is hard to be generated.

【0014】[0014]

【図面の簡単な説明】[Brief description of drawings]

【図1】リジェネレイティブバーナを使用した従来装置
の燃焼特性図である。
FIG. 1 is a combustion characteristic diagram of a conventional device using a regenerative burner.

【図2】本発明装置の断面的説明図である。FIG. 2 is a cross-sectional explanatory view of the device of the present invention.

【図3】図2の逆転モードを示す断面的説明図である。FIG. 3 is a cross-sectional explanatory view showing a reverse rotation mode of FIG.

【図4】本発明の燃焼特性図である。FIG. 4 is a combustion characteristic diagram of the present invention.

【符号の説明】[Explanation of symbols]

1 炉体 2 対をなすリジェネレイティブ空気噴出部 3 蓄熱材 4 燃料噴出部 5 被処理材 1 Reactor body 2 Pair of regenerative air jetting part 3 Heat storage material 4 Fuel jetting part 5 Material to be treated

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炉体に対をなすリジェネレイティブ空気
噴出部を装置し、その各リジェネレイティブ空気噴出部
の中心軸に対して角度を持たせて燃料を噴出する燃料噴
出部を装置し、その燃料噴出部から燃料を噴出させると
共に前記空気噴出部からは空気を噴出させて混合燃焼さ
せ、前記リジェネレイティブ空気噴出部は、一方が空気
を噴出している時は、他方から蓄熱排気するように、交
互に切換えて運転し、その際、燃料噴出部は、炉内温度
域に応じて選択的に噴出するようにして燃焼させること
を特徴とする炉内温度分布燃焼制御方法。
1. A fuel ejection unit for ejecting fuel at an angle with respect to a central axis of each regenerative air ejection unit is provided. , The fuel is ejected from the fuel ejecting part, and the air is ejected from the air ejecting part to perform mixed combustion. As described above, the method is carried out by alternately switching, and at that time, the fuel injection part burns by selectively injecting in accordance with the in-reactor temperature range to perform combustion.
【請求項2】 燃料噴出部の全部から分割的に且つ同時
に燃料を噴出して燃焼させることを特徴とする請求項1
記載の炉内温度分布燃焼制御方法。
2. The fuel is jetted separately and simultaneously from all of the fuel jetting portion to burn the fuel.
A furnace temperature distribution combustion control method as described.
【請求項3】 燃料噴出部に角度可変機能を持たせたて
炉内温度域に応じて燃料をその全部又は一部から噴出し
て燃焼させることを特徴とする請求項1記載の炉内温度
分布燃焼制御方法。
3. The in-reactor temperature according to claim 1, wherein the fuel injecting portion is provided with a variable angle function, and the fuel is injected from all or part of the incinerator according to the in-reactor temperature range and burned. Distributed combustion control method.
JP6207690A 1994-08-31 1994-08-31 Control method of furnace temperature distribution combustion Pending JPH0875109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6207690A JPH0875109A (en) 1994-08-31 1994-08-31 Control method of furnace temperature distribution combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6207690A JPH0875109A (en) 1994-08-31 1994-08-31 Control method of furnace temperature distribution combustion

Publications (1)

Publication Number Publication Date
JPH0875109A true JPH0875109A (en) 1996-03-19

Family

ID=16543969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6207690A Pending JPH0875109A (en) 1994-08-31 1994-08-31 Control method of furnace temperature distribution combustion

Country Status (1)

Country Link
JP (1) JPH0875109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294380C (en) * 2003-12-09 2007-01-10 财团法人工业技术研究院 Burner
JP2008232475A (en) * 2007-03-19 2008-10-02 Ngk Insulators Ltd Fuel supply pipe for slow combustion of heat storage type burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294380C (en) * 2003-12-09 2007-01-10 财团法人工业技术研究院 Burner
JP2008232475A (en) * 2007-03-19 2008-10-02 Ngk Insulators Ltd Fuel supply pipe for slow combustion of heat storage type burner

Similar Documents

Publication Publication Date Title
JPH01300103A (en) Furnace combustion method
JP2003254509A (en) Single end type heat accumulating radiant tube burner and its combustion method
JPH0875109A (en) Control method of furnace temperature distribution combustion
JP2837787B2 (en) Thermal storage type low NOx burner
JP3394500B2 (en) Non-ferrous metal melting furnace
JP3176786B2 (en) Oxygen burner
JPH0828830A (en) High temperature air burner
JPH0868502A (en) Combustion control for furnace temperature distribution
JPH05157212A (en) Low nox combustion method for radiant tube burner and radiant tube burner executing the same combustion method
JP3315493B2 (en) Oxygen burner for heating furnace
JPH0694368A (en) Heat accumulation type melting furnace and operating method thereof
CN110657433A (en) Gas cladding type low-nitrogen non-oxidation burner
JP3107352B2 (en) Hot air burner
JP3656930B2 (en) Industrial furnace
JPS6367095B2 (en)
JP3090883B2 (en) Operating method of regenerative burner
JP3404118B2 (en) Burner combustion control method in industrial kiln
JP3590495B2 (en) Low NOx burner for high temperature air
JP4071842B2 (en) Industrial furnace and heating control method thereof
JPH06257723A (en) Oxygen burner
JPS61264127A (en) Heater for furnace
KR950003880Y1 (en) Nozzle for burner
JP2967454B2 (en) Fuel two-stage combustion device and control method thereof
JPH11182818A (en) Burner
JPS5867820A (en) Method for heating furnace