JPH0874729A - Method for converting gravity acting on flow of fluid into kinetic energy and device thereof - Google Patents

Method for converting gravity acting on flow of fluid into kinetic energy and device thereof

Info

Publication number
JPH0874729A
JPH0874729A JP7201256A JP20125695A JPH0874729A JP H0874729 A JPH0874729 A JP H0874729A JP 7201256 A JP7201256 A JP 7201256A JP 20125695 A JP20125695 A JP 20125695A JP H0874729 A JPH0874729 A JP H0874729A
Authority
JP
Japan
Prior art keywords
water
flow
energy
pressure
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7201256A
Other languages
Japanese (ja)
Inventor
Toshitaka Yasuda
利孝 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7201256A priority Critical patent/JPH0874729A/en
Priority to PCT/JP1996/000045 priority patent/WO1997002429A1/en
Priority to AU44002/96A priority patent/AU4400296A/en
Publication of JPH0874729A publication Critical patent/JPH0874729A/en
Priority to PCT/JP1996/001829 priority patent/WO1997002430A1/en
Priority to AU62438/96A priority patent/AU6243896A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

PURPOSE: To convert gravity acting on the flow of fluid into kinetic energy by letting the inside of a pipe in which fluid flows, be so constituted that the energy of fluid flow can be retroactive. CONSTITUTION: An inflow section 9 provided with a water passage the cross sectional area of flow of which is contracted inwardly from an inflow port 2. A front section flow rate maintaining pressure water feeding means 4 supplies both the inflow/outflow loss compensation pressure and the dynamic pressure of a water source V2 for water flow in the vicinity of a draining port 3, to flowing water within the inside of a penstock 1, wherein the inflow/ outflow loss compensation pressure compensates both the whole of an inflow loss in pressure taking place in the specified flow rate of flowing water in a turbine driving energy system between the inflow port 2 and the outlet of an axial flow turbine 6, and the whole of an outflow loss in pressure taking place in the specified flow rate of flowing water in a flow rate maintaining energy system between the outlet of the axial flow turbine 6 and the draining port 3, to zero. A rear section flow rate maintaining pressure water feeding means 8 which is interposed between the axial flow turbine 6 and the draining port 3, supplies rear section flow rate maintaining supplemental kinetic energy to water flow within the inside of the penstock 1. An outflow section 10 is also provided, which is connected to the rear section flow rate maintaining pressure water feeding means 8, and gradually increases the cross sectional area of flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体の流れに作用する
重力を運動エネルギに変換する方法とその装置に関し、
特に、流体の流れに作用する重力を運動エネルギに変換
する第3種永久運動機関に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for converting gravity acting on a fluid flow into kinetic energy,
In particular, the present invention relates to a third type permanent motion engine that converts gravity acting on a fluid flow into kinetic energy.

【0002】[0002]

【従来の技術】従来の流体力学では、流体の流れに作用
する重力を運動エネルギに変換する方法とその装置は未
だ実現しておらず、特に、流体の流れに作用する重力を
運動エネルギに変換する第3種永久運動機関は実現不可
能とされている。
2. Description of the Related Art In conventional fluid dynamics, a method and apparatus for converting gravity acting on a fluid flow into kinetic energy has not yet been realized. In particular, gravity acting on a fluid flow is converted into kinetic energy. It is said that a third-class permanent motion engine that does this is not feasible.

【0003】[0003]

【発明が解決しようとする課題】従来の流体力学では、
重力の作用による流体の流れのエネルギを表す式として
は、ベルヌーイの式しかない。しかし、ベルヌーイの式
は、エネルギ保存則として、エネルギが保存されること
の説明に都合が良いように作られているので、流体の流
れの中では浮力と釣り合っており利用できないはずの位
置エネルギを含んでいる。従って、ベルヌーイの式は、
重力の作用による流体の流れのエネルギの本質を正しく
表していないという問題点がある。
In conventional fluid dynamics,
Bernoulli's equation is the only equation that expresses the energy of fluid flow due to the action of gravity. However, Bernoulli's equation is made as a law of conservation of energy so that it is convenient for explaining that energy is conserved. Contains. So Bernoulli's formula is
There is a problem that the essence of the energy of the fluid flow due to the action of gravity is not correctly represented.

【0004】又、上記のエネルギの本質不明の問題点に
関連して、従来の流体力学では、流体が流れている管の
中を流体の流れのエネルギが遡れないとされているとい
う問題点があり、これに伴って、内部に水車を備えた水
圧管を水流の中に設置し、或いは、内部に風車を備えた
風圧管を風の中に設置し、前記水圧管又は前記風圧管内
で、流量に対する抵抗損失を0に補償する人為エネルギ
を供給することにより、流水のエネルギ又は流通空気の
エネルギを遡らせて流量を確保し、前記水車又は風車を
駆動するという、流体の流れに作用する重力を運動エネ
ルギに変換する方法とその装置、即ち、流体の流れに作
用する重力を運動エネルギに変換する第3種永久運動機
関実現の可否を理論的に説明できないという問題点があ
る。
Further, in connection with the above-mentioned problem of uncertain essence of energy, in conventional fluid dynamics, there is a problem that the energy of the fluid flow cannot be traced back inside the pipe in which the fluid is flowing. Yes, along with this, installing a water pressure pipe with a water wheel inside, in the water flow, or installing a wind pressure pipe with a wind turbine inside, in the water pressure pipe or the wind pressure pipe, By supplying artificial energy for compensating the resistance loss to the flow rate to 0, the energy of the flowing water or the energy of the circulating air is traced back to secure the flow rate, and the gravity acts on the flow of the fluid to drive the water turbine or the wind turbine. There is a problem in that it is not possible to theoretically explain whether or not a method and an apparatus for converting kinetic energy into kinetic energy, that is, the realization of the realization of a type 3 permanent motion engine that converts gravity acting on a fluid flow into kinetic energy.

【0005】本発明は、従来の流体力学の上記の問題点
を解決し、重力の作用による流体の流れのエネルギの本
質を明らかにし、その本質に基づいて、流体が流れる管
の中を流体の流れのエネルギが遡れるようにすることに
より、流体の流れに作用する重力を運動エネルギに変換
する方法とその装置を提供し、特に、流体の流れに作用
する重力を運動エネルギに変換する第3種永久運動機関
を実現することを課題とする。
The present invention solves the above-mentioned problems of conventional fluid dynamics, clarifies the essence of the energy of the fluid flow due to the action of gravity, and based on this essence, the A method and apparatus for converting gravity acting on a fluid flow into kinetic energy by making the flow energy trace back, and in particular, a third method for converting gravity acting on a fluid flow into kinetic energy. The task is to realize a seed-permanent movement engine.

【0006】[0006]

【課題を解決するための手段】本願第1発明の流体の流
れに作用する重力を運動エネルギに変換する方法は、上
記の課題を解決するために、大気と水流とに対する重力
の作用と、水深H(m)での水速V(m/sec)
と、水流の各部に作用し水流の各部に対する抵抗と釣り
合い前記水深Hでの前記水速Vを維持する大気と水流
とに対する重力の流れ方向への作用による圧力の偏り
と、大気と水流とに対する重力の作用に基づく前記水深
Hでの水流の固有全圧PFH=固有静圧PSH+固有動
圧PKH=[ρ×g×(H+10.33mAq)−{ρ
×(V÷2}]+{ρ×(V÷2}=ρ×
g×(H+10.33mAq(t/m)と、大気と水
流とに対する重力の作用に基づく単位時間単位通過流量
1(m/sec)当たりの前記水深Hでの水流の固有
エネルギEFH=(前記固有静圧PSHに対応する固有
圧力エネルギEPH)+(前記固有動圧PKHに対応す
る固有運動エネルギEKH)=1(m/sec)×
[ρ×g×(H+10.33mAq)−{ρ×(V
÷2}](t/m)+1(m/sec)×{ρ×
(V÷2}(t/m)=1×ρ×g×(H+1
0.33mAq)(t・m/sec)とを有する、海流
や潮流等のように地球規模で循環する水流の中、河川や
開水路等のように勾配によって流れる水流の中、又は、
水との相対運動を維持する力と水との相対速度とを前記
の大気と水流とに対する重力の流れ方向への作用による
圧力の偏りと前記水速Vとして扱える水上或いは水中
の移動体において、通水断面積S(m)の流入口を
水速V(m/sec)の任意の水深H(m)に配置
し、中央部付近に設けられた軸流水車を前記水深Hに配
置し、通水断面積S(m)の排水口を水速V(m
/sec)の前記水深H又はそれより深い水深H
(m)に配置し、前記軸流水車と前記流入口間の水圧
差と、前記軸流水車と前記排水口間の水圧差とが、それ
ぞれ前記軸流水車と前記流入口間の水圧管内の流水に作
用する重力と、前記軸流水車と前記排水口間の水圧管内
の流水に作用する重力とで打ち消され、前記流入口と前
記排水口との前記軸流水車に対する実効水深が前記軸流
水車と同じ水深Hになる水圧管を前記水流中又は前記移
動体に設置し、前記通水断面積S、Sを、後述の水
車出力容量の式に基づいて、(S×所定流入流速V
10)=(S×水速V以下の所定流出流速V20
(m/sec)=(所要出力が得られる所定流量)と
なるように設定すると共に、前記流入口から前記軸流水
車に向かう通水断面積を、流水が増速して水車流入流速
G1O(m/sec)で前記軸流水車に流入するよう
に水車流入通水断面積SG1O(m)にまで縮小し、
前記排水口から前記軸流水車までの通水断面積を、前記
軸流水車に向かって円周方向に偏向させながら前記軸流
水車から流出してくる流水が流量維持流速VG2I(m
/sec)で通過する水車流出通水断面積SG2I(m
)=前記水車流入通水断面積SG1Oにまで徐々に縮
小して通水断面積がより大きな前記軸流水車の軸方向の
出口に円周方向に偏向した状態で接続することにより、
前記軸流水車が無負荷であり後述のようにして人為的に
供給する流入・流出損失補償圧力及び前記水速Vの動
圧が流水に対する抵抗と釣り合って後述の所定流量を維
持する状態、又は、前記軸流水車が有負荷であり後述の
ようにして人為的に供給する流入・流出損失補償圧力及
び前記水速Vが流水に対する抵抗と釣り合って後述の
所定流量を維持し、更に、後述のようにして人為的に供
給する後部流量維持用補充運動エネルギEC2Kが後述
の水車駆動エネルギEの消費を補充している状態で
は、流水が通水断面積の縮小に伴って増速して前記軸流
水車に流入し、前記軸流水車を通過した流水が通水断面
積の増加に伴って減速しながら前記排水口から流出し、
これらの増速と減速とに伴って、大気と水流とに対する
重力の作用に基づく前記水圧管各部の前記固有静圧P
SHが前記流入口と前記排水口との双方から前記軸流水
車に向かって対称的に減圧することにより、前記流入口
外の大気と水流とに対する重力の作用が、前記水圧管内
の流水の前述の単位時間単位通過流量1当たりの前記水
深Hでの前記固有エネルギEFH=1×ρ×g×(H+
10.33mAq)を構成する前記固有全圧PFH=ρ
×g×(H+10.33mAq)として、前記流入口か
ら前記軸流水車の出口まで作用し、前記排水口外の大気
と水流とに対する重力の作用が、前記水圧管内の流水の
前述の単位時間単位通過流量1当たりの前記水深Hでの
前記固有エネルギEFH=1×ρ×g×(H+10.3
3mAq)の(前記固有静圧PSH)/(前記固有全圧
FH)を構成する排水口静圧PS2=排水口での前記
固有全圧PFH−排水口での前記固有動圧PKH=排水
口での前記固有全圧PFH−水速Vの動圧=[{ρ×
g×(H+10.33mAq)}−{ρ×(V÷
2}]として、前記排水口から前記軸流水車の出口まで
遡るようにしておき、前記流入口と前記軸流水車の出口
間の水車駆動エネルギE系の前記所定流量の流水に発
生する流入損失圧力(t/m)の全部と、前記軸流水
車の出口と前記排水口間の流量維持エネルギE系の前
記所定流量の流水に発生する流出損失圧力(t/m
の全部とを0に補償する流入・流出損失補償圧力(t/
)を発生させる流入・流出損失補償圧力エネルギ
(t・m/sec)=(S×V10)×(流入・流出
損失補償圧力)、及び、(前記所定流量)×(前記水速
の動圧)を、自然界の水流における前述の大気と水
流とに対する重力の流れ方向への作用による圧力の偏
り、及び、前記固有全圧PFHと前記配水口静圧PS2
との差に相当するものとして、前記水圧管内の前記水車
駆動エネルギE系の流水に人為的に供給し、前記所定
流量の流水に対する前記水圧管の抵抗と釣り合わせると
共に前記流量維持エネルギE系の流水に発生する流出
損失圧力を上流側から補償し且つ前記固有全圧PFH
前記配水口静圧PS2との差を上流側から補償すること
により、後述のようにして前記流量維持エネルギE
の流水に後述の水車駆動エネルギEの消費に入れ代わ
る形で発生させる流量維持エネルギEが、前記流量維
持エネルギE系の流水内を後述の水車駆動エネルギE
の消費に入れ代わる形で前記軸流水車まで遡って前記
所定流量を維持し、前記水圧管各部の流速を大気と水流
とに作用する重力に基づく固有水速V(m/sec)=
(前記所定流量S×V10)/(各部の通水断面積)
に固定し、前記水深Hに位置する前記水圧管内各部の単
位時間単位通過流量1当たりの流水が、自然界の水流と
同様に、前述の大気と水流とに対する重力の作用に基づ
く前記水深Hでの前記固有エネルギEFH(t・m/s
ec)=(前記固有静圧PSHに対応する固有圧力エネ
ルギEPH)+(前記固有動圧PKHに対応する固有運
動エネルギEKH)=1×[ρ×g×(H+10.33
Aq)−{ρ×(V÷2}]+1×{ρ×(V
÷2}=1×ρ×g×(H+10.33mAq
を有するようにすることと、前記軸流水車の負荷の有無
には関係なく、前記流量維持エネルギE系の流水に、
流出エネルギE(t・m/sec)=(S×
20)×[前記水深Hでの単位時間単位通過流量1当
たりの水流の前記固有エネルギEFH{1×ρ×g×
(H+10.33mAq)}]が存在すれば、前記排水
口における前述の大気と水流とに対する重力の作用と、
前記排水口外の大気と水流とに対する重力の流れ方向へ
の作用による圧力の偏りと、前記水深Hでの単位時間単
位通過流量1当たりの水流の前記固有エネルギEFH
1×ρ×g×(H+10.33mAq)と、前記排水口
静圧PS2とが、前記流量維持エネルギE系の流水を
前記所定流量を上限として前記排水口から前記排水口静
圧PS2の水流中に吸い出し、水流に変化を残すことな
く流れ去らせる流量維持作用を有することとにより、前
記軸流水車が無負荷の場合には、流入エネルギE(t
・m/sec)=(前記所定流量S×V10)×[前
記水深Hでの単位時間単位通過流量1当たりの水流の前
記固有エネルギEFH{1×ρ×g×(H+10.33
Aq)}]=前記流出エネルギEを、前記流入口か
ら流入し前記排水口から流出する前記所定流量の流水と
共に前記水圧管内を通過させ、負荷をかけられた前記軸
流水車が、水車駆動エネルギE={前記水車流入流速
G1Oの所定流量の水車駆動エネルギE系の流水の
運動エネルギ}−{前記軸流水車の軸方向の出口での水
車流出流速VTO(m/sec)の所定流量の水車駆動
エネルギE系の流水の運動エネルギ}を消費する場合
には、前記軸流水車の出口と前記排水口間の任意の位置
にあり、前述の前記水深Hでの前記固有エネルギEFH
=1×ρ×g×(H+10.33mAq)と前記固有全
圧PFH=ρ×g×(H+10.33mAq)とを構成
する前記のようにして遡る前記排水口静圧PS2及び前
述のようにして上流側から供給される前記水速Vの動
圧が作用する通水断面積が前記水車流出通水断面積S
G2Iのn倍であることにより、必要な前述の単位時間
単位通過流量1当たりの前記水深Hでの流水の前記固有
エネルギEFHが前記流量維持流速VG2Iの1/nの
後部流量維持流速VC2Oで得られる後部縮小通水断面
積SC2Oにおいて、後部流量維持用補充運動エネルギ
C2O≧[後部流量維持流速VC2O={(S×V
20)/SC2O}の所定流量の流水の運動エネルギ]
×[1−〔{(前記流入エネルギE−前記水車駆動エ
ネルギE)が前記後部縮小通水断面積SC2Oを通過
する流水に与える流速VC2O0/{前記流入エネ
ルギEが前記後部縮小通水断面積SC2Oを通過する
流水に与える前記後部流量維持流速VC2O〕]
を、前記水車流出流速VTOの運動エネルギと前記流出
損失補償圧力と(所定流量)×(前記水速Vの動圧)
とが上流側から供給され且つ前記排水口外の水流による
前記配水口静圧PS2と前記流量維持作用とを受ける前
記所定流量の前記流量維持エネルギE系の流水に人為
的に供給し、前記後部縮小通水断面積SC2Oでの流速
を前記後部流量維持流速VC2Oに維持することによ
り、前記水車駆動エネルギEの消費に入れ代わる形で
流量維持エネルギE=前記水車駆動エネルギEを発
生させ前記軸流水車まで遡らせ、前記水深Hにある前記
水圧管内の前記流量維持エネルギE系の流水に、前述
の単位時間単位通過流量1当たりの前記水深Hでの前記
固有エネルギEFH=1×ρ×g×(H+10.33m
Aq)に基づく前記流出エネルギE=(S×
20)×[前記水深Hでの前記固有エネルギE
FH{1×ρ×g×(H+10.33mAq)}]を維
持させて、前記水圧管の全長にわたる前記所定流量の流
水に、円周方向にランナーを回転しながら前記軸流水車
内を回動して存在する前記水車駆動エネルギEを含め
て、大気と水流とに対する重力の作用に基づく前記流入
エネルギE=前記流出エネルギEと前記水深Hでの
前記固有全圧PFH=ρ×g×(H+10.33
Aq)とを存在させ、抵抗と釣り合って流速を維持す
る人為エネルギによる人為全圧P={(前記流入・流出
損失補償圧力)−(損失圧力)}の分布を前記固有全圧
FHに加えた流水の全圧P=(固有全圧PFH+人
為全圧P)が前記流入口から前記流水口に向かって前記
所定流量を維持しながら前記排水口静圧PS2まで低下
し、前記排水口外の水流が有する前記流量維持作用が、
前記水圧管内で前記流出エネルギEを有する前記所定
流量の前記流量維持エネルギE系の流水を、前記排水
口から前記所定流出流速V20で前記排水口静圧PS2
の水流中に吸い出して前記水流に変化を残すことなく流
れ去らせて、前記水圧管内の流水の流量を前記所定流量
に安定させることにより、前記のように小さな3つの人
為エネルギの供給を受けて、流体の流れに作用する重力
を大きな前記水車駆動エネルギEと前記流量維持エネ
ルギEとに変換して前記軸流水車を駆動し前記水圧管
内の流水の前記所定流量を維持する第3種永久運動機関
を実現し、 水車出力容量(kW)={所定流量(S×V10)}
×{g×(H+10.33mAq)}×水車効率−
{(流入・流出損失補償圧力エネルギ)+{所定流量
(S×V10)}×(水速Vの動圧)+(後部流量
維持用補充運動エネルギEC2K)}÷(人為エネルギ
の電力効率) を得ることを特徴とする。
In order to solve the above-mentioned problems, a method of converting gravity acting on a fluid flow into kinetic energy according to the first invention of the present application, the action of gravity on the atmosphere and the water flow, and the water depth. Water velocity V H (m / sec) at H (m)
A pressure bias due to the action of gravity in the flow direction on the atmosphere and the water flow, which acts on each part of the water flow and balances the resistance to each part of the water flow and maintains the water velocity V H at the water depth H; The total intrinsic pressure P FH of the water flow at the water depth H based on the action of gravity on the relative static pressure P SH = specific static pressure P SH + specific dynamic pressure P KH = [ρ × g × (H + 10.33 m Aq ) − {ρ
× (V H ) 2 ÷ 2}] + {ρ × (V H ) 2 ÷ 2} = ρ ×
g × (H + 10.33m Aq (t / m 2 ), and the specific energy E FH of the water flow at the water depth H per unit time unit flow rate 1 (m 3 / sec) based on the action of gravity on the atmosphere and the water flow = (the unique static P specific pressure energy E PH corresponding to the SH) + (the inherent dynamic pressure P inherent kinetic energy corresponding to KH E KH) = 1 (m 3 / sec) ×
[Ρ × g × (H + 10.33m Aq ) − {ρ × (V H ).
2 ÷ 2}] (t / m 2 ) +1 (m 3 / sec) × {ρ ×
(V H ) 2 ÷ 2} (t / m 2 ) = 1 × ρ × g × (H + 1
0.33 m Aq ) (t · m / sec), in a water stream that circulates on a global scale such as an ocean current or a tidal current, in a water stream that flows by a gradient such as a river or an open channel, or
In a moving body on or under water, the force for maintaining the relative motion with water and the relative velocity with water can be treated as the pressure bias due to the action of gravity in the flow direction of the atmosphere and the water flow and the water velocity V H. , An inlet of the water cross-section S 1 (m 2 ) is arranged at an arbitrary water depth H 1 (m) at a water velocity V 1 (m / sec), and an axial flow turbine provided near the central portion is used for the water depth. The water discharge cross-sectional area S 2 (m 2 ) is placed at the water velocity V 2 (m
/ Sec) said water depth H or deeper water depth H
2 (m), and the difference in water pressure between the axial flow turbine and the inlet and the difference in water pressure between the axial flow turbine and the drain are respectively in the hydraulic pipe between the axial flow turbine and the inlet. Of gravity acting on the flowing water of the shaft and gravity acting on the flowing water in the penstock between the axial flow turbine and the drainage port, and the effective water depth of the inlet and the drainage port with respect to the axial flow turbine is the shaft. A penstock having the same water depth H as that of the water turbine is installed in the water flow or in the moving body, and the water passage cross-sections S 1 and S 2 are calculated by (S 1 × predetermined) based on the equation of the water turbine output capacity described later. Inflow velocity V
10 ) = (S 2 × predetermined outflow velocity V 20 of water velocity V 2 or less)
(M 3 / sec) = (predetermined flow rate at which required output is obtained), and the cross sectional area of the water flowing from the inlet to the axial flow turbine is increased by the flow of water and the flow velocity V of the turbine is introduced. G1O (m / sec) is reduced to the turbine inflow cross-sectional area S G1O (m 2 ) so as to flow into the axial flow turbine,
The flow rate of the flowing water flowing out from the axial flow turbine V G2I (m) while deflecting the cross sectional area of the water flow from the drain port to the axial flow turbine in the circumferential direction toward the axial flow turbine.
Cross section S G2I (m
2 ) = By gradually reducing to the water turbine inflow cross-sectional area S G1O and connecting to the axial outlet of the axial flow turbine having a larger water cross-sectional area in a state of being circumferentially deflected,
A state in which the axial flow turbine is unloaded and the inflow / outflow loss compensation pressure artificially supplied as described below and the dynamic pressure of the water velocity V 2 are balanced with the resistance to running water to maintain a predetermined flow rate described below. Alternatively, the axial flow turbine is loaded, and the inflow / outflow loss compensation pressure artificially supplied as described later and the water velocity V 2 are balanced with the resistance to the running water to maintain a predetermined flow rate described later, and In the state where the supplemental kinetic energy E C2K for maintaining the rear flow rate artificially supplied as described later supplements the consumption of the hydraulic turbine drive energy E T described later, the running water speeds up as the water flow cross-sectional area decreases. Then into the axial water turbine, the running water that has passed through the axial water turbine flows out from the drain port while decelerating with an increase in the water flow cross-sectional area,
With these acceleration and deceleration, the specific static pressure P of each part of the hydraulic pipe based on the action of gravity on the atmosphere and the water flow.
The SH symmetrically reduces the pressure from both the inlet and the drain toward the axial flow turbine, so that the action of gravity on the atmosphere and the water flow outside the inlet causes the flowing water in the penstock to move as described above. The specific energy E FH at the water depth H per unit time unit flow rate 1 = 1 × ρ × g × (H +
10.33 m Aq ), the intrinsic total pressure P FH = ρ
Xg × (H + 10.33m Aq ), which acts from the inlet to the outlet of the axial flow turbine, and the action of gravity on the atmosphere and the water flow outside the drainage port is the unit time unit of the flowing water in the penstock. The specific energy E FH = 1 × ρ × g × (H + 10.3) at the water depth H per passing flow rate 1.
3 m Aq ) of the drainage port static pressure P S2 constituting (the above-mentioned specific static pressure P SH ) / (the above-mentioned specific total pressure P FH ) = the above-mentioned specific total pressure P FH at the drain-the above-mentioned specific dynamic pressure at the drain port P KH = the specific total pressure P FH at water outlet - water speed V 2 dynamic pressure = [{ρ ×
g × (H + 10.33m Aq )}-{ρ × (V 2 ) 2 ÷
As 2}], leave as dating back from the water outlet to the outlet of the shaft running water vehicle, flows occurring in flowing water of the predetermined flow rate of the water turbine drive energy E T system between the inlet and the axis running water car outlet Total loss pressure (t / m 2 ) and outflow loss pressure (t / m 2 ) generated in flowing water of the predetermined flow rate in the flow maintenance energy E F system between the outlet of the axial flow turbine and the drainage port.
Inflow / outflow loss compensation pressure (t /
m 2) inflow and outflow loss compensation pressure energy to generate a (t · m / sec) = (S 1 × V 10) × ( inflow and outflow loss compensation pressure), and, (wherein the predetermined flow rate) × (the water speed The dynamic pressure of V 2 ) due to the bias of pressure in the natural water flow due to the action of gravity on the atmosphere and the water flow in the flow direction, and the inherent total pressure P FH and the static pressure P S2 of the water outlet.
As corresponding to the difference between the artificially supplied to running water of the water turbine drive energy E T system water pressure tube, said predetermined flow rate the flow rate maintained energy causes balance the resistance of the pressure tube for flowing water E F The outflow loss pressure generated in the flowing water of the system is compensated from the upstream side, and the difference between the intrinsic total pressure P FH and the distribution port static pressure P S2 is compensated from the upstream side to maintain the flow rate as described later. flow rate maintained energy E F for generating in the form of change places with consumption of water turbine driving energy E T below the running water of the energy E F system, the flow rate maintained energy E F system running water in the later of the water turbine driving energy E of
The specific flow rate V (m / sec) based on gravity acting on the atmosphere and the water flow is maintained at the predetermined flow rate by tracing back to the axial flow turbine in a form of replacing the consumption of T
(Predetermined flow rate S 1 × V 10 ) / (water cross-sectional area of each part)
Fixed at the water depth H, the flowing water per unit time unit passing flow rate 1 of each part in the penstock located at the water depth H is the same as the natural water flow at the water depth H based on the action of gravity on the atmosphere and the water flow. The specific energy E FH (t · m / s
ec) = (the unique static P specific pressure energy corresponding to the SH E PH) + (specific kinetic energy E KH corresponding to the unique dynamic pressure P KH) = 1 × [ρ × g × (H + 10.33
m Aq ) − {ρ × (V H ) 2 ÷ 2}] + 1 × {ρ × (V
H ) 2 ÷ 2} = 1 × ρ × g × (H + 10.33m Aq )
And that to have the shaft regardless of whether the load of the flowing water wheel, the flowing water of the flow rate maintained energy E F system,
Outflow energy E 2 (t · m / sec) = (S 2 ×
V 20 ) × [the specific energy E FH of the water flow per unit time unit passing flow rate at the water depth H {1 × ρ × g ×
(H + 10.33m Aq )}] is present, the effect of gravity on the atmosphere and water flow at the drain,
Pressure deviation due to the action of gravity in the flow direction on the atmosphere and water flow outside the drainage port, and the specific energy E FH of the water flow per unit time unit passing flow rate at the water depth H =
1 × ρ × g × (H + 10.33 m Aq ) and the drain port static pressure P S2 are the drain port static pressure P from the drain port with the flow rate maintenance energy E F system running water as the upper limit of the predetermined flow rate. When the axial flow turbine has no load, it has an inflow energy E 1 (t) because it has a flow rate maintaining action of sucking it into the water flow of S2 and leaving it without leaving any change in the water flow.
M / sec) = (the predetermined flow rate S 1 × V 10 ) × [the specific energy E FH of the water flow per unit time unit flow rate 1 at the water depth H {1 × ρ × g × (H + 10.33
m Aq )}] = The outflow energy E 2 is passed through the penstock with the flowing water of the predetermined flow rate flowing in from the inflow port and flowing out from the drain port, and the loaded axial flow turbine is a water turbine. driving energy E T = {running water kinetic energy of the water wheel drive energy E T system at a predetermined flow rate of the water turbine inlet flow velocity V G1O} - {waterwheel outlet flow velocity V tO in the axial direction of the outlet of the shaft running water wheel (m / sec ) when consuming a predetermined flow water turbine driving energy E T system running water kinetic energy of} the is in any position between the axis running water wheel outlet and the water outlet, wherein in the water depth H mentioned above Inherent energy E FH
= 1 × ρ × g × (H + 10.33m Aq ) and the intrinsic total pressure P FH = ρ × g × (H + 10.33m Aq ), the drain port static pressure P S2 traced back as described above and the above. As described above, the water passage cross-sectional area on which the dynamic pressure of the water speed V 2 supplied from the upstream side acts is the water turbine outflow water passage cross-sectional area S.
Since it is n times as large as G2I, the specific energy E FH of the flowing water at the water depth H per required unit time unit passing flow rate 1 is the rear flow rate maintaining flow rate V of 1 / n of the flow rate maintaining flow rate V G2I. In the rear reduced water flow cross-sectional area S C2O obtained by C2O , the supplemental kinetic energy for rear flow rate maintenance E C2O ≧ [rear flow rate maintenance flow velocity V C2O = {(S 2 × V
20 ) / S C2O } kinetic energy of flowing water at a predetermined flow rate]
× [1-[{(the inflow energy E 1 −the water turbine drive energy E T ) gives the flow velocity V C2O0 } 2 / {the inflow energy E 1 to the running water passing through the rear reduced water passage sectional area S C2O] The rear flow rate maintaining flow velocity V C2O } 2 ] given to the flowing water passing through the rear reduced water flow cross-sectional area S C2O ]]
Is the kinetic energy of the turbine outflow velocity V TO and the outflow loss compensation pressure (predetermined flow rate) × (dynamic pressure of the water velocity V 2 ).
Are supplied from the upstream side and are artificially supplied to the flowing water of the flow rate maintaining energy E F system of the predetermined flow rate that receives the static pressure P S2 of the water outlet and the flow rate maintaining action by the water flow outside the drain port, by maintaining the flow velocity in the rear reduced water passage cross-sectional area S C2O to said rear flow maintaining the flow velocity V C2O, the flow rate maintained energy E F = the water turbine driving energy E T in a form change places with consumption of the water turbine drive energy E T The specific energy E FH at the water depth H per unit time unit flow rate 1 is added to the flowing water of the flow rate maintaining energy E F system in the penstock at the water depth H, which is generated and traces back to the axial flow turbine. = 1 × ρ × g × (H + 10.33m
The outflow energy E 2 = (S 2 ×) based on Aq )
V 20 ) × [the specific energy E at the water depth H
FH {1 × ρ × g × (H + 10.33 m Aq )}] is maintained, and the inside of the axial water turbine is rotated while the runner is rotated in the circumferential direction to the predetermined amount of flowing water over the entire length of the penstock. Including the existing water turbine drive energy E T , the inflow energy E 1 = outflow energy E 2 and the intrinsic total pressure P FH = ρ × at the water depth H based on the action of gravity on the atmosphere and the water flow. g x (H + 10.33
m Aq ), and the distribution of artificial total pressure P = {(the inflow / outflow loss compensation pressure) − (loss pressure)} due to the artificial energy that balances the resistance and maintains the flow velocity is set to the intrinsic total pressure P FH . The total pressure P F of the added flowing water = (specific total pressure P FH + total artificial pressure P) decreases to the drain port static pressure P S2 while maintaining the predetermined flow rate from the inlet to the flowing water outlet, The flow rate maintaining action of the water flow outside the drainage port,
The predetermined flow rate flowing water of the flow maintaining energy E F system, the from the drain outlet predetermined outflow velocity V 20 at the water outlet static pressure P S2 having the outflow energy E 2 in the pressure pipe
By sucking into the water flow of No. 1 and causing it to flow away without leaving any change in the water flow and stabilizing the flow rate of the flowing water in the penstock at the predetermined flow rate, the three small artificial energy supplied as described above are received. the third kind of the gravity acting on the fluid flow and converts the large the water wheel drive energy E T to said flow rate maintained energy E F drives the shaft running water vehicle maintain said predetermined flow rate of water flow of the water pressure pipe Realizing a permanent motion engine, turbine output capacity (kW) = {predetermined flow rate (S 1 × V 10 )}
X {g x (H + 10.33 m Aq )} x turbine efficiency-
{(Inflow / outflow loss compensation pressure energy) + {Predetermined flow rate (S 1 × V 10 )} × ( Dynamic pressure of water velocity V 2 ) + (Replacement kinetic energy for rear flow rate maintenance E C2K )} ÷ (of artificial energy Power efficiency).

【0007】本願第2発明の流体の流れに作用する重力
を運動エネルギに変換する方法は、上記の課題を解決す
るために、本願第1発明の流体の流れに作用する重力を
運動エネルギに変換する方法において、勾配水路と、前
記勾配水路の低水位端の水流を揚水手段の揚水により前
記勾配水路の高水位端に循環・復水させる循環・復水路
とを有する循環水路を設け、前記勾配水路内に水圧管を
設置し、前記水圧管の設置による前記勾配水路の水速の
変化を前記勾配水路の勾配分布を調整することにより打
ち消し、前記揚水手段の揚水による循環・復水量を調整
して、前記勾配水路全長にわたって水速が略一定になる
ようにし、前記勾配水路に、大気と水流とに対する重力
の作用と、水深H(m)での水速V(m/sec)
と、水流の各部に作用し水流の各部に対する抵抗と釣り
合い前記水深Hでの前記水速Vを維持する大気と水流
とに対する重力の流れ方向への作用による圧力の偏り
と、大気と水流とに対する重力の作用に基づく前記水深
Hでの水流の固有全圧PFH=固有静圧PSH+固有動
圧PKH=[ρ×g×(H+10.33mAq)−{ρ
×(V÷2}]+{ρ×(V÷2}=ρ×
g×(H+10.33mAq)(t/m)と、大気と
水流とに対する重力の作用に基づく単位時間単位通過流
量1(m/sec)当たりの前記水深Hでの水流の固
有エネルギEFH=(前記固有静圧PSHに対応する固
有圧力エネルギEPH)+(前記固有動圧PKHに対応
する固有運動エネルギEKH)=1(m/sec)×
[ρ×g×(H+10.33mAq)−{ρ×(V
÷2}](t/m)+1(m/sec)×{ρ×
(V÷2}(t/m)=1×ρ×g×(H+1
0.33mAq)(t・m/sec)とを有する水流を
構成することを特徴とする。
The method of converting gravity acting on a fluid flow into kinetic energy according to the second aspect of the present invention converts the gravity acting on the fluid flow into kinetic energy according to the first aspect of the present invention in order to solve the above problems. In the method, a circulation channel having a gradient channel and a circulation / condensation channel for circulating / condensing a water flow at a low water level end of the gradient channel to a high water level end of the gradient channel by pumping of a pumping means is provided. A penstock is installed in the waterway, and a change in the water speed of the gradient waterway due to the installation of the penstock is canceled by adjusting the gradient distribution of the gradient waterway, and the circulation / condensation amount by pumping of the water pumping means is adjusted. So that the water velocity becomes substantially constant over the entire length of the gradient channel, the gravity channel action on the gradient channel and the water velocity V H (m / sec) at the water depth H (m).
A pressure bias due to the action of gravity in the flow direction on the atmosphere and the water flow, which acts on each part of the water flow and balances the resistance to each part of the water flow and maintains the water velocity V H at the water depth H; The total intrinsic pressure P FH of the water flow at the water depth H based on the action of gravity on the relative static pressure P SH = specific static pressure P SH + specific dynamic pressure P KH = [ρ × g × (H + 10.33 m Aq ) − {ρ
× (V H ) 2 ÷ 2}] + {ρ × (V H ) 2 ÷ 2} = ρ ×
g × (H + 10.33m Aq ) (t / m 2 ) and the specific energy E of the water flow at the water depth H per unit time unit passing flow rate 1 (m 3 / sec) based on the action of gravity on the atmosphere and the water flow FH = (the unique static P specific pressure energy E PH corresponding to the SH) + (the inherent dynamic pressure P inherent kinetic energy corresponding to KH E KH) = 1 (m 3 / sec) ×
[Ρ × g × (H + 10.33m Aq ) − {ρ × (V H ).
2 ÷ 2}] (t / m 2 ) +1 (m 3 / sec) × {ρ ×
(V H ) 2 ÷ 2} (t / m 2 ) = 1 × ρ × g × (H + 1
0.33 m Aq ) (t · m / sec).

【0008】本願第3発明の流体の流れに作用する重力
を運動エネルギに変換する方法は、上記の課題を解決す
るために、本願第1発明の流体の流れに作用する重力を
運動エネルギに変換する方法において、水圧管を、水流
に設けたもぐりオリフィスの上流側と下流側間の水位差
に跨がって、或いは、水面間に水位差がある2つの水流
間に跨がって設置し、前記水位差を、水車駆動エネルギ
又は/及び流入・流出損失補償圧力の全部又は一部
として使用し、水車流入通水断面積SG1Oと水車流出
通水断面積SG2Iとを調整して、(前記水車流入通水
断面積SG1Oを通過する流水の水車流入口静圧P
STI−(前記水車流出通水断面積SG2Iを通過する
流水の水車流出口静圧PSTO)=流入・流出損失補償
圧力+水速Vの動圧とすることを特徴とする。
In order to solve the above problems, the method for converting gravity acting on a fluid flow into kinetic energy according to the third aspect of the present invention converts gravity acting on a fluid flow into kinetic energy according to the first aspect of the present invention. In the method described above, the penstock is installed across the water level difference between the upstream side and the downstream side of the muzzle orifice provided in the water stream, or across two water streams having a water level difference between the water surfaces. The water level difference is used as all or part of the turbine driving energy E T or / and the inflow / outflow loss compensation pressure to adjust the turbine inflow cross section S G1O and the turbine outflow cross section S G2I. (The hydrostatic water inlet static pressure P of the flowing water passing through the water turbine inflow cross-sectional area S G1O
STI - characterized by the (the running water waterwheel flow outlet static pressure P STO passing waterwheel outlet water flow cross-sectional area S G2i) = the inflow and outflow loss compensation pressure + water speed V 2 dynamic pressure.

【0009】本願第4発明の流体の流れに作用する重力
を運動エネルギに変換する方法は、上記の課題を解決す
るために、大気に対する重力の作用と、風速V(m/
sec)と、大気の各部に作用し大気の各部の移動に対
する抵抗と釣り合い前記風速Vを維持する大気に対す
る重力の作用を伴う風の方向への圧力の偏りと、大気に
対する重力の作用に基づく前記風速Vの風の固有全圧
FH=固有静圧PSH+固有動圧PKH=[ρ×g×
10.33mAq−{ρ×(V÷2}]+{ρ
×(V÷2}=ρ×g×10.33mAq(t
/m)と、大気に対する重力の作用に基づく単位時間
単位通過流量1(m/sec)当たりの前記風速V
の風の固有エネルギEFH=(前記固有静圧PSHに対
応する固有圧力エネルギEPH)+(前記固有動圧P
KHに対応する固有運動エネルギEKH)=1(m
sec)×[ρ×g×10.33mAq−{ρ×(V
÷2}](t/m)+1(m/sec)×
{ρ×(V÷2}(t/m)=1×ρ×g×
10.33mAq(t・m/sec)とを有する風の
中、又は、大気との相対運動を維持する力と大気との相
対速度とを前記の大気に対する重力の作用を伴う風の方
向への圧力の偏りと前記風速Vとして扱える大気中の
移動体において、通気断面積S(m)の流入口を風
速V(m/sec)の位置に有し、軸流風車を中央部
付近に有し、通気断面積S(m)の排気口を風速V
(m/sec)の位置に有する風圧管を設置し、流速
によるρの変化を補正した前記通気断面積S、S
を、後述の風車出 所定流出流速V20)(m/sec)=(所要出力が
得られる所定流量)となるように設定すると共に、前記
流入口から前記軸流風車に向かう通気断面積を、流通空
気が増速して風車流入流速VG1O(m/sec)で前
記軸流風車に流入するように風車流入通気断面積S
G1O(m)にまで縮小し、前記排気口から前記軸流
風車までの通気断面積を、前記軸流風車に向かって円周
方向に偏向させながら前記軸流風車から流出してくる流
通空気が流量維持流速VG2I(m/sec)で通過す
る風車流出通気断面積SG2I(m)=前記風車流入
通気断面積SG1Oにまで徐々に縮小して通気断面積が
より大きな前記軸流風車の軸方向の出口に円周方向に偏
向した状態で接続することにより、前記軸流風車が無負
荷であり後述のようにして人為的に供給する流入・流出
損失補償圧力及び前記風速Vの動圧が流通空気に対す
る抵抗と釣り合って後述の所定流量を維持する状態、又
は、前記軸流風車が有負荷であり後述のようにして人為
的に供給する流入・流出損失補償圧力及び前記風速V
の動圧が流通空気に対する抵抗と釣り合って後述の所定
流量を維持し、更に、後述のようにして人為的に供給す
る後部流量維持用補充運動エネルギEC2Kが後述の風
車駆動エネルギEの消費を補充している状態では、流
通空気が通気断面積の縮小に伴って増速して前記軸流風
車に流入し、前記軸流風車を通過した流通空気が通気断
面積の増加に伴って減速しながら前記排気口から流出
し、これらの増速と減速とに伴って、大気に対する重力
の作用に基づく前記風圧管各部の前記固有静圧PSH
前記流入口と前記排気口との双方から前記軸流風車に向
かって対称的に減圧することにより、前記流入口外の大
気に対する重力の作用が、前記風圧管内の流通空気の前
述の単位時間単位通過流量1当たりの前記固有エネルギ
FH=1×ρ×g×10.33mAqを構成する前記
固有全圧PFH=ρ×g×10.33mAqとして、前
記流入口から前記軸流風車の出口まで作用し、前記排水
口外の大気に対する重力の作用が、前記風圧管内の流通
空気の前述の単位時間単位通過流量1当たりの前記固有
エネルギEFH=1×ρ×g×10.33mAqの(前
記固有静圧PSH)/(前記固有全圧PFH)を構成す
る排気口静圧PS2=排気口での前記固有全圧PFH
排気口での前記固有動圧PKH=排気口での前記固有全
圧PFH−風速Vの動圧=[{ρ×g×10.33m
Aq}−{ρ×(V÷2}]として、前記排気
口から前記軸流風車の出口まで遡るようにしておき、前
記流入口と前記軸流風車の出口間の風車駆動エネルギE
系の前記所定流量の流通空気に発生する流入損失圧力
(t/m)の全部と、前記軸流風車の出口と前記排気
口間の流量維持エネルギE系の前記所定流量の流通空
気に発生する流出損失圧力(t/m)の全部とを0に
補償する流入・流出損失補償圧力(t/m)を発生さ
せる流入・流出損失補償圧力エネルギ(t・m/se
c)=(S×V10)×(流入・流出損失補償圧
力)、及び、(前記所定流量)×(前記風車Vの動
圧)を、自然界の風における前述の大気に対する重力の
作用を伴う風の方向への圧力の偏り、及び、前記固有全
圧PFHと前記排気口静圧PS2との差に相当するもの
として、前記風圧管内の前記風車駆動エネルギE系の
流通空気に人為的に供給し、前記所定流量の流通空気に
対する前記風圧管の抵抗と釣り合わせると共に前記流量
維持エネルギE系の流通空気に発生する流出損失圧力
を上流側から補償し且つ前記固有全圧PFHと前記排気
口静圧PS2との差を上流側から補償することにより、
後述のようにして前記流量維持エネルギE系の流通空
気に後述の風車駆動エネルギEの消費に入れ代わる形
で発生させる流量維持エネルギEが、前記流量維持エ
ネルギE系の流通空気内を後述の風車駆動エネルギE
の消費に入れ代わる形で前記軸流風車まで遡って前記
所定流量を維持し、前記風圧管各部の流速を大気に対す
る重量の作用に基づく固有水速V(m/sec)=(前
記所定流量S×V10)/(流速によるρAの変化を
補正した各部の通気断面積)に固定し、前記風圧管内各
部の単位時間単位通過流量1当たりの流通空気が、自然
界の風と同様に、前述の大気に対する重力の作用に基づ
く前記固有エネルギEFH(t・m/sec)=(前記
固有静圧PSHに対応する固有圧力エネルギEPH)+
(前記固有動圧PKHに対応する固有揮動エネルギE
KH)=1×[ρ×g×10.33mAq−{ρ×
(V÷2}]+1×{ρ×(V÷2}=
1×ρ×g×10.33mAqを有するようにすること
と、前記軸流風車の負荷の有無には関係なく、前記流量
維持エネルギE系の流通空気に、流出エネルギE
(t・m/sec)=(S×V20)×[大気圧で
の単位時間単位通過流量1当たりの風の前記固有エネル
ギEFH{1×ρ×g×10.33mAq}]が存在す
れば、前記排気口における前述の大気に対する重力の作
用と、前記排気口外の大気に対する重力の作用を伴う風
の方向への圧力の偏りと、大気圧での単位時間単位通過
流量1当たりの風の前記固有エネルギEFH=1×ρ×
g×10.33mAqと、前記排気口静圧PS2とが、
前記流量維持エネルギE系の流通空気を前記所定流量
を上限として前記排気口から前記排気口静圧PS2の風
の中に吸い出し、風に変化を残すことなく流れ去らせる
流量維持作用を有することとにより、前記軸流風車が無
負荷の場合には、流入エネルギE(t・m/sec)
=(前記所定流量S×V10)×[大気圧での単位時
間単位通過流量1当たりの風の前記固有エネルギEFH
{1×ρ×g10.33mAq}]=前記流出エネルギ
を、前記流入口から流入し前記排気口から流出する
前記所定流量の流通空気と共に前記風圧管内を通過さ
せ、負荷をかけられた前記軸流風車が、風車駆動エネル
ギE={前記風車流入流速VG1Oの所定流量の風車
駆動エネルギE系の流通空気の運動エネルギ}−{前
記軸流風車の軸方向の出口での風車流出流速VTO(m
/sec)の所定流量の風車駆動エネルギE系の流通
空気の運動エネルギ}を消費する場合には、前記軸流風
車の出口と前記排気口間の任意の位置にあり、前述の大
気圧での風の前記固有エネルギEFH=1×ρ×g×1
0.33mAqと前記固有全圧PFH=ρ×g×10.
33mAqとを構成する前述のようにして遡る前記排気
口静圧PS2及び前述のようにして上流側から供給され
る前記風速Vの動圧が作用する通気断面積が前記風車
流出通気断面積SG2Iのn倍であることにより、必要
な前述の単位時間単位通過流量1当たりの流通空気の前
記固有エネルギEFHが前記流量維持流速VG2Iの1
/nの後部流量維持流速VC2Oで得られる後部縮小通
気断面積SC2Oにおいて、後部流量維持用補充運動エ
ネルギEC2K≧[後部流量維持流速VC2O={(S
×V20)/SC2O}の所定流量の流通空気の運動
エネルギ]×[1−〔{(前記流入エネルギE−前記
風車駆動エネルギE〕が前記後部縮小通気断面積S
C2Oを通過する流通空気に与える流速VC2O0
/{前記流入エネルギEが前記後部縮小通気断面積S
C2Oを通過する流通空気に与える前記後部流量維持流
速VC2O〕]を、前記風車流出流速VTOの運動
エネルギと前記流出損失補償圧力と(所定流量)×(前
記風速Vの動圧)とが上流側から供給され且つ前記排
気口外の風による前記流量維持作用を受ける前記所定流
量の前記流量維持エネルギE系の流通空気に人為的に
供給し、前記後部縮小通気断面積SC2Oでの流速を前
記後部流量維持流速VC2Oに維持することにより、前
記風車駆動エネルギEの消費に入れ代わる形で流量維
持エネルギE=前記風車駆動エネルギEを発生させ
前記軸流風車まで遡らせ、大気圧中にある前記風圧管内
の前記流量維持エネルギE系の流通空気に、前述の流
通空気の単位時間単位通過流量1当たりの前記固有エネ
ルギEFH=1×ρ×g×10.33mAqに基づく前
記流出エネルギE=(S×V20)×[前記固有エ
ネルギEFH{1×ρ×g×10.33mAq}]を維
持させて、前記風圧管の全長にわたる前記所定流量の流
通空気に、円周方向にランナーを回転しながら前記軸流
風車内を回動して存在する前記風車駆動エネルギE
含めて、大気に対する重力の作用に基づく前記流入エネ
ルギE=前記流出エネルギEと大気圧での風の前記
固有全圧PFH=ρ×g×10.33mAqとを存在さ
せ、抵抗と釣り合って流速を維持する人為エネルギによ
る人為全圧P={(前記流入・流出損失補償圧力)−
(損失圧力)}の分布を前記固有全圧PFHに加えた流
通空気の全圧P=(固有全圧PFH+人為全圧P)が
前記流入口から前記排気口に向かって前記所定流量を維
持しながら前記排気口静圧PS2まで低下し、前記排気
口外の風が有する前記流量維持作用が、前記風圧管内で
前記流出エネルギEを有する前記所定流量の前記流量
維持エネルギE系の流通空気を、前記排気口から前記
所定流出流速V20で前記排気口静圧PS2の風の中に
吸い出して風に変化を残すことなく流れ去らせて、前記
風圧管内の流通空気の流量を前記所定流量に安定させる
ことにより、前記のように小さな3つの人為エネルギの
供給を受けて、流体の流れに作用する重力を大きな前記
風車駆動エネルギEと前記流量維持エネルギEとに
変換して前記軸流風車を駆動し前記風圧管内の流通空気
の前記所定流量を維持する第3種永久運動機関を実現
し、 風車出力容量(kW)={所定流量(S×V10)}
×{g×10.33mAq}×風車効率−{(流入・流
出損失補償圧力エネルギ)+{所定流量(S×
10)}×(風速Vの動圧)+(後部流量維持用補
充運動エネルギEC2K)}÷(人為エネルギの電力効
率) を得ることを特徴とする。
In order to solve the above-mentioned problems, the method of converting gravity acting on a fluid flow into kinetic energy according to the fourth aspect of the present invention has the effect of gravity on the atmosphere and the wind speed V H (m / m).
sec) and the resistance to the movement of each part of the atmosphere and the resistance to the movement of each part of the atmosphere are balanced, and the bias of the pressure in the direction of the wind accompanied by the effect of gravity on the atmosphere maintaining the wind velocity V H and the effect of gravity on the atmosphere Inherent total pressure P FH of wind at the wind speed V H = Inherent static pressure P SH + Inherent dynamic pressure P KH = [ρ × g ×
10.33m Aq - {ρ A × ( V H) 2 ÷ 2}] + {ρ
A × (V H ) 2 ÷ 2} = ρ × g × 10.33 m Aq (t
/ M 2 ) and the wind speed V H per unit time unit flow rate 1 (m 3 / sec) based on the action of gravity on the atmosphere
Specific energy of the wind E FH = (specific pressure energy E PH corresponding to the specific static pressure P SH ) + (the specific dynamic pressure P SH
Specific kinetic energy corresponding to KH E KH) = 1 (m 3 /
sec) × [ρ × g × 10.33m Aq - {ρ A × (V
H ) 2 ÷ 2}] (t / m 2 ) +1 (m 3 / sec) ×
A × (V H ) 2 ÷ 2} (t / m 2 ) = 1 × ρ × g ×
In the wind having 10.33 m Aq (t · m / sec), or the force for maintaining the relative motion with the atmosphere and the relative velocity with the atmosphere in the direction of the wind accompanied by the action of gravity on the atmosphere. in the mobile in the atmosphere can handle a bias pressure as the wind speed V H of has an inlet ventilation cross-sectional area S 1 (m 2) in the position of the wind speed V 1 (m / sec), the central axial flow wind turbine And an exhaust port having a ventilation cross-sectional area S 2 (m 2 ) near the wind speed V
The ventilation cross section S 1 , S 2 in which a wind pressure pipe having a position of 2 (m / sec) is installed and the change of ρ A due to the flow velocity is corrected.
The windmill The predetermined outflow velocity V 20 ) (m 3 / sec) = (predetermined flow rate at which required output is obtained) is set, and the ventilation cross-sectional area from the inflow port to the axial wind turbine is increased by the circulating air. Then, the wind turbine inflow ventilation cross-sectional area S is set so as to flow into the axial wind turbine at the wind turbine inflow velocity V G1O (m / sec).
Circulating air flowing out from the axial wind turbine while being reduced to G1O (m 2 ) and deflecting a ventilation cross-sectional area from the exhaust port to the axial wind turbine in the circumferential direction toward the axial wind turbine. Is a flow rate maintenance flow velocity V G2I (m / sec), the wind turbine outflow ventilation cross-sectional area S G2I (m 2 ) = the wind turbine inflow ventilation cross-sectional area S G1O is gradually reduced to a larger axial cross-sectional area. By connecting to the outlet in the axial direction of the wind turbine in a state of being deflected in the circumferential direction, the axial flow wind turbine has no load and the inflow / outflow loss compensation pressure and the wind speed V 2 which are artificially supplied as described below. Dynamic pressure is balanced with the resistance to the circulating air to maintain a predetermined flow rate described below, or the axial flow turbine is loaded and the inflow / outflow loss compensation pressure and the wind speed artificially supplied as described below. V 2
Of the wind turbine drive energy E T , which is a supplemental kinetic energy E C2K for maintaining the rear flow rate, which is artificially supplied as described later, in order to maintain the predetermined flow rate described later in balance with the resistance to the circulating air. In the state of replenishing, the circulating air speeds up with a decrease in the ventilation cross-sectional area and flows into the axial wind turbine, and the circulating air passing through the axial wind turbine decelerates with an increase in the ventilation cross-sectional area. While flowing out from the exhaust port, the specific static pressure P SH of each part of the wind pressure pipe based on the action of gravity on the atmosphere is increased from both the inflow port and the exhaust port with the acceleration and deceleration. By symmetrically reducing the pressure toward the axial-flow wind turbine, the action of gravity on the atmosphere outside the inflow port causes the specific energy E FH = 1 per unit time unit passing flow rate of the circulating air in the wind pressure tube. × ρ × As the unique total pressure P FH = ρ × g × 10.33m Aq constituting a × 10.33m Aq, acting from the inlet to the outlet of the axial flow wind turbine, the effect of gravity on the atmosphere of the drainage extraoral is (The specific static pressure P SH ) / (the specific total pressure P FH ) of the specific energy E FH = 1 × ρ × g × 10.33 m Aq per unit time unit passing flow rate of the circulating air in the wind pressure pipe. ) Constituting the exhaust port static pressure P S2 = the intrinsic total pressure P FH − at the exhaust port
The intrinsic dynamic pressure P KH at the exhaust port = the intrinsic total pressure P FH at the exhaust port−the dynamic pressure of the wind speed V 2 = [{ρ × g × 10.33 m
Aq }-{ρ A × (V 2 ) 2 ÷ 2}], so that the wind turbine drive energy between the inlet and the outlet of the axial wind turbine is set so as to be traced from the exhaust port to the outlet of the axial wind turbine. E
And all of the inflow loss pressure (t / m 2) generated in T system the predetermined flow rate distribution of air of the predetermined flow rate distribution of air flow rate maintained energy E F system between the outlet and the exhaust port of the axial flow wind turbine outflow loss pressure (t / m 2) of all the inflow and outflow loss compensation pressure compensation 0 (t / m 2) inflow and outflow loss compensation pressure energy that generates occur (t · m / se
c) = (S 1 × V 10 ) × (inflow / outflow loss compensation pressure), and (predetermined flow rate) × (dynamic pressure of the windmill V 2 ), and the action of gravity on the atmosphere in the wind of nature. the associated pressure deviation in the direction of the wind, and the specific total pressure P FH and as corresponding to the difference between the exhaust port static pressure P S2, distribution air in the wind turbine drive energy E T system of the wind pressure pipe artificially supplied to the predetermined flow rate the flow rate maintained to compensate the outflow losses pressure generated in the distribution air energy E F system from the upstream side and the specific total pressure with balancing the resistance of the wind pressure pipe for circulation of air By compensating for the difference between P FH and the exhaust port static pressure P S2 from the upstream side,
Flow rate maintained energy E F to be generated by the consumed change places the form of the flow rate maintained energy E F based wind turbine drive energy E T below the distribution of air as described later, the flow rate maintained energy E F system flow within the air Wind turbine drive energy E described later
The predetermined flow rate is maintained by going back to the axial-flow wind turbine in a manner that replaces the consumption of T , and the flow velocity of each part of the wind pressure tube is set to a specific water speed V (m / sec) = (the predetermined flow rate S 1 × V 10 ) / (aeration cross-sectional area of each part corrected for changes in ρA due to flow velocity), and the circulating air per unit time unit passing flow rate 1 of each part in the wind pressure tube is the same as the natural wind. Specific energy E FH (tm · sec) = (specific pressure energy E PH corresponding to the specific static pressure P SH ) +
(The intrinsic volatility energy E corresponding to the intrinsic dynamic pressure P KH
KH ) = 1 × [ρ × g × 10.33 m Aq − {ρ A ×
(V H ) 2 ÷ 2}] + 1 × {ρ A × (V H ) 2 ÷ 2} =
1 × ρ × g × 10.33 m Aq , and regardless of whether or not there is a load on the axial-flow wind turbine, the outflow energy E is added to the circulating air of the flow-rate maintaining energy E F system.
2 (t · m / sec) = (S 2 × V 20 ) × [the specific energy E FH of the wind per unit time unit flow rate at atmospheric pressure E FH {1 × ρ × g × 10.33 m Aq }] If there exists, the action of gravity on the atmosphere at the exhaust port, the bias of the pressure in the direction of the wind accompanied by the action of gravity on the atmosphere outside the exhaust port, and per unit time unit flow rate at atmospheric pressure The specific energy of the wind E FH = 1 × ρ ×
g × 10.33 m Aq and the exhaust port static pressure P S2 are
The flow rate maintaining energy E F has a flow rate maintaining action of sucking the circulating air of the E F system into the wind of the exhaust port static pressure P S2 from the exhaust port with the predetermined flow rate as an upper limit, and causing the air to flow away without leaving a change in the wind. Therefore, when the axial flow wind turbine has no load, the inflow energy E 1 (t · m / sec)
= (The predetermined flow rate S 1 × V 10 ) × [the specific energy E FH of the wind per unit time unit flow rate at atmospheric pressure
{1 × ρ × g10.33 m Aq }] = The outflow energy E 2 was passed through the wind pressure pipe together with the predetermined flow rate of the circulating air flowing in from the inflow port and flowing out from the exhaust port, and was loaded. The axial flow wind turbine has a wind turbine drive energy E T = {the wind turbine inflow velocity V G1O has a predetermined flow rate, and the kinetic energy of the circulating air in the E T system}-{the wind turbine at the axial outlet of the axial wind turbine. Outflow velocity V TO (m
/ Sec) of the wind turbine drive energy E T system kinetic energy of the circulating air} at a predetermined flow rate, the fuel cell is located at an arbitrary position between the outlet of the axial wind turbine and the exhaust port, and at the above-mentioned atmospheric pressure. The specific energy of the wind E FH = 1 × ρ × g × 1
0.33 m Aq and the intrinsic total pressure P FH = ρ × g × 10.
33 m Aq and the exhaust port static pressure P S2 that traces back as described above and the ventilation cross-sectional area on which the dynamic pressure of the wind speed V 2 supplied from the upstream side acts as described above is the wind turbine outflow ventilation cutoff. By being n times the area S G2I , the required specific energy E FH of the circulating air per unit time unit passing flow rate 1 described above is 1 of the flow rate maintaining flow rate V G2I .
/ N in the rear reduced ventilation cross-sectional area S C2O obtained with the rear flow rate maintenance flow rate V C2O , the rear flow rate maintenance supplemental kinetic energy E C2K ≧ [rear flow rate maintenance flow rate V C2O = {(S
2 × V 20 ) / SC2O } kinetic energy of the circulating air at a predetermined flow rate] × [1-[{(the inflow energy E 1 −the wind turbine drive energy E T ] is the rear reduced ventilation cross-sectional area S
Velocity V C2O0 } 2 given to the circulating air passing through C2O
/ {The inflow energy E 1 is the rear reduced ventilation cross-sectional area S
The rear flow rate maintaining flow velocity V C2O } 2 ]] given to the circulating air passing through C2O is defined as the kinetic energy of the wind turbine outflow velocity V TO and the outflow loss compensation pressure (predetermined flow rate) × (dynamic pressure at the wind velocity V 2 ). ) are artificially supplied to the flow rate maintained energy E F system circulation air of the predetermined flow rate for receiving said flow maintenance action by the wind supplied and the exhaust extraoral from the upstream side, said rear reduced ventilation cross-sectional area S C2O by maintaining the flow velocity in the said rear flow maintaining the flow velocity V C2O, the consumption to change places form the wind turbine drive energy E T to generate a flow rate maintained energy E F = the wind turbine drive energy E T go back to the axial flow wind turbine allowed to flow air in the flow maintaining energy E F system of the wind pressure tube in the atmospheric pressure, the specific energy E per unit time unit passing flow per distribution air above H = 1 × the outflow energy based on ρ × g × 10.33m Aq E 2 = (S 2 × V 20) to maintain the × [the specific energy E FH {1 × ρ × g × 10.33m Aq}] And includes the wind turbine drive energy E T that is present in the circulating air of the predetermined flow rate over the entire length of the wind pressure tube while rotating the runner in the circumferential direction while rotating in the axial flow wind turbine. The inflow energy E 1 = outflow energy E 2 and the intrinsic total pressure P FH of the wind at atmospheric pressure P FH = ρ × g × 10.33 m Aq , which maintain the flow velocity in balance with the resistance. Total artificial pressure due to artificial energy P = {(the inflow / outflow loss compensation pressure)-
Wherein toward the distribution of (loss pressure)} to the specific total pressure P total pressure distribution air added to FH P F = (specific total pressure P FH + human total pressure P) is the exhaust port from said inlet a predetermined The flow rate maintenance energy E F of the predetermined flow rate having the outflow energy E 2 inside the wind pressure pipe is reduced by the flow rate maintaining action of the wind outside the exhaust port that is reduced to the exhaust port static pressure P S2 while maintaining the flow rate. The system circulating air is sucked into the wind of the exhaust port static pressure P S2 from the exhaust port at the predetermined outflow velocity V 20 and is allowed to flow away without leaving a change in the wind, so that the circulating air in the wind pressure pipe is by stabilizing the flow rate to the predetermined flow rate, supplied with three small artificial energy as described above, in a large wind turbines driving energy E T of gravity acting on the flow of fluid and the flow rate maintained energy E F Convert Drives Kijiku flow wind turbine achieves the three permanent motion engine to maintain a predetermined flow rate of the flow air in the wind tube, the wind turbine output capacitance (kW) = {a predetermined flow rate (S 1 × V 10)}
X {g x 10.33 m Aq } x wind turbine efficiency-{(inflow / outflow loss compensation pressure energy) + {predetermined flow rate (S 1 x
V 10 )} × (dynamic pressure of wind velocity V 2 ) + (replenishment kinetic energy for rear flow rate maintenance E C2K )} ÷ (power efficiency of artificial energy).

【0010】又、本願第1、第2、第3又は第4発明の
流体の流れに作用する重力を運動エネルギに変換する方
法は、上記の課題を解決するために、水(風)車流入通
水(気)断面積SG1Oを水(風)車流出通水(気)断
面積SG2Iより大きくして、前記水(風)車流入通水
(気)断面積SG1Oにおける水(風)車流入流速V
G1Oを前記水(風)車流出通水(気)断面積SG2I
における流量維持流速VG2Iより小さくし、前記水
(風)車流入流速VG1Oの動圧と前記流量維持流速V
G2Iの動圧との差によって人為エネルギの流入・流出
損失補償圧力と水(風)速Vの動圧との一部を分担す
ることが好適である。
In order to solve the above problems, the method of converting gravity acting on the fluid flow into kinetic energy according to the first, second, third or fourth invention of the present application, is an inflow of a water (windmill) turbine. The water (wind) cross-sectional area S G1O is made larger than the water (wind) turbine outflow water (air) cross-sectional area S G2I , and the water (wind) in the water (wind) vehicle inflow water (air) cross-sectional area S G1O ) Vehicle inflow velocity V
G1O is the water (wind) turbine outflow water (air) cross-sectional area S G2I
Of the flow velocity maintaining flow velocity V G2I of the water (wind) turbine and the flow maintaining flow velocity V G1O.
It is preferable to partially share the inflow / outflow loss compensation pressure of the artificial energy and the dynamic pressure of the water (wind) velocity V 2 by the difference with the dynamic pressure of G2I .

【0011】又、本願第1、第2、第3又は第4発明の
流体の流れに作用する重力を運動エネルギに変換する方
法は、上記の課題を解決するために、水(風)車負荷が
変動する場合、又は、水(風)速が変動する場合に、変
動する水(風)車負荷の予想最大値、又は、変動する水
(風)速に合わせて、所定流量と、人為エネルギの流入
・流出損失補償圧力エネルギと{所定流量(S×V
10)}×{水(風)速Vの動圧}と後部流量維持用
補充運動エネルギEC2Kと、水(風)車流入通水
(気)断面積SG1Oと水(風)車流出通水(気)断面
積SG2Iとを調整して、前記水(風)車流入通水
(気)断面積SG1Oでの水(風)車流入流速VG1O
と水(風)車流出通水(気)断面積SG2Iでの流量維
持流速VG2Iとを所定値に維持し、水(風)車の出力
を負荷及び水(風)速に合わせると共に、水(風)車の
回転数を所定値に維持することが好適である。
In order to solve the above-mentioned problems, the method for converting gravity acting on the fluid flow into kinetic energy according to the first, second, third or fourth aspect of the present invention is to solve the above problems. If the water fluctuates, or if the water (wind) speed fluctuates, a predetermined flow rate and man-made energy are adjusted according to the expected maximum value of the fluctuating water (wind) turbine load or the fluctuating water (wind) speed. Inflow / outflow loss compensation pressure energy and {predetermined flow rate (S 1 × V
10 )} × {dynamic pressure of water (wind) speed V 2 } and supplemental kinetic energy E C2K for maintaining rear flow rate, water (wind) turbine inflow water (air) cross-sectional area S G1O and water (wind) turbine outflow The water (wind) cross-sectional area S G2I is adjusted to adjust the water (wind) turbine inflow water (air) cross-sectional area S G1O to the water (wind) turbine inflow velocity V G1O.
And the flow rate maintenance flow velocity V G2I in the water (wind) turbine outflow water (gas) cross-sectional area S G2I are maintained at predetermined values, and the output of the water (wind) turbine is adjusted to the load and the water (wind) speed, and It is preferable to maintain the rotation speed of the water (wind) wheel at a predetermined value.

【0012】又、本願第1、第2、第3又は第4発明の
流体の流れに作用する重力を運動エネルギに変換する方
法は、上記の課題を解決するために、軸流水(風)車の
出力側に調速機を付加し、水(風)速が低下する場合
に、所定流量と、人為エネルギの流入・流出損失補償圧
力エネルギと{所定流量(S×V10)}×{水
(風)速Vの動圧}と後部流量維持用補充運動エネル
ギEc2kとを水(風)速の変動に応じて調整して、人
為エネルギが水圧管内に発生する損失エネルギを補償し
て水圧管内で消費されるようにし、水(風)車流入通水
(気)断面積SG1Oと水(風)車流出通水(気)断面
積SG2Iと前記の調整した所定流量とで決まる低下し
た水(風)車流入流速VG1Oと流量維持流速VG2I
とによって前記軸流水(風)車を駆動し、前記軸流水
(風)車の低下した回転数を前記調速機で所定回転数に
調整して出力し、水(風)車の出力を水(風)速に合わ
せることが好適である。
In order to solve the above problems, the method for converting gravity acting on the fluid flow into kinetic energy according to the first, second, third or fourth invention of the present application is intended to solve the above problems. When a speed governor is added to the output side of the water flow rate and the water (wind) speed decreases, a predetermined flow rate, pressure energy for compensating inflow / outflow loss of artificial energy and {predetermined flow rate (S 1 × V 10 )} × { The dynamic pressure of water (wind) speed V 2 } and the supplemental kinetic energy E c2k for maintaining the rear flow rate are adjusted according to the fluctuation of the water (wind) speed to compensate for the energy loss caused by the artificial energy in the penstock. The water (wind) turbine inflow water (air) cross-sectional area S G1O , the water (wind) turbine outflow water (air) cross-sectional area S G2I, and the adjusted predetermined flow rate. Decided and decreased water (wind) turbine inflow velocity V G1O and flow rate maintenance velocity V G2I
The axial flow water (wind) wheel is driven by and the reduced rotational speed of the axial flow water (wind) wheel is adjusted to a predetermined rotational speed by the speed governor and output. It is preferable to match the (wind) speed.

【0013】又、本願第1、第2、第3又は第4発明の
流体の流れに作用する重力を運動エネルギに変換する方
法は、上記の課題を解決するために、後部縮小通水
(気)断面積SC2Oと排水(気)口間に発生する後部
流出損失エネルギを0に補償する後部流出損失補償圧力
エネルギの供給を、水(風)車駆動エネルギE系の流
水(流通空気)への供給から、前記後部縮小通水(気)
断面積SC2Oでの供給に移すことが好適である。
Further, in order to solve the above-mentioned problems, the method of converting gravity acting on the fluid flow into kinetic energy according to the first, second, third or fourth invention of the present application, is to reduce the rear reduced water flow (gas ) draining the cross-sectional area S C2O (air) supply of rear outflow loss compensation pressure energy rear outflow energy loss occurring between the mouth to compensate the 0, water (wind) car drive energy E T system running water (flow air) From the supply to the above, the rear reduced water flow (Qi)
Preference is given to transferring with a cross-sectional area S C2O .

【0014】本願第5発明の流体の流れに作用する重力
を運動エネルギに変換する装置は、上記の課題を解決す
るために、大気と水流とに対する重力の作用と、水深H
(m)での水速V(m/sec)と、水流の各部に作
用し水流の各部に対する抵抗と釣り合い前記水深Hでの
前記水速Vを維持する大気と水流とに対する重力の流
れ方向への作用による圧力の偏りと、大気と水流とに対
する重力の作用に基づく前記水深Hでの水流の固有全圧
FH=固有静圧PSH+固有動圧PKH=[ρ×g×
(H+10.33mAq)−{ρ×(V÷2}]
+{ρ×(V÷2}=ρ×g×(H+10.33
Aq)(t/m)と、大気と水流とに対する重力の
作用に基づく単位時間単位通過流量1(m/sec)
当たりの前記水深Hでの水流の固有エネルギEFH
(前記固有静圧PSHに対応する固有圧力エネルギE
PH)+(前記固有動圧PKHに対応する固有運動エネ
ルギEKH)=1(m/sec)×[ρ×g×(H+
10.33mAq)−{ρ×(V÷2}](t/
)+1(m/sec)×{ρ×(V÷2}
(t/m)=1×ρ×g×(H+10.33mAq
(t・m/sec)とを有する、海流や潮流等のように
地球規模で循環する水流の中、河川や開水路等のように
勾配によって流れる水流の中、又は、水との相対運動を
維持する力と水との相対速度とを前記の大気と水流とに
対する重力の流れ方向への作用による圧力の偏りと前記
水速Vとして扱える水上或いは水中の移動体におい
て、断面積S(m)の流入口を流速V(m/se
c)の任意の水深H(m)に配置し、中央部付近に設
けられた軸流水車を水深H(m)に配置し、通水断面積
(m)の排水口を水速V(m/sec)の前記
水深H又はそれより深い水深H(m)に配置し、前記
通水断面積S、Sを、後述の水車出力容量の式に基
づいて、(S×所定流入流速V10)=(S×水速
以下の所定流出流速V20)(m/sec)=
(所要出力が得られる所定流量)となるように設定する
と共に、前記流入口から前記軸流水車に向かう通水断面
積を、流水が増速して水車流入流速VG1O(m/se
c)で前記軸流水車に流入するように水車流入通水断面
積SG1O(m)にまで縮小し、前記排水口から前記
軸流水車までの通水断面積を、前記軸流水車に向かって
円周方向に偏向させながら前記軸流水車から流出してく
る流水が流量維持流速VG2I(m/sec)で通過す
る水車流出通水断面積SG2I(m)=前記水車流入
通水断面積SG1Oにまで徐々に縮小して通水断面積が
より大きな前記軸流水車の軸方向の出口に円周方向に偏
向した状態で接続した水圧管と、前記流入口と前記軸流
水車の出口間の水車駆動エネルギE系の前記所定流量
の流水に発生する流入損失圧力(t/m)の全部と、
前記軸流水車の出口と前記排水口間の流量維持エネルギ
系の前記所定流量の流水に発生する流出損失圧力
(t/m)の全部とを0に補償する流入・流出損失補
償圧力(t/m)を発生させる流入・流出損失補償圧
力エネルギ(t・m/sec)=(S×V10)×
(流入・流出損失補償圧力)と{所定流量(S×V
10)}×(水速Vの動圧)とを前記水圧管内の前記
水車駆動エネルギE系の流水に供給する前部流量維持
加圧送水手段と、前記軸流水車の出口と前記排水口間の
任意の位置にある後部縮小通水断面積SC2Oにおい
て、後部流量維持用補充運動エネルギEC2K≧[後部
流量維持流速VC2O={(S×V20)/
C2O}の所定流量の流水の運動エネルギ]×[1−
〔{(前記流入エネルギE−前記水車駆動エネルギE
)が前記後部縮小通水断面積SC2Oを通過する流水
に与える流速VC2O0/{前記流入エネルギE
が前記後部縮小通水断面積SC2Oを通過する流水に与
える前記後部流量維持流速VC2O〕]を、前記所
定流量の前記流量維持エネルギE系の流水に供給する
後部流量維持加圧送水手段とを有し、 水車出力容量(kW)={所定流量(S×V10)}
×{g×(H+10.33mAq)}×水車効率−
{(流入・流出損失補償圧力エネルギ)+{所定流量
(S×V10)}×(水速Vの動圧)+(後部流量
維持用補充運動エネルギEC2K)}÷(人為エネルギ
の電力効率) を得ることを特徴とする。
In order to solve the above problems, the device for converting gravity acting on the fluid flow into kinetic energy according to the fifth aspect of the present invention has the effect of gravity on the atmosphere and the water flow and the water depth H.
Flow velocity V H (m / sec) at (m) and gravity flow to the atmosphere and water flow that acts on each part of the water flow and maintains resistance to each part of the water flow and maintains the water speed V H at the water depth H Unidirectional total pressure P FH = specific static pressure P SH + specific dynamic pressure P KH = [ρ × g × due to the pressure bias due to the action in the direction and the action of gravity on the atmosphere and the water flow at the water depth H
(H + 10.33m Aq) - { ρ × (V H) 2 ÷ 2}]
+ {Ρ × (V H ) 2 ÷ 2} = ρ × g × (H + 10.33
m Aq ) (t / m 2 ) and a unit time unit flow rate 1 (m 3 / sec) based on the action of gravity on the atmosphere and water flow
Specific energy E FH of water flow at said water depth H per
(The specific pressure energy E corresponding to the specific static pressure P SH
PH ) + (specific kinetic energy E KH corresponding to the specific dynamic pressure P KH ) = 1 (m 3 / sec) × [ρ × g × (H +
10.33 m Aq )-{ρ × (V H ) 2 ÷ 2}] (t /
m 2) +1 (m 3 / sec) × {ρ × (V H) 2 ÷ 2}
(T / m 2 ) = 1 × ρ × g × (H + 10.33m Aq )
(T · m / sec), in a water stream that circulates on a global scale such as a sea current or a tidal current, in a water stream that flows by a gradient such as a river or an open channel, or relative movement with water. The cross-sectional area S 1 (in the moving body above or under water, which can treat the force for maintaining and the relative velocity with water as the pressure bias due to the action of gravity in the flow direction on the atmosphere and the water flow and the water velocity V H , m 2 ) at the inlet of the flow velocity V 1 (m / se
c) Arbitrary water depth H 1 (m), the axial flow turbine provided near the center is placed at water depth H (m), and the drainage port of water cross section S 2 (m 2 ) is It is arranged at the water depth H at a speed of V 2 (m / sec) or at a water depth H 2 (m) deeper than the water depth H, and the water passage cross-sections S 1 and S 2 are calculated based on the equation for the water turbine output capacity described later ( S 1 × predetermined inflow velocity V 10 ) = (S 2 × predetermined outflow velocity V 20 below water velocity V 2 ) (m 3 / sec) =
(A predetermined flow rate that provides a required output), and the water flow cross-sectional area from the inflow port toward the axial water turbine is increased by the water flow and the water wheel inflow velocity V G1O (m / se
In c), it is reduced to a turbine inflow water cross-sectional area S G1O (m 2 ) so as to flow into the axial water turbine, and the water cross-sectional area from the drain port to the axial water turbine is set to the axial water turbine. towards waterwheel outlet water passage cross-sectional area S G2I (m 2) which is flowing water flowing out from the axis running water wheel while deflected circumferentially passes at a rate maintaining the flow velocity V G2I (m / sec) and = the water turbine inlet passage A hydraulic pipe connected in a circumferentially deflected state to an axial outlet of the axial flow turbine having a larger water cross-sectional area by gradually reducing to a water sectional area S G1O , the inlet and the axial flow water. All of the inflow loss pressure (t / m 2 ) generated in the flowing water of the predetermined flow rate of the turbine driving energy E T system between the vehicle outlets,
Outflow loss Pressure (t / m 2) inflow and outflow loss compensation pressure and all compensating to zero the generated running water of the predetermined flow rates maintain the energy E F system between the outlet and the water outlet of the shaft running water wheel Inflow / outflow loss compensation pressure energy (t · m / sec) that generates (t / m 2 ) = (S 1 × V 10 ) ×
(Inflow / outflow loss compensation pressure) and {predetermined flow rate (S 1 × V
10)} × (a front flow maintains pressure pumping water means for supplying running water of the water turbine drive energy E T based water speed V 2 dynamic) and the water pressure pipe, the drainage and the axis running water car outlet In the rear reduced water flow cross-section S C2O at any position between the mouths, the supplemental kinetic energy for rear flow rate maintenance E C2K ≧ [rear flow rate maintenance flow velocity V C2O = {(S 2 × V 20 ) /
S C2O } kinetic energy of flowing water at a predetermined flow rate] × [1-
[{(The inflow energy E 1 −the water turbine drive energy E
Flow velocity V C2O0 } 2 / {inflow energy E 1 given by T ) to the flowing water passing through the rear reduced water flow cross-sectional area S C2O
Said rear flow maintaining the flow velocity V C2O} 2]], the rear flow maintains pressure pumping for supplying the running water of the flow rate maintained energy E F system of the predetermined flow rate but that gives the water flow passing through said rear reduced water passage cross-sectional area S C2O Water means, and water turbine output capacity (kW) = {predetermined flow rate (S 1 × V 10 )}
X {g x (H + 10.33 m Aq )} x turbine efficiency-
{(Inflow / outflow loss compensation pressure energy) + {Predetermined flow rate (S 1 × V 10 )} × ( Dynamic pressure of water velocity V 2 ) + (Replacement kinetic energy for rear flow rate maintenance E C2K )} ÷ (of artificial energy Power efficiency).

【0015】本願第6発明の流体の流れに作用する重力
を運動エネルギに変換する装置は、上記の課題を解決す
るために、大気に対する重力の作用と、風速V(m/
sec)と、大気の各部に作用し大気の各部の移動に対
する抵抗と釣り合い前記風速Vを維持する大気に対す
る重力の作用を伴う風の方向への圧力の偏りと、大気に
対する重力の作用に基づく前記風速Vの風の固有全圧
FH=固有静圧PSH+固有動圧PKH=[ρ×g×
10.33mAq−{ρ×(V÷2}]+{ρ
×(V÷2}=ρ×g×10.33mAq(t
/m)と、大気に対する重力の作用に基づく単位時間
単位通過流量1(m/sec)当たりの前記風速V
の風の固有エネルギEFH=(前記固有静圧PSHに対
応する固有圧力エネルギEPH)+(前記固有動圧P
KHに対応する固有運動エネルギEKH)=1(m
sec)×[ρ×g×10.33mAq−{ρ×(V
÷2}](t/m)+1(m/sec)×
{ρ×(V÷2}(t/m)=1×ρ×g×
10.33mAq(t・m/sec)とを有する風の
中、又は、大気との相対運動を維持する力と大気との相
対速度とを前記の大気に対する重力の作用を伴う風の方
向への圧力の偏りと前記風速Vとして扱える大気中の
移動体において、通気断面積S(m)の流入口を風
速V(m/sec)の位置に有し、軸流風車を中央部
付近に有し、通気断面積S(m)の排気口を風速V
(m/sec)の位置に有し、流速によるρの変化
を補正した前記通気断面積S、Sを、後述の風車出
力容量の式に基づいて、(S×所定流入流速V10
=(S×風車V以下の所定流出流速V20)(m
/sec)=(所要出力が得られる所定流量)となるよ
うに設定すると共に、前記流入口から前記軸流風車に向
かう通気断面積を、流通空気が増速して風車流入流速V
G1O(m/sec)で前記軸流風車に流入するように
風車流入通気断面積SG1O(m)にまで縮小し、前
記排気口から前記軸流風車までの通気断面積を、前記軸
流風車に向かって円周方向に偏向させながら前記軸流風
車から流出してくる流通空気が流量維持流速V
G2I(m/sec)で通過する風車流出通気断面積S
G2I(m)=前記風車流入通気断面積SG1Oにま
で徐々に縮小して通気断面積がより大きな前記軸流風車
の軸方向の出口に円周方向に偏向した状態で接続する風
圧管と、前記入口と前記軸流風車の出口間の風車駆動エ
ネルギE系の前記所定流量の流通空気に発生する流入
損失圧力(t/m)の全部と、前記軸流風車の出口と
前記排気口間の流量維持エネルギE系の前記所定流量
の流通空気に発生する流出損失圧力(t/m)の全部
とを0に補償する流入・流出損失補償圧力(t/m
を発生させる流入・流出損失補償圧力エネルギ(t・m
/sec)=(S×V10)×(流入・流出損失補償
圧力)と{所定流量(S×V10)}×(風速V
動圧)を前記風圧管内の前記風車駆動エネルギE系の
流通空気に供給する前部流量維持加圧送風手段と、前記
軸流風車の出口と前記排気口間の任意の位置にある後部
縮小通気断面積SC2Oにおいて、後部流量維持用補充
運動エネルギEC2K≧[後部流量維持流速VC2O
{(S×V20)/SC2O}の所定流量の流通空気
の運動エネルギ]×[1−〔{(前記流入エネルギE
−前記風車駆動エネルギE)が前記後部縮小通気断面
積SC2Oを通過する流通空気に与える流速
C2O0/{前記流入エネルギEが前記後部縮
小通気断面積SC2Oを通過する流通空気に与える前記
後部流量維持流速VC2O〕]を前記所定流量の前
記流量維持エネルギE系の流通空気に供給する後部流
量維持加圧送風手段とを有し、 風車出力容量(kW)={所定流量(S×V10)}
×{g×10.33mAq}×風車効率−{(流入・流
出損失補償圧力エネルギ)+{所定流量(S×
10)}×(風速Vの動圧)+(後部流量維持用補
充運動エネルギEC2K)}÷(人為エネルギの電力効
率) を得ることを特徴とする。
In order to solve the above-mentioned problems, the device for converting gravity acting on the flow of fluid into kinetic energy according to the sixth aspect of the present invention and the action of gravity on the atmosphere and the wind speed V H (m / m).
sec) and the resistance to the movement of each part of the atmosphere and the resistance to the movement of each part of the atmosphere are balanced, and the bias of the pressure in the direction of the wind accompanied by the effect of gravity on the atmosphere maintaining the wind velocity V H and the effect of gravity on the atmosphere Inherent total pressure P FH of wind at the wind speed V H = Inherent static pressure P SH + Inherent dynamic pressure P KH = [ρ × g ×
10.33m Aq - {ρ A × ( V H) 2 ÷ 2}] + {ρ
A × (V H ) 2 ÷ 2} = ρ × g × 10.33 m Aq (t
/ M 2 ) and the wind speed V H per unit time unit flow rate 1 (m 3 / sec) based on the action of gravity on the atmosphere
Specific energy of the wind E FH = (specific pressure energy E PH corresponding to the specific static pressure P SH ) + (the specific dynamic pressure P SH
Specific kinetic energy corresponding to KH E KH) = 1 (m 3 /
sec) × [ρ × g × 10.33m Aq - {ρ A × (V
H ) 2 ÷ 2}] (t / m 2 ) +1 (m 3 / sec) ×
A × (V H ) 2 ÷ 2} (t / m 2 ) = 1 × ρ × g ×
In the wind having 10.33 m Aq (t · m / sec), or the force for maintaining the relative motion with the atmosphere and the relative velocity with the atmosphere in the direction of the wind accompanied by the action of gravity on the atmosphere. in the mobile in the atmosphere can handle a bias pressure as the wind speed V H of has an inlet ventilation cross-sectional area S 1 (m 2) in the position of the wind speed V 1 (m / sec), the central axial flow wind turbine And an exhaust port having a ventilation cross-sectional area S 2 (m 2 ) near the wind speed V
Has at the position of 2 (m / sec), the corrected changes in [rho A by the flow rate ventilation cross-sectional area S 1, S 2, based on the formula of the windmill output capacity of below, (S 1 × predetermined inlet flow rate V 10 )
= (S 2 × predetermined outflow velocity V 20 below V 2 ) (m 3
/ Sec) = (predetermined flow rate at which a required output is obtained), and the ventilation cross-sectional area from the inlet to the axial wind turbine is increased by the circulating air to increase the wind turbine inflow velocity V.
G1O (m / sec) is reduced to a wind turbine inlet ventilation cross-sectional area S G1O (m 2 ) so as to flow into the axial wind turbine, and the ventilation cross-sectional area from the exhaust port to the axial wind turbine is changed to the axial flow. The circulating air flowing out from the axial-flow wind turbine while being deflected in the circumferential direction toward the wind turbine is a flow-rate maintaining flow velocity V.
Wind turbine outflow ventilation cross-section area S passing at G2I (m / sec)
G2I (m 2 ) = a wind turbine connected to the axial outlet of the axial wind turbine in a state of being circumferentially deflected while being gradually reduced to the wind turbine inflow ventilation cross-sectional area S G1O and having a larger ventilation cross-sectional area. the a whole inflow loss pressure generated in the distribution air in the predetermined flow rate of the wind turbine drive energy E T system between the outlet of said inlet and said axial flow wind turbine (t / m 2), and outlet of the axial flow wind turbine exhaust Inlet / outlet loss compensating pressure (t / m 2 ) for compensating to 0 all of the outflow loss pressure (t / m 2 ) generated in the circulating air of the above-mentioned predetermined flow rate of the flow rate maintenance energy E F system between the ports
Inflow / outflow loss compensating pressure energy (t ・ m
/ Sec) = (S 1 × V 10 ) × (inflow / outflow loss compensation pressure) and {predetermined flow rate (S 1 × V 10 )} × (dynamic pressure at wind speed V 2 ) as the wind turbine drive energy in the wind pressure pipe a front flow maintains pressure pumping air means for supplying the flow of air E T system, at the rear reduced airflow cross-sectional area S C2O at an arbitrary position between the outlet and the exhaust port of the axial flow wind turbine, supplemental rear flow maintained Kinetic energy E C2K ≧ [rear flow rate maintenance flow velocity V C2O =
{(S 2 × V 20 ) / S C2O } kinetic energy of circulating air at a predetermined flow rate] × [1-[{(the inflow energy E 1
The flow velocity V C2O0 } 2 / {where the inflow energy E 1 passes through the rear reduced ventilation cross-sectional area S C2O that the wind turbine drive energy E T ) gives to the circulating air passing through the rear reduced ventilation cross-sectional area S C2O The rear flow rate maintaining flow velocity V C2O } 2 ]] to the circulating air of the flow rate maintaining energy E F system at the predetermined flow rate, and a wind turbine output capacity (kW) = {Predetermined flow rate (S 1 × V 10 )}
X {g x 10.33 m Aq } x wind turbine efficiency-{(inflow / outflow loss compensation pressure energy) + {predetermined flow rate (S 1 x
V 10 )} × (dynamic pressure of wind velocity V 2 ) + (replenishment kinetic energy for rear flow rate maintenance E C2K )} ÷ (power efficiency of artificial energy).

【0016】又、本願第5、第6発明の流体の流れに作
用する重力を運動エネルギに変換する装置は、上記の課
題を解決するために、水圧管又は風圧管は、流入口から
通水(気)断面積が縮小する通水(気)路を有する流入
部と、前記流入部に接続する前部円筒形類似空間と、前
記前部円筒形類似空間内にあり円周方向への偏向角を次
第に大きくして前記前部円筒形類似空間の通水(気)断
面積を次第に小さくする複数枚の前部ガイドベーンとか
らなり、出口での水(風)車流入通水(気)断面積S
G1O(m)と流水(流通空気)の水(風)車流入流
速VG1O(m/sec)とを有する前部ガイドベーン
部と、前記水(風)車流入流速VG1Oで前記前部ガイ
ドベーン部から円周方向に偏向して流出する流水(流通
空気)を受け、円周方向に偏向した前記水(風)車流入
流速VG1Oの方向を軸方向に変えることにより、前記
水(風)車流入流速VG1Oの円周方向成分流速VTK
(m/sec)の運動エネルギで円周方向に回転駆動さ
れ、前記水(風)車流入流速VG1Oの軸方向成分流
速、或いは、負荷率で決まる水(風)車流出流速VTO
(m/sec)で通水(気)断面積STO(m)の水
(風)車出口から流水(流通空気)を流出させ、{(水
(風)車流入流速VG1Oの運動エネルギ)−(水
(風)車流出流速VTOの運動エネルギ)}からなる水
(風)車駆動エネルギEによって駆動されるランナー
を有する軸流水(風)車と、前記軸流水(風)車の出力
を外部に伝える出力装置と、前記軸流水(風)車の出口
に接続する後部円筒形類似空間と、前記後部円筒形類似
空間内にあり上流側入口では円周方向への偏向角が最も
大きく、下流に向かって円周方向への偏向角を徐々に小
さくして前記後部円筒形類似空間の通水(気)断面積を
徐々に大きくする複数枚の後部ガイドベーンとからな
り、入口での水(風)車流出通水断面積S
G2I(m)と流水(流通空気)の流量維持流速V
G2I(m/sec)とを有する後部ガイドベーン部
と、前記後部ガイドベーン部の出口に接続し、その通水
(気)断面積を徐々に拡大する流出部とを有することが
好適である。
In order to solve the above problems, the apparatus for converting gravity acting on the flow of fluid into kinetic energy according to the fifth and sixth inventions of the present invention, the hydraulic pipe or the wind pipe is provided with water flowing from the inflow port. An inflow portion having a water (air) passage with a reduced (air) cross-sectional area, a front cylindrical similar space connected to the inflow portion, and a deflection in the circumferential direction in the front cylindrical similar space. It consists of a plurality of front guide vanes that gradually increase the angle and gradually reduce the water (air) cross-sectional area of the front cylindrical similar space, and the water (wind) turbine inflow water (air) at the outlet. Cross-sectional area S
G1O (m 2 ) and a water (wind) wheel inflow velocity V G1O (m / sec) of running water (circulating air), and a front guide vane portion having the water (wind) wheel inflow velocity V G1O. By receiving the flowing water (circulating air) that is deflected in the circumferential direction from the guide vanes and flowing out, the direction of the water (wind) turbine inflow velocity V G1O that is deflected in the circumferential direction is changed to the axial direction. Wind) Vehicle inflow velocity V G1O circumferential component velocity V TK
It is rotationally driven in the circumferential direction with kinetic energy of (m / sec), and the water (wind) turbine outflow velocity V TO is determined by the axial component flow velocity of the water (wind) turbine inflow velocity V G1O or the load factor.
At (m / sec), flowing water (circulating air) is let out from the water (wind) wheel outlet of the water (air) cross-sectional area S TO (m 2 ) and {(water (wind) wheel inflow velocity V G1O kinetic energy ) - a shaft running water (wind) car with a (water (wind) runners driven by a drive outflow velocity V tO of consisting kinetic energy)} water (wind) car drive energy E T, said axis running water (wind) car Output device for transmitting the output of the, the rear cylindrical similar space connected to the outlet of the axial water (wind) turbine, the deflection angle in the circumferential direction at the upstream inlet in the rear cylindrical similar space The inlet is composed of a plurality of rear guide vanes that are the largest and gradually reduce the deflection angle in the circumferential direction toward the downstream to gradually increase the water (air) cross-sectional area of the rear cylindrical similar space. Water (wind) turbine outflow cross-sectional area S at
Flow rate maintenance flow velocity V of G2I (m 2 ) and running water (circulating air)
It is preferable to have a rear guide vane part having G2I (m / sec), and an outflow part connected to the outlet of the rear guide vane part and gradually increasing the water (air) cross-sectional area thereof.

【0017】[0017]

【作用】本願発明の請求項は11項あるが、基本的な作
用は共通なので、一括して説明する。先ず、本願発明
は、従来の流体力学のベルヌーイの式の概念が示す、重
力の作用下にある流体の流れの各流管内の全エネルギ=
運動エネルギ+圧力エネルギ+位置エネルギが流れの上
流側から下流側に移動しているという誤りを修正し、下
記のように取り扱っている。即ち、流体の流れの各流管
内の全エネルギの中で、圧力エネルギは、夫々の流管内
の各部分毎にその部分の静圧によりその部分で独立して
構成されるものであり本質的に移動しない、又、位置エ
ネルギは、流体の流れの各部分が同じ質量の流体に囲ま
れているので存在し得ない、又、運動エネルギは、流体
全体がエネルギのキャリアであるので、移動する流体に
伴って移動するが、運動エネルギを発生させるのは、流
体の流れの各流管の各部分の上方を流れる流体に作用す
る重力であり、重力の作用によって発生する流体の静圧
が流れの方向への勾配の存在によって流れの方向に偏
り、この偏りが、流体の流れの各流管内の各部分に個別
に作用し、抵抗と釣り合う流速を各流管内の各部分に個
別に発生させている。ベルヌーイの式は、空中にあり位
置エネルギが作用する水圧管については使用可能である
が、流体の流れ及び流体の流れの中にある流管について
は使用できない。以下に詳細に説明する。
Although there are 11 claims of the present invention, since the basic functions are common, they will be described collectively. First, the present invention shows that the total energy in each flow tube of a fluid flow under the action of gravity is represented by the concept of the conventional Bernoulli equation of fluid dynamics =
The error that the kinetic energy + pressure energy + potential energy is moving from the upstream side to the downstream side of the flow is corrected and treated as follows. That is, of the total energy in each flow tube of the fluid flow, the pressure energy is, for each part in each flow tube, independently constituted by the static pressure of that part and is essentially No transfer or potential energy can exist because each part of the fluid flow is surrounded by fluid of the same mass, and kinetic energy is the moving fluid because the entire fluid is a carrier of energy. However, it is the gravity acting on the fluid flowing above each part of each flow tube of the fluid flow, and the static pressure of the fluid generated by the action of gravity causes the kinetic energy to move. The presence of a directional gradient causes the flow to be biased in the direction of flow, which acts individually on each part of the flow of fluid in each flow tube, causing a flow velocity that is commensurate with the resistance to be individually generated in each flow tube. There is. The Bernoulli equation can be used for penstocks that are in the air and subject to potential energy, but not for fluid flow and flowtubes that are in fluid flow. The details will be described below.

【0018】流体の流れについて、 1.重力の作用で流れる流体の各部分の流速は、重力に
よりその部分に作用する静圧と、流体の流れの表面の勾
配面に平行である前記静圧の等圧面の勾配とによる圧力
の偏りで決まる。風の場合は、大気に対する重力の作用
を伴って風の方向、即ち、大気圧の等圧面の方向に向か
う圧力の偏りによって決まるが、作用そのものは共通な
ので、以下に、水流の場合を例にして説明する。重力の
作用で流れる水流の水深H(m)での水速V(m/s
ec)は、大気と水流とに対する重力の流れ方向への作
用による圧力の偏りが、水流の各部に作用し水流の各部
に対する抵抗と釣り合う状態になるように前記水深Hで
の前記水速Vを決めている。
Regarding the flow of fluid: 1. The flow velocity of each part of the fluid flowing by the action of gravity is a bias of the pressure due to the static pressure acting on that part by gravity and the gradient of the static pressure isostatic surface parallel to the gradient surface of the surface of the fluid flow. Decided. In the case of wind, it depends on the bias of the pressure in the direction of the wind accompanied by the action of gravity on the atmosphere, that is, in the direction of the isobar of atmospheric pressure. Explain. Water velocity V H (m / s at depth H (m) of water flow due to the action of gravity
ec) is the water velocity V H at the water depth H so that the pressure bias due to the action of gravity in the flow direction on the atmosphere and the water flow is in a state of acting on each part of the water flow and balancing with the resistance to each part of the water flow. Have decided.

【0019】2.従って、水流の水深Hでの全圧は、大
気と水流とに対する重力の作用で決まり、水深Hでの水
流の固有全圧PFH=固有静圧PSH+固有動圧PKH
=[ρ×g×(H+10.33mAq)−{ρ×
(V÷2}]+{ρ×(V÷2}=ρ×g
×(H+10.33mAq)(t/m)となる。
2. Therefore, the total pressure of the water flow at the water depth H is determined by the action of gravity on the atmosphere and the water flow, and the intrinsic total pressure P FH of the water flow at the water depth H = intrinsic static pressure P SH + intrinsic dynamic pressure P KH
= [Ρ × g × (H + 10.33m Aq ) − {ρ ×
(V H ) 2 ÷ 2}] + {ρ × (V H ) 2 ÷ 2} = ρ × g
It becomes x (H + 10.33 m Aq ) (t / m 2 ).

【0020】3.又、水流の水深Hでの単位時間単位通
過流量1(m/sec)当たりのエネルギも、大気と
水流とに対する重力の作用で決まり、水深Hでの水流の
固有エネルギEFH=(前記固有静圧PSHに対応する
固有圧力エネルギEPH)+(前記固有動圧PKHに対
応する固有運動エネルギEKH)=1(m/sec)
×[ρ×g×(H+10.33mAq)−{ρ×
(V÷2}](t/m)+1(m/sec)
×{ρ×(V÷2}(t/m)=1×ρ×g×
(H+10.33mAq)(t・m/sec)となる。
3. Also, the energy per unit time unit flow rate 1 (m 3 / sec) of the water flow at the water depth H is determined by the action of gravity on the atmosphere and the water flow, and the natural energy E FH of the water flow at the water depth H = specific pressure energy E PH) corresponding to the static pressure P SH + (the inherent dynamic pressure P inherent kinetic energy corresponding to KH E KH) = 1 (m 3 / sec)
× [ρ × g × (H + 10.33m Aq ) − {ρ ×
(V H ) 2 ÷ 2}] (t / m 2 ) +1 (m 3 / sec)
× {ρ × (V H ) 2 ÷ 2} (t / m 2 ) = 1 × ρ × g ×
(H + 10.33 m Aq ) (t · m / sec).

【0021】4.上記のように、流速や流量は水面の勾
配で決まり、水流の全圧と単位時間単位通過流量当たり
のエネルギとは大気と水流とに対する重力の作用と水深
とで決まる固有値になる。従って、固有という語句を付
けて、水深Hでの水流の固有全圧PFH=固有静圧P
SH+固有動圧PKH=ρ×g×(H+10.33m
Aq)(t/m)、水深Hでの水流の固有エネルギE
FH=(前記固有静圧PSHに対応する固有圧力エネル
ギEPH)+(前記固有動圧PKHに対応する固有運動
エネルギEKH)=1×ρ×g×(H+10.33m
Aq)(t・m/sec)として、人為エネルギによる
静圧や動圧と区別できる。従って、水流の各部分に流れ
方向に作用する力がその部分の水深に対応して変化し、
水流の深さ方向に隣接する流管間に相互に作用する力が
存在するので、定常流になった水流でも、水流内の深さ
方向に隣接する流管の側面間に摩擦やエネルギの出入り
が必ず存在する。そして本願発明のこの考え方による
と、水流では水面から少し下の部分の流速が最も速いと
いう良く知られた現象を説明できる。ベルヌーイの式で
は、定常流の水流を、完全流体として取り扱い、流管の
側面間での摩擦やエネルギの出入りがないとしている。
これは、エネルギ保存則の説明には都合が良いが、実体
とは異なり、実際には、流管の側面間での摩擦による損
失が流管の各部分にありその損失をその部分の上方にあ
る流体の流れに対する重力の作用が補充して流れてい
る。又、ベルヌーイの式の位置エネルギは、空中にある
水圧管内には存在するが、水流中にある水圧管の場合に
は、水圧管外の水流の位置エネルギと相殺されて存在し
得ない。
4. As described above, the flow velocity and the flow rate are determined by the gradient of the water surface, and the total pressure of the water flow and the energy per unit time unit flow rate are eigenvalues determined by the action of gravity on the atmosphere and the water flow and the water depth. Therefore, by adding the word “specific”, the specific total pressure P FH of the water flow at the water depth H = the specific static pressure P
SH + intrinsic dynamic pressure P KH = ρ × g × (H + 10.33 m
Aq ) (t / m 2 ), specific energy E of water flow at water depth H
FH = (the unique static P specific pressure energy corresponding to the SH E PH) + (the inherent dynamic pressure P KH corresponding to the unique kinetic energy E KH) = 1 × ρ × g × (H + 10.33m
Aq ) (t · m / sec) can be distinguished from static pressure and dynamic pressure due to artificial energy. Therefore, the force acting on each part of the water flow in the flow direction changes corresponding to the water depth of that part,
Since there is a force that interacts between adjacent flow pipes in the depth direction of the water flow, even if the flow becomes a steady flow, friction and energy flow in and out between the side faces of the flow pipes adjacent in the depth direction of the water flow. Is always present. Then, according to this idea of the present invention, it is possible to explain a well-known phenomenon that the flow velocity of a portion slightly below the water surface is the fastest in the water flow. Bernoulli's equation treats a steady stream of water as a complete fluid, with no friction or energy flow between the sides of the flow tube.
This is convenient for explaining the law of conservation of energy, but unlike the substance, in reality, there is a loss due to friction between the side surfaces of the flow tube in each part of the flow tube, and the loss is above that part. The effect of gravity on the flow of a certain fluid is supplemented. Also, the potential energy of Bernoulli's equation exists in the penstock in the air, but in the case of a penstock in the water flow, it cannot be offset by the potential energy of the water flow outside the penstock.

【0022】5.流体の流れのエネルギに関する本願発
明の上記の理論によると、開水路の水流や風の場合で
も、管路の中の流水や流通空気の場合でも、これらの流
体の各部分に、大気や水流に対する重力の作用や人為的
エネルギの供給によって、流体の各部分に静圧が供給さ
れておりさえすれば、流体の各部分に対する重力の作用
や人為的エネルギによって力が与えられると、その力と
流体の移動に対する抵抗とが釣り合う速度で流体が移動
する。そして、その際に、流体の各部分の全圧は、全圧
=流体の移動速度の動圧+流体の移動速度に対応する静
圧となり、この中から、重力の作用によるものを、水深
Hでの水流の固有全圧PFH=固有静圧PSH+固有動
圧PKH=[ρ×g×(H+10.33mAq)−{ρ
×(V÷2}]+{ρ×(V÷2}=ρ×
g×(H+10.33mAq)(t/m)として分離
することができる。そして、水圧管内の流水について
は、流体力学の連続の式が成立し、且つ、単位時間単位
通過流量当たりの固有エネルギが水深で決まるので、水
圧管各部分の流速を水圧管各部分の通水断面積で固定す
ることができ、又、水全体がエネルギのキャリアである
ので、水圧管各部分の水流が有する水深Hでの水流の固
有エネルギEFH=(前記固有静圧PSHに対応する固
有圧力エネルギEPH)+(前記固有動圧PKHに対応
する固有運動エネルギEKH)=1(m/sec)×
[ρ×g×(H+10.33mAq)−{ρ×(V
÷2}](t/m)+1(m/sec)×{ρ×
(V÷2}(t/m)=1×ρ×g×(H+1
0.33mAq)を水圧管各部分の通水断面積で固定さ
せることができる。例えば、中央部に水車を設けた水圧
管を水流の中に設置した場合、水圧管各部分の通水断面
積を調整することにより、水車の上流側に供給された各
種のエネルギから、水車の出口までに消費すべきエネル
ギを水車の出口までに消費し、水車の下流側にまでその
まま通過させるべきエネルギは水車を通過させることが
できる。従って、本願発明のように水圧管の通水断面積
を設定すれば、水圧管の流入口から水車まで流入口近傍
の水流の固有全圧を作用させ、水圧管の排出口から水車
まで、排水口近傍の水流の固有静圧を遡らせ、更に、排
水口近傍の水流の水速Vの動圧に対応する圧力エネル
ギを水圧管の流入口から供給することにより、前記水車
の下流側の水圧管内の静圧が、前記の遡る固有静圧+前
記排水口近傍の水流の水速Vの動圧に対応する圧力エ
ネルギ=前記固有全圧となり、前記水車の下流側の水圧
管内の流水に運動エネルギを与えれば、本願発明の他の
要件を揃えることにより、その水流に前記固有エネルギ
を発生させることができる。
5. According to the above theory of the present invention relating to the energy of the fluid flow, whether in the case of water flow or wind in an open channel, or in the case of running water or circulating air in a conduit, each part of these fluids is exposed to the atmosphere or water flow. As long as static pressure is supplied to each part of the fluid by the action of gravity or the supply of artificial energy, when the force is exerted by the action of gravity or artificial energy on each part of the fluid, the force and the fluid The fluid moves at a speed that balances the resistance to the movement of the fluid. Then, at that time, the total pressure of each part of the fluid becomes the total pressure = the dynamic pressure of the moving speed of the fluid + the static pressure corresponding to the moving speed of the fluid. Inherent total pressure P FH = intrinsic static pressure P SH + intrinsic dynamic pressure P KH = [ρ × g × (H + 10.33m Aq ) − {ρ
× (V H ) 2 ÷ 2}] + {ρ × (V H ) 2 ÷ 2} = ρ ×
It can be separated as g × (H + 10.33m Aq ) (t / m 2 ). For the running water in the penstock, the continuous equation of fluid dynamics is established, and the specific energy per unit time unit passing flow rate is determined by the water depth, so the flow velocity of each part of the penstock is determined by the flow velocity of each part of the penstock. Since it can be fixed by the cross-sectional area, and the whole water is an energy carrier, the specific energy E FH = (corresponding to the specific static pressure P SH of the water flow at the water depth H possessed by the water flow in each part of the penstock specific kinetic energy E KH) = 1 corresponding to the unique pressure energy E PH) + (the inherent dynamic pressure P KH (m 3 / sec) ×
[Ρ × g × (H + 10.33m Aq ) − {ρ × (V H ).
2 ÷ 2}] (t / m 2 ) +1 (m 3 / sec) × {ρ ×
(V H ) 2 ÷ 2} (t / m 2 ) = 1 × ρ × g × (H + 1
0.33 m Aq ) can be fixed by the water passage cross-sectional area of each part of the penstock. For example, when a hydraulic tube with a turbine in the center is installed in the water flow, by adjusting the water passage cross-sectional area of each section of the hydraulic tube, various energy supplied to the upstream side of the turbine can be used to control the energy of the turbine. The energy that should be consumed up to the outlet can be consumed up to the outlet of the water turbine, and the energy that should be passed to the downstream side of the water turbine as it is can pass through the water turbine. Therefore, if the water passage cross-sectional area of the penstock is set as in the present invention, the intrinsic total pressure of the water flow in the vicinity of the inlet acts from the inlet of the penstock to the water wheel, and the drainage of the penstock from the outlet to the water wheel. The specific static pressure of the water flow near the mouth is traced back, and pressure energy corresponding to the dynamic pressure of the water velocity V 2 of the water flow near the drainage port is supplied from the inlet of the penstock to reduce the pressure on the downstream side of the water turbine. The static pressure in the hydraulic pipe is the above-mentioned inherent static pressure + pressure energy corresponding to the dynamic pressure of the water velocity V 2 of the water flow near the drainage port = the specific total pressure, and the running water in the hydraulic pipe on the downstream side of the water turbine If the kinetic energy is applied to the water flow, the above-mentioned specific energy can be generated in the water flow by adjusting the other requirements of the present invention.

【0023】6.水圧管については、断面積S
(m)の流入口を流速V(m/sec)の任意の
水深H(m)に配置し、中央部付近に設けられた軸流
水車を水深H(m)に配置し、通水断面積S(m
の排水口を水速V(m/sec)の前記水深H又はそ
れより深い水深H(m)に配置し、前記通水断面積S
、Sを、後述の水車出力容量の式に基づいて、(S
×所定流入流速V10)=(S×水速V以下の所
定流出流速V20)(m/sec)=(所要出力が得
られる所定流量)となるように設定すると共に、前記流
入口から前記軸流水車に向かう通水断面積を、流水が増
速して水車流入流速VG1O(m/sec)で前記軸流
水車に流入するように水車流入通水断面積SG1O(m
)にまで縮小し、前記排水口から前記軸流水車までの
通水断面積を、前記軸流水車に向かって円周方向に偏向
させながら前記軸流水車から流出してくる流水が流量維
持流速VG2I(m/sec)で通過する水車流出通水
断面積SG2I(m)=前記水車流入通水断面積S
G1Oにまで徐々に縮小して通水断面積がより大きな前
記軸流水車の紬方向の出口に円周方向に偏向した状態で
接続する。
6. For penstock, cross-sectional area S
The inflow port of 1 (m 2 ) is arranged at an arbitrary water depth H 1 (m) of the flow velocity V 1 (m / sec), and the axial flow turbine provided near the central portion is arranged at the water depth H (m), Water cross section S 2 (m 2 )
Of the drainage port of the water is arranged at the water depth H of water velocity V 2 (m / sec) or at a deeper water depth H 2 (m), and the water passage cross-section S
1 and S 2 based on the formula for the hydraulic turbine output capacity described later (S
1 × predetermined inflow velocity V 10 ) = (S 2 × predetermined outflow velocity V 20 equal to or less than water velocity V 2 ) (m 3 / sec) = (predetermined flow rate at which required output is obtained) The cross sectional area of water flowing into the turbine S G1O (S G1O so that the flowing water is accelerated to flow into the axial flowing turbine at a flow velocity of the turbine flowing into the turbine of V G1O (m / sec). m
2 ) to maintain the flow rate of running water flowing out from the axial flow turbine while reducing the water flow cross-sectional area from the drain port to the axial flow turbine in the circumferential direction toward the axial flow turbine. Turbine outflow cross-sectional area S G2I (m 2 ) = turbine inflow cross-sectional area S passing at a flow velocity V G2I (m / sec)
G1O is gradually reduced to a larger flow cross-sectional area and connected to the outlet in the pongee direction of the axial flow turbine in a state of being deflected in the circumferential direction.

【0024】7.上記のように、水圧管の流入口と排水
口との双方から水圧管の中央部にある軸流水車に向かっ
て通水断面積が縮小していると、前記の水深Hでの水流
の固有全圧PFHが流入口から軸流水車まで作用し、前
記の水深Hでの水流の固有静圧PSHが排水口から軸流
水車まで遡って作用する。この場合、排水口から遡るの
は水の移動を伴うエネルギではなく水を移動させない静
圧である。しかし、前述の固有全圧PFHと固有エネル
ギEFHとの説明から、水圧管内の全長にわたって、単
位時間単位通過流量当たりの固有エネルギEFHを揃え
て流量を維持するには、水車と排水口間に、固有全圧P
FHと固有静圧PSHとの差である固有動圧PKH
{ρ×(V÷2}を人為的に補充する必要があ
る。この動圧の補充は、排水口から遡って行うことがで
きないので、後に説明する流入・流出損失補償圧力を水
車の上流側の水圧管内の流水に供給する際に、同時に、
軸流水車の上流側から供給する。
7. As described above, when the water passage cross-sectional area is reduced from both the inlet and the outlet of the penstock toward the axial flow turbine in the central part of the penstock, the characteristic of the water flow at the water depth H is obtained. The total pressure P FH acts from the inflow port to the axial flow turbine, and the specific static pressure P SH of the water flow at the water depth H acts from the drain port back to the axial flow turbine. In this case, what goes back from the drainage port is not the energy accompanied by the movement of water but the static pressure that does not move the water. However, from the above description of the intrinsic total pressure P FH and the intrinsic energy E FH , in order to maintain the flow rate by aligning the intrinsic energy E FH per unit time unit flow rate over the entire length in the penstock, to maintain the flow rate, In between, the intrinsic total pressure P
Inherent dynamic pressure P KH = which is the difference between FH and inherent static pressure P SH
It is necessary to artificially supplement {ρ × (V H ) 2 ÷ 2}. This replenishment of the dynamic pressure cannot be performed retroactively from the drainage port, so at the same time when the inflow / outflow loss compensation pressure, which will be described later, is supplied to the running water in the hydraulic pipe on the upstream side of the water turbine,
Supply from the upstream side of the axial flow turbine.

【0025】8.水圧管の中の流水には、水圧管に妨げ
られて側面からは重力の作用がなく、又、水圧管に勾配
があっても、前述のように、水圧管内の流水に対する重
力の作用は、水圧管外の水流に対する重力の作用で相殺
される。従って、上記7.項の説明のように、重力の作
用は、流入口からの固有全圧PFHと排水口からの固有
静圧PSHとして作用するだけである。従って、水圧管
内の流水に作用して流量を発生させるには、下記のよう
に、流入・流出損失補償圧力を、流入口と水車の出口間
にある水車駆動エネルギE系の流水に人為的に供給す
る必要がある。
8. The flowing water in the penstock has no gravity effect from the side due to the obstruction of the penstock, and even if the penstock has a gradient, the gravity effect on the running water in the penstock is as described above. It is offset by the effect of gravity on the water flow outside the penstock. Therefore, the above 7. As described in the section, the action of gravity acts only as the intrinsic total pressure P FH from the inlet and the intrinsic static pressure P SH from the drain. Therefore, in order to generate a flow rate act on the flowing water of the water pressure tube, as described below, the inflow and outflow loss compensation pressure, artificially running water waterwheel drive energy E T system lying between the inlet and the waterwheel outlet Need to be supplied to.

【0026】9.流入・流出損失補償圧力について、 流入口と軸流水車の出口間の水車駆動エネルギE系の
所定流量の流水に発生する流入損失圧力(t/m)の
全部と、軸流水車の出口と排水口間の流量維持エネルギ
系の所定流量の流水に発生する流出損失圧力(t/
)の全部とを0に補償する流入・流出損失補償圧力
(t/m)を発生させる流入・流出損失補償圧力エネ
ルギ(t・m/sec)=(S×V10)×(流入・
流出損失補償圧力)、及び、(前記所定流量)×(前記
水速Vの動圧)を、自然界の水流における前述の大気
と水流とに対する重力の流れ方向への作用による圧力の
偏り、及び、前記固有全圧PFHと前記固有静圧PSH
との差に相当するものとして、前記水圧管内の前記水車
駆動エネルギE系の流水に人為的に供給する。
9. For the inflow and outflow loss compensation pressure, and all of the inflow loss pressure generated flowing water of a predetermined flow rate of the water turbine drive energy E T system between the inlet and the shaft running water wheel outlet (t / m 2), the axis running water car outlet a flow rate maintained energy E F system of outflow losses pressure generated flowing water of a predetermined flow rate between the drain port (t /
Inflow / outflow loss compensation pressure energy (t · m / sec) for generating inflow / outflow loss compensation pressure (t / m 2 ) for compensating all of m 2 ) and 0 to (S 1 × V 10 ) × ( Inflow
Outflow loss compensation pressure) and (the predetermined flow rate) × (the dynamic pressure of the water velocity V 2 ) are the bias of the pressure due to the action of gravity in the water flow of nature on the aforementioned atmosphere and water flow, and , The specific total pressure P FH and the specific static pressure P SH
As corresponding to the difference between the artificially supplied to running water of the water turbine drive energy E T system of the water pressure pipe.

【0027】10.水圧管の中に、重力の作用による静
圧があり、流入・流出損失補償圧力が供給されると、流
入・流出損失補償圧力は水圧管の抵抗が大きな部分に偏
った勾配分布で水圧管の全長に作用し、水圧管内の各部
の静圧に、所定流量を維持するに必要な圧力の偏りを発
生させて所定流量を確保する。そして、この場合、静圧
は、各部に発生した流速の動圧分だけ小さくなるので、
人為的に供給した流入・流出損失補償圧力分を除くと、
重力の作用による全圧は、前述の重力の作用下の水流の
場合と同様にして、水深Hでの水流の固有全圧PFH
固有静圧PSH+固有動圧PKH=ρ×g×(H+1
0.33mAq)となり、エネルギも、単位時間単位通
過流量当たりについては、前述の重力の作用下の水流の
場合と同様にして、水深Hでの水流の単位時間単位通過
流量当たりの固有エネルギEFH=(前記固有静圧P
SHに対応する固有圧力エネルギEPH)+(前記固有
動圧PKHに対応する固有運動エネルギEKH)1×ρ
×g×(H+10.33mAq)となる。
10. When there is static pressure due to the action of gravity in the penstock and the inflow / outflow loss compensation pressure is supplied, the inflow / outflow loss compensation pressure has a gradient distribution in which the resistance of the penstock is large. It acts on the entire length and generates a bias in the static pressure of each part in the penstock that is necessary to maintain a predetermined flow rate, thereby ensuring a predetermined flow rate. And in this case, the static pressure is reduced by the dynamic pressure of the flow velocity generated in each part,
Excluding the inflow / outflow loss compensation pressure artificially supplied,
The total pressure due to the action of gravity is similar to the case of the water flow under the action of gravity described above, and the intrinsic total pressure P FH of the water flow at the water depth H =
Intrinsic static pressure P SH + Intrinsic dynamic pressure P KH = ρ × g × (H + 1
0.33 m Aq ), and the energy per unit time unit passing flow rate is also the specific energy E per unit time unit passing flow rate of the water flow at the water depth H, as in the case of the water flow under the action of gravity described above. FH = (the intrinsic static pressure P
Specific pressure energy E PH corresponding to the SH) + (the unique hydrodynamic inherent kinetic energy corresponding to P KH E KH) 1 × ρ
To become × g × (H + 10.33m Aq ).

【0028】11.上記のように、水流中でも水圧管の
中でも、水深Hにおいては、水深Hでの水流の固有全圧
FH=固有静圧PSH+固有動圧PKH=ρ×g×
(H+10.33mAq)と、水深Hでの水流の単位時
間単位通過流量当たりの固有エネルギEFH=(前記固
有静圧PSHに対応する固有圧力エネルギEPH)+
(前記固有動圧PKHに対応する固有運動エネルギE
KH)1×ρ×g×(H+10・33mAq)とが共通
して存在する。
11. As described above, in the water flow or the penstock, at the water depth H, the intrinsic total pressure P FH of the water flow at the water depth H = intrinsic static pressure P SH + intrinsic dynamic pressure P KH = ρ × g ×
(H + 10.33 m Aq ) and specific energy E FH per unit time unit passing flow rate of water flow at water depth H = (specific pressure energy E PH corresponding to the specific static pressure P SH ) +
(Natural kinetic energy E corresponding to the above-mentioned intrinsic dynamic pressure P KH
KH ) 1 × ρ × g × (H + 10 · 33 m Aq ) are commonly present.

【0029】12.従って、軸流水車に負荷が無い場合
には、後述の流入・流出損失補償圧力エネルギと(前記
所定流量)×(前記水速Vの動圧)とを人為的に補充
すれば、中央部の通気断面積が縮小している水圧管内を
所定流量の流水が流れる。
12. Therefore, when there is no load on the axial flow turbine, if the inflow / outflow loss compensating pressure energy described later and (the predetermined flow rate) × (the dynamic pressure of the water speed V 2 ) are artificially replenished, the central portion A predetermined amount of flowing water flows in the penstock having a reduced aeration cross-sectional area.

【0030】13.流量維持作用について、 軸流水車の負荷の有無には関係なく、前記流量維持エネ
ルギE系の流水に、流出エネルギE(t・m/se
c)=(S×V20)×[前記水深Hでの単位時間単
位通過流量1当たりの水流の前記固有エネルギE
FH{1×ρ×g×(H+10.33mAq)}]が存
在すれば、排水口における、前述の大気と水流とに対す
る重力の作用と、排水口外の大気と水流とに対する重力
の流れ方向への作用による圧力の偏りと、前記水深Hで
の単位時間単位通過流量1当たりの水流の前記固有エネ
ルギEFH=1×ρ×g×(H+10.33mAq
と、前記排水口静圧PS2とが、前記流量維持エネルギ
系の流水を前記所定流量を上限として排水口から前
記排水口静圧PS2の水流中に吸い出し、水流に変化を
残すことなく流れ去らせる流量維持作用を有する。この
流量維持作用により、前記軸流水車が水車駆動エネルギ
を消費しても、小さな3つの人為エネルギである流
入・流出損失補償圧力エネルギと(前記所定流量)×
(前記水速Vの動圧)と後述の後部流量維持用補充運
動エネルギEC2Oとを水圧管内の流水に供給するだけ
で、水圧管内に、大きなエネルギ:[{前記水深Hでの
単位時間単位通過流量1当たりの水流の前記固有エネル
ギEFH=1×ρ×g×(H+10.33mAq)}×
(前記所定流量)]を維持することができる。そして、
この流量維持作用の存在が、第3種永久運動機関の実現
を可能にするが、ベルヌーイの式の概念では、この流量
維持作用は存在し得ない。これが、これまで誰も、第3
種永久運動機関の実現の可能性に気付かなかった理由の
一つであると推定する。
13. For flow maintains action, regardless of whether the load of the shaft running water wheel, the flowing water of the flow rate maintained energy E F system, the outflow energy E 2 (t · m / se
c) = (S 2 × V 20 ) × [the specific energy E of the water flow per unit time unit flow rate at the water depth H]
If FH {1 × ρ × g × (H + 10.33m Aq )}] exists, the action of gravity on the atmosphere and the water flow at the outlet and the flow direction of gravity on the atmosphere and the water outside the outlet are described. Of the pressure due to the action of and the specific energy E FH = 1 × ρ × g × (H + 10.33 m Aq ) of the water flow per unit time unit flow rate at the water depth H
When, with the water outlet static pressure P S2 is, the suction flowing water flow maintaining the energy E F system from drain outlet said predetermined flow rate as an upper limit in water of the water outlet static pressure P S2, leaving a change in water flow It has the function of maintaining the flow rate without causing it to flow away. The flow rate maintained action, even the shaft running water vehicle consumes water turbine driving energy E T, inflow and outflow losses and compensating pressure energy is small three human energy (the predetermined flow rate) ×
( Dynamic pressure at the water velocity V 2 ) and supplemental kinetic energy E C2O for maintaining the rear flow rate, which will be described later, are simply supplied to the running water in the penstock to generate large energy: [{unit time at the water depth H. The specific energy E FH of the water flow per unit passing flow rate 1 × 1 × ρ × g × (H + 10.33 m Aq )} ×
(The predetermined flow rate)] can be maintained. And
Although the existence of this flow maintaining function enables the realization of the third type permanent motion engine, the concept of Bernoulli's equation does not allow this flow maintaining operation to exist. This is the third one ever
It is presumed that this is one of the reasons why he did not notice the possibility of realizing a permanent movement engine.

【0031】14.軸流水車を駆動する場合の後部流量
維持用補充運動エネルギEC2Kについて、 負荷をかけられた軸流水車が、水車駆動エネルギE
{水車流入流速VG1Oの所定流量の水車駆動エネルギ
系の流水の運動エネルギ}−{軸流風車の軸方向の
出口での風車流出流速VTO(m/sec)の所定流量
の水車駆動エネルギE系の流水の運動エネルギ}を消
費する場合には、前述のようにして遡る排水口静圧P
S2と前述のようにして上流側から供給される水速V
の動圧とが作用して、前述の水深Hでの水流の固有エネ
ルギEFH=1×ρ×g×(H+10.33mAq)と
固有全圧PFH=ρ×g×(H+10.33mAq)と
を構成する通水断面積が、軸流水車の出口の水車流出通
水断面積SG2Iのn倍であり、軸流水車の出口と排水
口間の任意の位置にある後部縮小通気断面積SC2O
おいて、後部流量維持用補充運動エネルギEC2K
[後部流量維持流速VC2O={(S×V20)/S
2O}の所定流量の流水の運動エネルギ]×[1−
〔{(流入エネルギE−水車軌道エネルギE)が後
部縮小通水断面積SC2Oを通過する流水に与える流速
C2O0/{流入エネルギEが後部縮小通水断
面積SC2Oを通過する流水に与える後部流量維持流速
C2O〕]を、風車流出流速VTOの運動エネル
ギと流出損失補償圧力と(所定流量)×(前記水速V
の動圧)とが上流側から供給され且つ排水口外の水流に
よる流量維持作用を受ける所定流量の流量維持エネルギ
系の流水に人為的に供給して、後部縮小通水断面積
C2Oでの流速を前記後部流量維持流速VC2Oに維
持する。
14. Regarding the supplemental kinetic energy E C2K for maintaining the rear flow rate when driving the axial flow turbine, the loaded axial flow turbine has a turbine drive energy E T =
{Running water kinetic energy of the water wheel drive energy E T system at a predetermined flow rate of water turbine inlet flow velocity V G1o} - {predetermined flow rate of the water wheel drive of a wind turbine outflow velocity V TO in the axial direction of the outlet of the axial flow wind turbine (m / sec) when consuming the flowing water of kinetic energy} energy E T system, drain outlet static pressure P dating back as described above
S2 and the water velocity V 2 supplied from the upstream side as described above
Of the water flow at the water depth H and the intrinsic total energy P FH = ρ × g × (H + 10.33m Aq ) and the intrinsic energy E FH = 1 × ρ × g × (H + 10.33m Aq ). ) And the cross-sectional area of water flow that constitutes n ) are n times the cross-sectional water flow area of the turbine outflow S G2I at the outlet of the axial flow turbine, and the rear reduced ventilation cutoff at any position between the outlet of the axial flow turbine and the drain port. In the area S C2O , the supplemental kinetic energy for maintaining the rear flow rate E C2K
[Rear flow rate maintenance flow velocity V C2O = {(S 2 × V 20 ) / S
2O } kinetic energy of flowing water at a predetermined flow rate] x [1-
2 / {inflow energy E 1 is a rear reduced water passage cross-sectional area S C2O - {(waterwheel orbital energy E T inflow energy E 1) flow velocity V C2O0 give flowing water passing through the rear reduced water flow cross-sectional area S C2O} where [ The rear flow rate maintenance flow velocity V C2O } 2 ]] given to the flowing water is calculated as the kinetic energy of the wind turbine outflow velocity V TO and the outflow loss compensation pressure (predetermined flow rate) × (the water velocity V 2
Dynamic pressure) and is artificially supplied to running water flow maintaining the energy E F system at a predetermined flow rate to undergo flow maintenance action by water flow supplied and drained extraoral from the upstream side, in the rear reduced water passage cross-sectional area S C2O Is maintained at the rear flow rate maintaining flow rate V C2O .

【0032】15.これにより、前記水車駆動エネルギ
の消費に入れ代わる形で流量維持エネルギE=前
記水車駆動エネルギEを発生させ前記軸流水車まで遡
らせ、水深Hでの水圧管内の前記流量維持エネルギE
系の流水に、前述の流水の単位時間単位通過流量1当た
りの前記固有エネルギEFH=1×ρ×g×(H+1
0.33mAq)に基づく前記流出エネルギE=(S
×V20)×[前記固有エネルギEFH{1×ρ×g
×(H+10.33mAq)}]を維持させることがで
きる。
15. Thus, the consumption in the change places the form of water turbine driving energy E T to generate a flow rate maintained energy E F = the water turbine driving energy E T was go back to the axis running water wheel, the flow rate maintained energy E of pressure tube in water depth H F
In the flowing water of the system, the specific energy E FH per unit time unit passing flow rate of the above-mentioned flowing water is E FH = 1 × ρ × g × (H + 1
The outflow energy E 2 = (S based on 0.33 m Aq ).
2 × V 20 ) × [said characteristic energy E FH {1 × ρ × g
X (H + 10.33m Aq )}] can be maintained.

【0033】16.上記を纏めると、水圧管の全長にわ
たる所定流量の流水に、円周方向にランナーを回転しな
がら軸流水車内を回動して存在する水車駆動エネルギE
を含めて、大気と水流とに対する重力の作用に基づく
流入エネルギE=流出エネルギEと、図2に示すよ
うに、水深Hでの固有全圧PFH=ρ×g×(H+1
0.33mAq)とを存在させ、抵抗と釣り合って流速
を維持する人為エネルギによる人為全圧P={(流入・
流出損失補償圧力)−(損失圧力)}の分布を固有全圧
FHに加えた流水の全圧P=(固有全圧PFH+人
為全圧P)が流入口から排水口に向かって所定流量を維
持しながら排水口静圧PS2まで低下し、排水口外の水
流が有する流量維持作用が、水圧管内で流出エネルギE
を有する所定流量の流量維持エネルギE系の流水
を、排水口から所定流出流速V20で排水口静圧PS2
の水流中に吸い出して水流に変化を残すことなく流れ去
らせて、水圧管内の流水の流量を所定流量に安定させる
ことにより、小さな3つの人為エネルギの供給を受け
て、流体の流れに作用する重力を大きな水車駆動エネル
ギEと流量維持エネルギEとに変換して軸流水車を
駆動し水圧管内の流水の所定流量を維持する第3種永久
運動機関を実現し、 水車出力容量(kW)={所定流量(S×V10)}
×{g×(H+10.33mAq}×水車効率−{(流
入・流出損失補償圧力エネルギ)+{所定流量(S×
10)}×(水速Vの動圧)+(後部流量維持用補
充運動エネルギEC2K)}÷(人為エネルギの電力効
率) を得る。
16. Summarizing the above, the turbine drive energy E that exists in the running water of the axial flowing water turbine while rotating the runner in the circumferential direction to the running water of the predetermined flow rate over the entire length of the penstock
Including the T , the inflow energy E 1 = outflow energy E 2 based on the action of gravity on the atmosphere and the water flow, and as shown in FIG. 2, the intrinsic total pressure P FH at the water depth H = ρ × g × (H + 1
0.33 m Aq ), and the artificial total pressure P = {(inflow ·
Outflow loss compensation pressure) - (Loss pressure) total pressure P F distribution of the flowing water was added to the specific total pressure P FH of} = (specific total pressure P FH + human total pressure P) is toward the drain outlet from the inlet The static pressure P S2 is reduced while maintaining a predetermined flow rate, and the flow rate maintaining action of the water flow outside the drain port has an outflow energy E in the water pressure pipe.
Flow rate maintenance energy E F system running water having a predetermined flow rate having 2 is discharged from the drain port at a predetermined outflow velocity V 20 and the drain port static pressure P S2.
By sucking into the water flow of No.3 and letting it flow away without leaving any change in the water flow, and stabilizing the flow rate of the flowing water in the penstock, it receives the supply of three small artificial energy and acts on the fluid flow. gravity is converted into a large water wheel drive energy E T and the flow rate maintained energy E F realizes the three permanent motion engine to maintain a predetermined flow rate of flowing water driven by water pressure tube axis running water wheel, the water wheel output capacity (kW ) = {Predetermined flow rate (S 1 × V 10 )}
× {g × (H + 10.33m Aq } × water turbine efficiency − {(inflow / outflow loss compensation pressure energy) + {predetermined flow rate (S 1 ×
V 10 )} × (dynamic pressure of water velocity V 2 ) + (replacement kinetic energy for rear flow rate maintenance E C2K )} ÷ (power efficiency of artificial energy)

【0034】本願第1発明は水車を対象としており、大
気圧を利用できるので、浅い水流でも経済性良く実施で
きる。そして、移動体に使用する場合、出力は水圧管の
内部での現象のみで発生し、外部に影響を及ぼさないの
で、抵抗の増大は小さく、移動体の推進力の増大量は小
さくて済む。
The first invention of the present application is intended for a water turbine, and since atmospheric pressure can be utilized, it can be economically implemented even with a shallow water flow. When it is used for a moving body, the output is generated only by a phenomenon inside the penstock and does not affect the outside, so that the increase in resistance is small and the increase in the propulsive force of the moving body is small.

【0035】本願第2発明では、開水路の勾配水路を上
側に、閉水路の循環・復水路を下側にして重ねて設置す
ると、所定の水流を得るために必要な揚水手段の揚水ヘ
ッドは1m以下になり、利用できる固有全圧は、ρ×g
×10.33mAq以上あるので、効率を考慮しても、
充分に出力が得られる。
In the second invention of the present application, when the gradient waterway of the open waterway is placed on the upper side and the circulation / condensation waterway of the closed waterway is placed on the lower side, the pumping head of the water pumping means necessary for obtaining a predetermined water flow is provided. The specific total pressure that can be used is ρ × g.
× 10.33m Aq or more, so even if efficiency is considered,
You can get enough output.

【0036】本願第3発明では、水位差を有効に利用し
て、スタート時に外部から供給するエネルギを不要にす
るか、少なくとも小さくすることができる。
In the third invention of the present application, the water level difference can be effectively utilized to eliminate or at least reduce the energy supplied from the outside at the start.

【0037】本願第4発明は風車を対象としており、大
気圧を利用できるので、従来の風車に比較して極めて大
きな出力が得られる。そして、移動体に使用する場合、
出力は風圧管の内部での現象のみで発生し、外部に影響
を及ぼさないので、抵抗の増大は小さく、移動体の推進
力の増大量は小さくて済む。
The fourth invention of the present application is intended for a wind turbine, and since atmospheric pressure can be used, an extremely large output can be obtained as compared with a conventional wind turbine. And when using it for mobiles,
The output is generated only by the phenomenon inside the wind pressure tube and does not affect the outside, so that the increase in resistance is small and the increase in the propulsive force of the moving body can be small.

【0038】[0038]

【実施例】本願第1発明は流体の流れが水流の場合であ
り、本願第4発明は流体の流れが風の場合である。しか
し、これらの原理は同じなので、流体の流れが水流の場
合を第1実施例として説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The first invention of the present application is a case where the fluid flow is a water flow, and the fourth invention of the present application is a case where the fluid flow is a wind. However, since these principles are the same, the case where the fluid flow is a water flow will be described as the first embodiment.

【0039】第1実施例は、潮流がある海峡の水深H=
30mの海底において、水速V=2m/sec(時速
約4ノット)の位置に水圧管を設置し、20000kW
の容量の発電機を駆動するものであり、図1、図2に基
づいて説明する。尚、本実施例のように、海底に設置す
ると、保守が困難なので、水圧管を艀に載せて水面近く
に設置し、艀内から水圧管内を保守できるようにしても
良い。
In the first embodiment, the depth H of the strait with a tidal current is H =
At the seabed of 30m, a penstock is installed at a water velocity V 1 = 2m / sec (about 4 knots per hour), and 20000kW
It drives a generator having a capacity of 1 to 2 and will be described with reference to FIGS. 1 and 2. Since maintenance is difficult when installed on the seabed as in the present embodiment, the penstock may be placed near the water surface so that the inside of the penstock can be maintained from inside the barge.

【0040】図1において、1は水圧管、12は水圧管
1の外周に設けて水流の流れを乱さないようにする外套
管である。
In FIG. 1, reference numeral 1 is a hydraulic tube, and 12 is a jacket tube provided on the outer circumference of the hydraulic tube 1 so as not to disturb the flow of water flow.

【0041】水圧管1は、断面積S(m)の流入口
2を水深H=30mで水速V=2m/secの位置に
配置し、中央部付近に軸流水車6を配置し、通水断面積
(m)の排水口3を水深H=30mで水速V
2m/secの位置に配置し、前記通水断面積S、S
を、 水車出力容量(kW)={所定流量(S×V10)}
×{g×(H+10.33mAq)}×水車効率−
{(流入・流出損失補償圧力エネルギ)+{所定流量
(S×V10)}×(水速Vの動圧)+(後部流量
維持用補充運動エネルギEC2K)}÷(人為エネルギ
の電力効率) に基づいて、(S×所定流入流速V10)=(S×
水速V以下の所定流出流速V20)(m/sec)
=(所要出力が得られる所定流量)となるように、下記
により設定する。
In the penstock 1, an inflow port 2 having a cross-sectional area S 1 (m 2 ) is arranged at a water depth H = 30 m at a water velocity V 1 = 2 m / sec, and an axial flow turbine 6 is arranged near the central portion. and, cross-sectional flow area S 2 (m 2) water speed the discharge port 3 at a depth H = 30 m of V 2 =
It is arranged at a position of 2 m / sec, and the water flow cross-sectional areas S 1 and S are
2 , the turbine output capacity (kW) = {predetermined flow rate (S 1 × V 10 )}
X {g x (H + 10.33 m Aq )} x turbine efficiency-
{(Inflow / outflow loss compensation pressure energy) + {Predetermined flow rate (S 1 × V 10 )} × ( Dynamic pressure of water velocity V 2 ) + (Rear flow maintenance supplemental kinetic energy E C2K )} ÷ (of artificial energy (S 1 × predetermined inflow velocity V 10 ) = (S 2 ×
Predetermined outflow velocity V 20 below water velocity V 2 ) (m 3 / sec)
= (Predetermined flow rate at which required output is obtained) is set by the following.

【0042】この場合、所要容量は20000kWであ
るので、水車効率と、発電機効率と、(流入・流出損失
補償圧力エネルギ)+{所定流量(S×V10)}×
(水速Vの動圧)+(後部流量維持用補充運動エネル
ギEC2K)と、人為エネルギの電力効率とを考慮し
て、前記の所要出力が得られる所定流量を決める。
In this case, since the required capacity is 20000 kW, the turbine efficiency, the generator efficiency, and (inflow / outflow loss compensation pressure energy) + {predetermined flow rate (S 1 × V 10 )} ×
In consideration of (dynamic pressure of water velocity V 2 ) + (replenishment kinetic energy E C2K for maintaining rear flow rate) and power efficiency of artificial energy, the predetermined flow rate at which the required output is obtained is determined.

【0043】水車流入流速VG1O=所定流量/水車流
入通水断面積SG1Oと、流入・流出損失補償圧力とを
調整すれば、前記流入・流出損失補償圧力が水圧管内の
損失補償に全て消費されて水圧管外には影響を与えない
状態で、水深H=30mでの単位時間単位通過流量当た
りの固有全エネルギEFH=1×ρ×g×(H+10.
33mAq(t・m/sec)=395kW/m/s
ecを全て運動エネルギに変換することができる。その
場合の水車流入流速VG1Oは、 水車流入流速VG1O={2×g×(30+10.33
Aq)}1/2=28.1m/sec となり、これが、大気と水流とに作用する重力から得ら
れる水深30mでの最大流速である。
By adjusting the flow velocity V G1O of the turbine inflow = predetermined flow rate / the cross sectional area S G1O of the turbine inflow water flow and the inflow / outflow loss compensation pressure, the inflow / outflow loss compensation pressure is completely consumed for the loss compensation in the hydraulic pipe. Therefore, the specific total energy E FH = 1 × ρ × g × (H + 10.
33 m Aq (t · m / sec) = 395 kW / m 3 / s
All ec can be converted into kinetic energy. The turbine inflow velocity V G1O in that case is the turbine inflow velocity V G1O = {2 × g × (30 + 10.33)
m Aq )} 1/2 = 28.1 m / sec, which is the maximum flow velocity at a water depth of 30 m obtained from gravity acting on the atmosphere and the water flow.

【0044】本実施例で、所要容量の20000kWを
得るには、 水車効率:90% 発電機効率:95% 流入・流出損失補償圧力エネルギ:一般的に知られてい
る水圧管の抵抗損失から推定して水圧管を通過する所定
流量の流水の固有全エネルギの29% {所定流量(S×V10)}×(水速Vの動圧):
水圧管を通過する所定流量の流水の固有エネルギEFH
の、2/28.1×100=0.5% このエネルギ:{所定流量(S×V10)}×(水速
の動圧)の必要性は下記の通りである。大気と水流
とに作用する重力によって、水圧管内を流水が流れるた
めには、水圧管内の全長にわたって、固有全圧PFH
存在している必要がある。軸流水車の上流側には流入口
から固有全圧PFHが作用するが、軸流水車の下流側に
は排水口から作用するのは固有静圧PSSHであり固有
動圧PKH=(水速Vの動圧)が不足する。動圧は排
水口から遡らないので、{所定流量(S×V10)}
×(水速Vの動圧)を流入・流出損失補償圧力エネル
ギと共に軸流水車の上流側から補充する。補充された、
流入・流出損失補償圧力エネルギと{所定流量(S×
10)}×(水速Vの動圧)とは、共に水圧管内で
所定流量の維時に消費されるので、水圧管外の水流に影
響を及ぼさず、軸流水車の出口から上流側では、固有全
圧と分離して作用する。 後部流量維持用補充運動エネルギEC2K:後部縮小通
水断面積SC2Oが排水口2の通水断面積Sの1/2
とすると、最も大きく見積もった場合に、水圧管を通過
する所定流量の流水の固有エネルギEFHの、(2×
2)/28.1×100=2% 人為エネルギの電力効率:85% とすると、 所定流量の流水に必要な固有エネルギEFH=2000
0kW÷{0.9×0.95−(0.29+0.005
+0.02)÷0.85}=41322kW となり、 所要流量=41322kW÷395kW/m/sec
=104.6m/sec となる。
In the present embodiment, in order to obtain the required capacity of 20000 kW, turbine efficiency: 90%, generator efficiency: 95%, inflow / outflow loss compensation pressure energy: estimated from generally known resistance loss of the penstock 29% of specific total energy of flowing water having a predetermined flow rate passing through the penstock {predetermined flow rate (S 1 × V 10 )} × (dynamic pressure at water speed V 2 ):
Specific energy E FH of flowing water at a predetermined flow rate passing through the penstock
2 2 / 28.1 2 × 100 = 0.5% The necessity of this energy: {predetermined flow rate (S 1 × V 10 )} × (dynamic pressure of water speed V 2 ) is as follows. In order for the flowing water to flow in the penstock due to gravity acting on the atmosphere and the water flow, the intrinsic total pressure P FH needs to exist over the entire length of the penstock . The intrinsic total pressure P FH acts from the inlet on the upstream side of the axial flow turbine, whereas the intrinsic static pressure PS SH acts from the drain on the downstream side of the axial flow turbine, and the intrinsic dynamic pressure P KH = ( The water pressure V 2 ) is insufficient. Since the dynamic pressure does not flow back from the drainage port, {predetermined flow rate (S 1 × V 10 )}
× (dynamic pressure of water velocity V 2 ) is replenished from the upstream side of the axial flow turbine together with inflow / outflow loss compensation pressure energy. Replenished,
Inflow / outflow loss compensation pressure energy and {predetermined flow rate (S 1 ×
V 10 )} × (dynamic velocity of water velocity V 2 ) is consumed both at the time of a predetermined flow rate inside the penstock, so it does not affect the water flow outside the penstock, and the upstream side from the outlet of the axial flow turbine Then, it acts separately from the intrinsic total pressure. Replenishment kinetic energy E C2K for rear flow rate maintenance: The rear reduced water cross-sectional area S C2O is 1/2 of the water cross-sectional area S 2 of the drain port 2.
Then, in the case of the largest estimation, the specific energy EFH of the flowing water at a predetermined flow rate passing through the penstock is (2 ×
2) 2 / 28.1 2 × 100 = 2% Assuming that the power efficiency of artificial energy is 85%, the specific energy E FH = 2000 required for flowing water at a predetermined flow rate.
0kW ÷ {0.9 × 0.95- (0.29 + 0.005
+0.02) ÷ 0.85} = 41322kW, and the required flow rate = 41322kW ÷ 395kW / m 3 / sec.
= 104.6 m 3 / sec.

【0045】従って、前記通水断面積S、Sは、 S=S=104.6m/sec÷2m/sec
/m=52.3m となる。
[0045] Therefore, the water passage cross-sectional area S 1, S 2 is, S 1 = S 2 = 104.6m 3 / sec ÷ 2m 3 / sec
A / m 2 = 52.3m 2.

【0046】流入口2から通水断面積が縮小する通水路
を有する流入部9を設ける。
An inflow part 9 having a water passage whose water passage cross-sectional area is reduced is provided from the inflow port 2.

【0047】流入口2と軸流水車6の出口間の水車駆動
エネルギE系の前記所定流量の流水に発生する流入損
失圧力(t/m)の全部と、軸流水車6の出口と排水
口3間の流量維持エネルギE系の前記所定流量の流水
に発生する流出損失圧力(t/m)の全部とを0に補
償する流入・流出損失補償圧力(t/m)を発生させ
る流入・流出損失補償圧力エネルギ(t・m/sec)
=(S×V10)×(流入・流出損失補償圧力)と
{所定流量(S×V10)}×(水速Vの動圧)と
を水圧管1内の前記水車駆動エネルギE系の流水に供
給する前部流量維持加圧送水手段4を、前記流入部9と
次に述べる前部ガイドベーン部5との間に設ける。この
前部流量維持加圧送水手段4の所要電力は、前述の計算
から、41322kW×0.29÷0.85+104.
6×(2/2)÷0.85=14098+246=1
4344kWとなる。
The entire inflow loss pressure (t / m 2 ) generated in the flowing water of the predetermined flow rate of the turbine driving energy E T system between the inlet 2 and the outlet of the axial turbine 6 and the outlet of the axial turbine 6. The inflow / outflow loss compensation pressure (t / m 2 ) for compensating to 0 all the outflow loss pressure (t / m 2 ) generated in the flowing water of the predetermined flow rate of the flow maintenance energy E F system between the drainage ports 3 Generated inflow / outflow loss compensation pressure energy (t · m / sec)
= (S 1 × V 10 ) × (inflow / outflow loss compensation pressure) and {predetermined flow rate (S 1 × V 10 )} × (dynamic pressure of water speed V 2 ) as the water turbine drive energy in the hydraulic pipe 1. the front flow maintains pressure pumping water means 4 for supplying the running water E T system, provided between the front guide vane section 5 to be described below and the inlet 9. From the above calculation, the required power of the front flow rate maintaining pressurized water feeding means 4 is 41322 kW × 0.29 ÷ 0.85 + 104.
6 × (2 2 /2)÷0.85=14098+246=1
It becomes 4344kW.

【0048】前記前部流量維持加圧送水手段4に接続す
る前部円筒形類似空間と、前記前部円筒形類似空間内に
あり円周方向への偏向角を次第に大きくして前記前部円
筒形類似空間の通水断面積を次第に小さくする複数枚の
前部ガイドベーンとからなる前部ガイドベーン部5を設
け、流入口2から軸流水車6に向かう通水断面積を、流
水が増速して水車流入流速VG1O=28.1m/se
cで軸流水車6に流入するように水車流入通水断面積S
G1O=104.6m/sec÷28.1m/se
c/m=3.72mにまで縮小する。
The front cylindrical similar space connected to the front flow maintaining pressurized water feeding means 4 and the front cylindrical similar space in the front cylindrical similar space are gradually increased in deflection angle in the circumferential direction. A front guide vane portion 5 including a plurality of front guide vanes that gradually reduces the water passage cross-sectional area of the shape-like space is provided, and the water passage cross-sectional area from the inlet 2 toward the axial water turbine 6 is increased by the flowing water. Speed up and flow velocity of water turbine V G1O = 28.1 m / se
Turbine inflow cross-sectional area S so as to flow into the axial flow turbine 6 at c
G1O = 104.6 m 3 /sec÷28.1 m 3 / se
reduced to the c / m 2 = 3.72m 2.

【0049】前記水車流入流速VG1O=28.1m/
secで前部ガイドベーン部5から円周方向に偏向して
流出する流水を受け、円周方向に偏向した前記水車流入
流速VG1O=28.1m/secの方向を軸方向に変
えることにより、前記水車流入流速VG1O=28.1
m/secの円周方向成分流速VTK(m/sec)の
運動エネルギで円周方向に回転駆動され、前記水車流入
流速VG1O=28.1m/secの軸方向成分流速、
或いは、負荷率で決まる水車流出流速VTO(m/se
c)で通水断面積STO(m)の出口から流水を流出
させ、{(水車流入流速VG1Oの運動エネルギ)−
(水車流出流速VTOの運動エネルギ)}からなる水車
駆動エネルギEによって駆動されるランナーを有する
軸流水車6を設ける。
Flow velocity V G1O of the turbine is 28.1 m /
By receiving the flowing water that is deflected in the circumferential direction from the front guide vane portion 5 in sec and flowing out, and changing the direction of the water turbine inflow velocity V G1O = 28.1 m / sec deflected in the circumferential direction in the axial direction, Water turbine inflow velocity V G1O = 28.1
It is rotationally driven in the circumferential direction with kinetic energy of the circumferential component flow velocity V TK (m / sec) of m / sec, and the axial component flow velocity of the water turbine inflow velocity V G1O = 28.1 m / sec,
Alternatively, the turbine outflow velocity V TO (m / se
In (c), running water is caused to flow out from the outlet of the water flow cross-sectional area S TO (m 2 ), and {(kinetic energy of water wheel inflow velocity V G1O ) −
(A kinetic energy of the turbine outflow velocity V TO )} is provided to provide an axial flow turbine 6 having a runner driven by a turbine driving energy E T.

【0050】前記軸流水車6の出力を外部に伝える発電
機11を設ける。
A generator 11 for transmitting the output of the axial flow turbine 6 to the outside is provided.

【0051】前記軸流水車6の出口に接続する後部円筒
形類似空間と、前記後部円筒形類似空間内にあり上流側
入口では円周方向への偏向角が最も大きく、下流に向か
って円周方向への偏向角を徐々に小さくして前記後部円
筒形類似空間の通水断面積を徐々に大きくする複数枚の
後部ガイドベーンとからなる後部ガイドベーン部7を設
け、排水口3から軸流水車6までの通水断面積を、軸流
水車6に向かって円周方向に偏向させながら軸流水車6
から流出してくる流水が流量維持流速VG2I=28.
1m/secで通過する水車流出通水断面積S
G2I(m)=水車流入通水断面積SG1O=3.7
2mにまで徐々に縮小して通水断面積がより大きな軸
流水車6の軸方向の出口の通水断面積STOに円周方向
に偏向した状態で接続する。
The rear cylindrical similar space connected to the outlet of the axial flow water turbine 6 and the upstream cylindrical inlet in the rear cylindrical similar space have the largest deflection angle in the circumferential direction, and the circumferential direction goes to the downstream. A rear guide vane portion 7 composed of a plurality of rear guide vanes for gradually reducing the deflection angle in the direction and gradually increasing the water cross-sectional area of the rear cylindrical similar space is provided, and the axial flow water is supplied from the drain port 3 to the rear guide vane portion 7. The axial flow turbine 6 is deflected in the circumferential direction toward the axial flow turbine 6 while the water flow cross-sectional area up to the vehicle 6 is deflected in the circumferential direction.
The flowing water flowing out from the flow rate maintenance flow velocity V G2I = 28.
Turbine outflow cross-sectional area S passing at 1 m / sec
G2I (m 2 ) = water turbine inflow cross-sectional area S G1O = 3.7
Cross-sectional flow area reduced gradually to the 2m 2 to connect more cross-sectional flow area S TO axial outlet of the large axial running water wheel 6 while deflected circumferentially.

【0052】前記後部ガイドベーン部7に接続する、後
部縮小通水断面積SC2O=52.3m÷2=26.
2mにおいて、後部流量維持用補充運動エネルギE
C2K≧[後部流量維持流速VC2O={(S×V
20)/SC2O}の所定流量の流水の運動エネルギ]
×[1−〔{(流入エネルギE−水車駆動エネルギE
)が前記後部縮小通水断面積SC2O=26.2m
を通過する流水に与える流速VC2O0/{流入エ
ネルギEが前記後部縮小通水断面積SC2O=26.
2mをを通過する流水に与える前記後部流量維持流速
C2O〕]を、前記所定流量の前記流量維持エネ
ルギE系の流水に供給する後部流量維持加圧送水手段
8を設ける。後部流量維持用補充運動エネルギEC2K
を上式で行う場合、流入エネルギEと水車駆動エネル
ギEとは、水深Hでの単位時間単位通過流量当たりの
固有エネルギで換算すると流量(後部縮小通水断面積S
C2O×流速)になるので、流速VC2O0と後部流量
維持流速VC2Oとの比は、(流入エネルギE−水車
駆動エネルギE)と(流入エネルギE)との比にな
り簡単に計算できる。しかし、計算値を越える量を供給
しても、所定流量は前記の流入・流出損失補償圧力で決
まっているので、過剰分は空回りするだけで支障が無
く、負荷の変動にその都度対応する必要が無くなるの
で、水車駆動エネルギEが最大の場合の後部流量維持
用補充運動エネルギEC2Kを計算して使用する。後部
流量維持加圧送水手段8の所要電力は、前述のように、
後部縮小通水断面積SC2O=52.3m÷2=2
6.2mすると、後部流量維持流速VC2O={(S
×V20)/SC2O}=4m/secであるので、
104.6×(4/2)÷0.85=984kWとな
る。
Rear reduced water cross-sectional area S C2O = 52.3 m 2 /2=26.26 , which is connected to the rear guide vane portion 7.
Replenishment kinetic energy E for maintaining the rear flow rate at 2 m 2 .
C2K ≧ [rear flow rate maintenance flow velocity V C2O = {(S 2 × V
20 ) / S C2O } kinetic energy of flowing water at a predetermined flow rate]
× [1-[{(inflow energy E 1 −turbine drive energy E
T ) is the rear reduced water flow cross-sectional area S C2O = 26.2 m 2
Flow velocity V C2O0 } 2 / {inflow energy E 1 given to the flowing water passing through the rear reduced water flow cross-sectional area S C2O = 26.
The rear flow rate maintaining pressurized water supply means 8 is provided to supply the rear flow rate maintaining flow velocity V C2O } 2 ]] to the flowing water passing through 2 m 2 to the flow water of the flow rate maintaining energy E F system having the predetermined flow rate. Replenishment kinetic energy E C2K for rear flow rate maintenance
When the above equation is used, the inflow energy E 1 and the turbine driving energy E T are converted into the flow rate (the rear reduced water flow cross-sectional area S in terms of the specific energy per unit time unit flow rate at the water depth H).
C2O × flow velocity), the ratio between the flow velocity V C2O0 and the rear flow rate maintenance flow velocity V C2O is a ratio between (inflow energy E 1 −turbine drive energy E T ) and (inflow energy E 1 ) and is easily calculated. it can. However, even if the amount exceeding the calculated value is supplied, the predetermined flow rate is determined by the inflow / outflow loss compensation pressure described above, so there is no problem simply by spinning the excess amount, and it is necessary to respond to load fluctuations each time. Therefore, the supplemental kinetic energy E C2K for maintaining the rear flow rate when the turbine driving energy E T is maximum is calculated and used. The power required by the rear flow rate maintaining pressurized water feeding means 8 is, as described above,
Rear reduced water flow cross-sectional area S C2O = 52.3 m 2 ÷ 2 = 2
When 6.2 m 2 , the rear flow rate maintenance flow velocity V C2O = {(S
Since 2 × V 20 ) / SC2O } = 4 m / sec,
104.6 × (4 2 /2)÷0.85=984 kW.

【0053】前記後部流量維持加圧送水手段8に接続
し、その通水断面積を徐々に拡大する流出部10を設け
る。
An outflow part 10 is provided which is connected to the rear flow rate maintaining pressurized water supply means 8 and whose water passage cross-sectional area is gradually increased.

【0054】以上を纏めると、 所定流量104.6m/secの固有エネルギ=41
322kW 発生する電力=41322kW×0.9×0.95=3
5330kW 人為エネルギ供給に必要な電力=14098+246+
984=15328kW 差引き利用できる出力=35330−15328=20
002kW となる。
In summary, the specific energy at a predetermined flow rate of 104.6 m 3 / sec = 41
322 kW Generated power = 41322 kW × 0.9 × 0.95 = 3
5330kW Electric power required for artificial energy supply = 14098 + 246 +
984 = 15328kW Deduction available output = 35330-15328 = 20
It will be 002 kW.

【0055】次に、図2を説明する。本実施例では、上
記のように、水圧管1の形状を本願発明の構成条件通り
の形状とし、後部流量維持加圧送水手段8において後部
流量維持用補充運動エネルギEC2Oを供給し、前部流
量維持加圧送水手段4から流入損失補償圧力と、軸流水
車6と後部流量維持加圧送水手段8との間で必要である
が後部流量維持加圧送水手段8から遡っては供給できな
い流出損失補償圧力と水速Vの動圧とを、水圧管1内
の流水の所定流量維持と損失補償のために、排水口まで
に消費される量を設定して供給している。従って、水圧
管1内では、所定流量の流水を所望の流速で流して軸流
水車を駆動できるが、前記所定流量は水流の流量に合わ
せてあるので、上記の人為エネルギの供給や軸流水車の
駆動は、水圧管外の水流に何らの影響も残さない。従っ
て、図2において、水圧管1内での全圧は、固有全圧P
FH=ρ×g×(H+10.33)=H+10.33
と、人為全圧P=(流入・流出損失補償圧力+水速V
の動圧)とになり、且つ、前部流量維持加圧送水手段4
から下流側では、固有全圧PFH+人為全圧Pは、常に
上流側が大きく、排水口3で固有全圧PFHになる。こ
れによって、所定流量が維持される。動圧は所定流量と
通水断面積とで固定された流速によって決まり固有動圧
分のみになる。静圧は、固有静圧PSHと人為的に供給
した圧力の和=(流入・流出損失補償圧力+水速V
動圧)となる。
Next, FIG. 2 will be described. In the present embodiment, as described above, the penstock 1 is shaped according to the constitutional conditions of the present invention, and the rear flow rate maintaining / pressurizing water feeding means 8 supplies the rear flow rate maintaining supplemental kinetic energy E C2O to the front section. Outflow loss compensating pressure from the flow rate maintaining pressurized water feeding means 4 and outflow that is necessary between the axial flow turbine 6 and the rear flow rate maintaining pressurized water feeding means 8 but cannot be supplied retroactively from the rear flow rate maintaining pressurized water feeding means 8. The loss compensating pressure and the dynamic pressure of the water velocity V 2 are supplied by setting the amount consumed up to the drain port in order to maintain a predetermined flow rate of the flowing water in the penstock 1 and to compensate the loss. Therefore, in the penstock 1, it is possible to drive the axial flow turbine by flowing a predetermined flow rate of flowing water at a desired flow velocity, but since the predetermined flow rate is matched with the flow rate of the water flow, the above-mentioned artificial energy supply and the axial flow turbine The drive of a has no effect on the water flow outside the penstock. Therefore, in FIG. 2, the total pressure in the penstock 1 is the intrinsic total pressure P
FH = ρ × g × (H + 10.33) = H + 10.33
And total artificial pressure P = (compensation pressure for inflow / outflow loss + water velocity V 2
Dynamic pressure) and the front flow rate maintaining pressure water supply means 4
From the downstream side to the downstream side, the intrinsic total pressure P FH + man-made total pressure P is always large on the upstream side and becomes the intrinsic total pressure P FH at the drainage port 3. As a result, the predetermined flow rate is maintained. The dynamic pressure is determined by the flow rate fixed by the predetermined flow rate and the cross-sectional area of water flow, and is only the specific dynamic pressure. The static pressure is the sum of the intrinsic static pressure P SH and the pressure artificially supplied = (inflow / outflow loss compensation pressure + dynamic pressure of water velocity V 2 ).

【0056】尚、流体の流れが風の場合には、風圧管内
の流通空気の固有エネルギを100%運動エネルギに変
換すると、約410m/secになり、空気の圧縮現象
もあって実施困難である。従って、風車流入流速V
G1Oとしては技術的に処理可能な流速、例えば、10
0〜200m/secを設定し、経験を積んでから速い
風車流入流速VG1Oを採用するようにすれば良い。
When the flow of the fluid is wind, if the specific energy of the circulating air in the wind pressure tube is converted into 100% kinetic energy, it becomes about 410 m / sec, which is difficult to carry out due to the air compression phenomenon. . Therefore, the wind turbine inflow velocity V
G1O has a technically processable flow rate, for example, 10
It is sufficient to set 0 to 200 m / sec, gain experience, and then adopt the fast wind turbine inflow velocity V G1O .

【0057】又、本実施例では、全圧の分布に図2に示
す勾配が存在すれば良いので、請求項5に示すように、
水車流入通水断面積SG1Oを水車流出通水断面積S
G2Iより大きくして、水車流入流速VG1Oを流量維
持流速VG2Iより小さし、水車流入流速VG1Oの動
圧と、流量維持流速VG2Iの動圧との差を利用する
と、(流入・流出損失補償圧力+水速Vの動圧)の一
部を賄うことができる。
Further, in the present embodiment, since it is sufficient that the distribution of total pressure has the gradient shown in FIG. 2, as shown in claim 5,
Turbine inflow water flow cross-sectional area S G1O
And greater than G2i, the waterwheel inlet flow velocity V G1o Chisashi than the flow rate maintained velocity V G2i, and dynamic pressure of the hydraulic turbine inlet flow velocity V G1o, when utilizing the difference between the dynamic pressure of the flow maintaining the flow velocity V G2i, (inflow and outflow It is possible to cover a part of the loss compensation pressure + the dynamic pressure of the water velocity V 2 .

【0058】又、本実施例では、水車負荷が変動する場
合、或いは、水速が変動する場合に、水車の回転数を一
定に維持するには、水車流入流速VG1Oと流量維持流
速VG2Iとを所定値に維持すれば良いので、所定流量
と、人為エネルギの流入・流出損失補償圧力と水速V
の動圧と後部流量維持用補充運動エネルギEC2Oと、
水車流入通水断面積SG1Oと、水車流出通水断面積S
G2Iとを調整して、水車流入流速VG1Oと流量維持
流速VG2Iとを所定値に維持する。
Further, in this embodiment, when the turbine load changes or the water speed changes, in order to keep the rotation speed of the turbine constant, the turbine inflow velocity V G1O and the flow maintenance velocity V G2I are maintained. Since it suffices to maintain and at a predetermined value, the predetermined flow rate, human energy inflow / outflow loss compensation pressure and water velocity V 2
Dynamic pressure and supplemental kinetic energy E C2O for maintaining the rear flow rate,
Turbine inflow cross section S G1O and turbine outflow cross section S
G2I is adjusted to maintain the turbine inflow velocity V G1O and the flow rate maintenance velocity V G2I at predetermined values.

【0059】又、本実施例では、軸流水車の出力側に調
速機を付加すれば、水速が低下した場合に、通水断面積
を変えるという機械操作を行わず、電気的な操作のみ
で、水車の回転数を一定値に維持することができる。即
ち、所定流量と、人為エネルギの流入・流出損失補償圧
力と水速Vの動圧と後部流量維持用補充運動エネルギ
C2Oとを低下した水速に合わせて調整し、減少した
所定流量と固定した水車流入通水断面積SG1Oと固定
した水車流出通水断面積SG2Iとで決まる低下した水
車流入流速VG1Oと流量維持流速VG2Iとを使用
し、低下した軸流水車の回転数を前記調速機で所定値に
増速する。
Further, in the present embodiment, if a speed governor is added to the output side of the axial flow turbine, mechanical operation of changing the water passage cross-section is not performed when the water speed decreases, and electrical operation is performed. Only by doing so, it is possible to maintain the rotation speed of the water turbine at a constant value. That is, the predetermined flow rate, the inflow / outflow loss compensation pressure of the artificial energy, the dynamic pressure of the water speed V 2 and the supplemental kinetic energy E C2O for maintaining the rear flow rate are adjusted according to the reduced water speed, and the reduced predetermined flow rate is obtained. The reduced rotational speed of the axial flow turbine using the reduced turbine inflow velocity V G1O and the flow maintenance velocity V G2I determined by the fixed turbine inflow cross sectional area S G1O and the fixed turbine outflow sectional area S G2I. Is increased to a predetermined value by the speed governor.

【0060】又、本実施例では、後部流量維持加圧送水
手段8と排水口間に発生する後部流出損失エネルギは後
部流量維持加圧送水手段8から供給し得るので、前部流
量維持加圧送水手段4から供給している後部流出損失エ
ネルギを、後部流量維持加圧送水手段8からの供給に移
すことができる。
Further, in this embodiment, since the rear outflow loss energy generated between the rear flow rate maintaining pressure water supply means 8 and the drainage port can be supplied from the rear flow rate maintaining pressure water supply means 8, the front flow rate maintaining pressure supply water is transmitted. The rear outflow loss energy supplied from the water means 4 can be transferred to the supply from the rear flow rate maintaining pressurized water supply means 8.

【0061】第2実施例として、水上や水中、或いは、
大気中の移動体に本願第1発明を実施する場合を説明す
る。図3は、代表として、水中船舶に本願第1発明を実
施した場合を示し、水中船舶20に、水圧管1を設けれ
ば良い。原理的に、第1実施例と同じなので説明を省略
する。移動体としては、自転車、自動車、電車、汽車、
水上船舶、水中船舶等があるが、水中船舶の場合は、水
深Hを大きくすることができるので、大きな出力が得ら
れる。
As a second embodiment, above water, in water, or
A case where the first invention of the present application is applied to a moving object in the atmosphere will be described. FIG. 3 shows, as a representative, a case where the first invention of the present application is carried out on an underwater ship, and the penstock 1 may be provided on the underwater ship 20. In principle, the description is omitted because it is the same as the first embodiment. As moving objects, bicycles, cars, trains, trains,
There are water-based vessels, underwater vessels, and the like. In the case of an underwater vessel, the water depth H can be increased, so that a large output can be obtained.

【0062】第3実施例として、本願第2発明に関する
ものを図4に基づいて説明する。図4において、ADE
B間の開水路である勾配水路31と、勾配水路31の低
水位端Bの水流を揚水手段32の揚水により勾配水路3
1の高水位端Aに循環・復水させるBCA間の管路であ
る循環・復水路33とを有する循環水路を設け、勾配水
路31内に水圧管1を設置し、水圧管1の設置による勾
配水路31の水速の変化を勾配水路31のAD間、DE
間、EB間の勾配を調整することにより打ち消し、揚水
手段32の揚水による循環・復水量を調整して、勾配水
路31全長にわたって水速が略一定になるようにし、勾
配水路31に、大気と水流とに対する重力の作用と、水
深H(m)での水速V(m/sec)と、水流の各部
に作用し水流の各部に対する抵抗と釣り合い前記水深H
での前記水速Vを維持する大気と水流とに対する重力
の流れ方向への作用による圧力の偏りと、大気と水流と
に対する重力の作用に基づく前記水深Hでの水流の固有
全圧PFH=固有静圧PSH+固有動圧PKH=[ρ×
g×(H+10.33mAq)−{ρ×(V÷
2}]+{ρ×(V÷2}=ρ×g×(H+1
0.33mAq)(t/m)と、大気と水流とに対す
る重力の作用に基づく単位時間単位通過流量1(m
sec)当たりの前記水深Hでの水流の固有エネルギE
FH=(前記固有静圧PSHに対応する固有圧力エネル
ギEPH)+(前記固有動圧PKHに対応する固有運動
エネルギEKH)=1(m/sec)×[ρ×g×
(H+10.33mAq)−{ρ×(V÷2}]
(t/m)+1(m/sec)×{ρ×(V
÷2}(t/m)=1×ρ×g×(H+10.33m
Aq)(t・m/sec)とを有する水流を構成する。
個の場合、上記のように、前記循環水路を勾配水路31
を上方に配置し、循環・復水路33を下方に配置する
と、勾配水路31の両端に水流が滞留するデッドポイン
トが発生し難く、且つ、勾配水路31の低水位端Bにお
いて、勾配水路31内の水面近くの水流と、勾配水路3
1内の底面近くの水流とに対する重力の作用の流れ方向
への偏りが、夫々の水深に対応した力になり、勾配水路
31の水面から底面までの水速の差が小さくなり、本願
発明に必要な上記の流れの形成に合理的である。
As a third embodiment, the second invention of the present application will be described with reference to FIG. In FIG. 4, ADE
The gradient water channel 31 which is an open water channel between B and the water flow at the low water level end B of the gradient water channel 31 is pumped by the water pumping means 32 so that the gradient water channel 3
The high water level end A of 1 is provided with a circulation water channel having a circulation / condensation channel 33, which is a channel between BCAs for circulation / condensation, and the water pressure tube 1 is installed in the gradient water channel 31. The change in the water velocity of the gradient waterway 31 is changed between the AD of the gradient waterway 31 and the DE
The gradient between EB and EB, the amount of circulation / condensation by pumping of the pumping means 32 is adjusted so that the water speed becomes substantially constant over the entire length of the gradient channel 31. The action of gravity on the water flow, the water velocity V H (m / sec) at the water depth H (m), and the resistance to each part of the water flow acting on each part of the water flow are balanced with the water depth H.
At the water depth V, the inherent total pressure P FH of the water flow at the water depth H based on the bias of the pressure on the air and the water flow maintaining the water velocity V H due to the action of gravity in the flow direction and the action of gravity on the atmosphere and the water flow. = Specific static pressure P SH + Specific dynamic pressure P KH = [ρ ×
g × (H + 10.33m Aq ) − {ρ × (V H ) 2 ÷
2}] + {ρ × (V H ) 2 ÷ 2} = ρ × g × (H + 1
0.33 m Aq ) (t / m 2 ) and a unit time unit flow rate 1 (m 3 / based on the action of gravity on the atmosphere and water flow)
specific energy E of the water flow at the water depth H per sec)
FH = (the unique static P specific pressure energy corresponding to the SH E PH) + (the inherent dynamic pressure P inherent kinetic energy corresponding to KH E KH) = 1 (m 3 / sec) × [ρ × g ×
(H + 10.33m Aq) - { ρ × (V H) 2 ÷ 2}]
(T / m 2 ) +1 (m 3 / sec) × {ρ × (V H ) 2
÷ 2} (t / m 2 ) = 1 × ρ × g × (H + 10.33 m
Aq ) (t · m / sec).
In the case of one, as described above, the circulation water channel is the gradient water channel 31.
Is disposed above and the circulation / condensation channel 33 is disposed below, it is difficult for dead points at which water flow is retained at both ends of the gradient water channel 31 to occur, and at the low water level end B of the gradient water channel 31, inside the gradient water channel 31. Near the water surface of the river and the slope channel 3
The bias in the flow direction of the action of gravity on the water flow near the bottom surface in 1 becomes a force corresponding to each water depth, and the difference in water speed from the water surface to the bottom surface of the sloped water channel 31 becomes small, and the present invention is achieved. It is rational in forming the above flow necessary.

【0063】第4実施例として、本願第3発明に関する
ものを図5に基づいて説明する。図4において、水圧管
1を、水流に設けたもぐりオリフィス40の上流側と下
流側間の水位差H(m)に跨がって設置し、前記水位
差Hを、水車駆動エネルギE又は/及び流入・流出
損失補償圧力の全部又は一部として使用し、水車流入通
水断面積SG1Oと水車流出通水断面積SG2Iとを調
整して、(前記水車流入通水断面積SG1Oを通過する
流水の水車流入口静圧PSTI)−(前記水車流出通水
断面積SG2Iを通過する流水の水車流出口静圧P
STO=流入・流出損失補償圧力とする。
As a fourth embodiment, the third invention of the present application will be described with reference to FIG. 4, the pressure tube 1 was placed straddling the water level difference H D between the upstream side and the downstream side of the submerged orifice 40 provided in the water flow (m), the water level difference H D, water turbine driving energy E T or / and used as all or part of the inflow / outflow loss compensating pressure to adjust the turbine inflow water cross-section S G1O and the turbine outflow water cross-section S G2I to S running water waterwheel inlet static pressure P STI passing G1o) - (running water waterwheel flow outlet static pressure P passing through the water turbine outlet water passage cross-sectional area S G2i
STO = Inflow / outflow loss compensation pressure.

【0064】第5実施例として、本願第3発明に関する
ものを図6に基づいて説明する。図5において、水圧管
1を、水面間に水位差H(m)がある2つの水流
、F間に跨がって設置する。この場合、水圧管1
の本願第1発明の作用を有する部分は、下方の水流F
中に水深H(m)の位置に配置し、その流入口2と上方
の水流Fとを、等径の延長管1aで繋ぐ。そして、前
記水位差Hを、水車駆動エネルギE又は/及び流入
・流出損失補償圧力の全部又は一部として使用し、水車
流入通水断面積SG1Oと水車流出通水断面積SG2I
とを調整して、(前記水車流入通水断面積SG1Oを通
過する流水の水車流入口静圧PSTI)−(前記水車流
出通水断面積SG2Iを通過する流水の水車流出口静圧
STO)=流入・流出損失補償圧力とする。
As a fifth embodiment, the third invention of the present application will be described with reference to FIG. 5, the pressure tube 1 is placed astride between the water level difference H D (m) 2 two water flow F 1 there is, F 2 between the water surface. In this case, penstock 1
The part having the action of the first invention of the present application is the lower water flow F 2
It is placed inside at a position of water depth H (m), and its inflow port 2 and the upper water flow F 1 are connected by an extension pipe 1a having an equal diameter. Then, the water level difference H D, used as all or part of the water wheel drive energy E T or / and the inflow and outflow loss compensation pressure, water turbine inlet water passage cross-sectional area S G1o and waterwheel outlet water passage cross-sectional area S G2i
Adjust the bets, (waterwheel inlet static pressure P STI of flowing water passing through the water turbine inlet water passage cross-sectional area S G1o) - (running water waterwheel flow outlet static pressure passing through the water turbine outlet water passage cross-sectional area S G2i PSTO ) = inflow / outflow loss compensation pressure.

【0065】[0065]

【発明の効果】本願発明の流体の流れに作用する重力を
運動エネルギに変換する方法とその装置は、各種の水流
の中や風の中、又は、水上や水中の移動体、大気中の移
動体等において、従来の流体力学における流体の流れの
エネルギに対する理論の誤りを訂正し、訂正した理論に
基づいて水圧管や風圧管の形状を構成要件に合わせ、小
さな3つの人為エネルギを供給することにより、流体の
流れに作用する重力を運動エネルギに変換する第3種永
久運動機関を実現できるという効果を奏する。従って、
将来の問題になっているエネルギ問題を解決できるとい
う効果を奏する。
INDUSTRIAL APPLICABILITY The method and apparatus for converting gravity acting on a fluid flow into kinetic energy according to the present invention can be used for moving in various water streams, in the wind, or in moving bodies in water or water, or in the atmosphere. In the body etc., correct the theory error for the energy of the fluid flow in the conventional fluid mechanics, and based on the corrected theory, adjust the shape of the water pressure pipe and wind pressure pipe to the constituent requirements and supply three small artificial energy As a result, there is an effect that a third-class permanent motion engine that converts gravity acting on the flow of fluid into kinetic energy can be realized. Therefore,
This has an effect of solving an energy problem which will be a problem in the future.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明を使用する第1実施例の構成を示す側
面図である。
FIG. 1 is a side view showing a configuration of a first embodiment using the present invention.

【図2】本願発明の全圧、静圧、動圧を示す図である。FIG. 2 is a diagram showing total pressure, static pressure, and dynamic pressure of the present invention.

【図3】本願発明を使用する第2実施例の構成を示す側
面図である。
FIG. 3 is a side view showing a configuration of a second embodiment using the present invention.

【図4】本願発明を使用する第3実施例の構成を示す側
面図である。
FIG. 4 is a side view showing a configuration of a third embodiment using the present invention.

【図5】本願発明を使用する第4実施例の構成を示す側
面図である。
FIG. 5 is a side view showing the configuration of a fourth embodiment using the present invention.

【図6】本願発明を使用する第5実施例の構成を示す側
面図である。
FIG. 6 is a side view showing a configuration of a fifth embodiment using the present invention.

【符号の説明】[Explanation of symbols]

1 水圧管 1a 延長管 2 流入口 3 排水口 4 前部流量維持加圧送水手段 5 全部ガイドベーン部 6 軸流水車 7 後部ガイドベーン部 8 後部流量維持加圧送水手段 9 流入部 10 流出部 11 発電機 12 外套管 20 水中船舶 31 勾配水路 32 揚水手段 33 循環・復水路 40 もぐりオリフィス 1 water pressure pipe 1a extension pipe 2 inflow port 3 drainage port 4 front flow rate maintaining pressurized water supply means 5 all guide vane section 6 axial flow turbine 7 rear guide vane section 8 rear flow maintaining pressurized water supply section 9 inflow section 10 outflow section 11 Generator 12 Outer tube 20 Underwater vessel 31 Gradient water channel 32 Pumping means 33 Circulation / condensation channel 40 Mug orifice

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 大気と水流とに対する重力の作用と、水
深H(m)での水速V(m/sec)と、水流の各部
に作用し水流の各部に対する抵抗と釣り合い前記水深H
での前記水速Vを維持する大気と水流とに対する重力
の流れ方向への作用による圧力の偏りと、大気と水流と
に対する重力の作用に基づく前記水深Hでの水流の固有
全圧PFH=固有静圧PSH+固有動圧PKH=[ρ×
g×(H+10.33mAq)−{ρ×(V÷
2}]+{ρ×(V÷2}=ρ×g×(H+1
0.33mAq)(t/m)と、大気と水流とに対す
る重力の作用に基づく単位時間単位通過流量1(m
sec)当たりの前記水深Hでの水流の固有エネルギE
FH=(前記固有静圧PSHに対応する固有圧力エネル
ギEPH)+(前記固有動圧PKHに対応する固有運動
エネルギEKH)=1(m/sec)×[ρ×g×
(H+10.33mAq)−{ρ×(V÷2}]
(t/m)+1(m/sec)×{ρ×(V
÷2}(t/m)=1×ρ×g×(H+10.33m
Aq)(t・m/sec)とを有する、海流や潮流等の
ように地球規模で循環する水流の中、河川や開水路等の
ように勾配によって流れる水流の中、又は、水との相対
運動を維持する力と水との相対速度とを前記の大気と水
流とに対する重力の流れ方向への作用による圧力の偏り
と前記水速Vとして扱える水上或いは水中の移動体に
おいて、 通水断面積S(m)の流入口を水速V(m/se
c)の任意の水深H(m)に配置し、中央部付近に設
けられた軸流水車を前記水深Hに配置し、通水断面積S
(m)の排水口を水速V(m/sec)の前記水
深H又はそれより深い水深H(m)に配置し、前記軸
流水車と前記流入口間の水圧差と、前記軸流水車と前記
排水口間の水圧差とが、それぞれ前記軸流水車と前記流
入口間の水圧管内の流水に作用する重力と、前記軸流水
車と前記排水口間の水圧管内の流水に作用する重力とで
打ち消され、前記流入口と前記排水口との前記軸流水車
に対する実効水深が前記軸流水車と同じ水深Hになる水
圧管を前記水流中又は前記移動体に設置し、 前記通水断面積S、Sを、後述の水車出力容量の式
に基づいて、(S×所定流入流速V10)=(S×
水速V以下の所定流出流速V20)(m/sec)
=(所要出力が得られる所定流量)となるように設定す
ると共に、前記流入口から前記軸流水車に向かう通水断
面積を、流水が増速して水車流入流速VG1O(m/s
ec)で前記軸流水車に流入するように水車流入通水断
面積SG1O(m)にまで縮小し、前記排水口から前
記軸流水車までの通水断面積を、前記軸流水車に向かっ
て円周方向に偏向させながら前記軸流水車から流出して
くる流水が流量維持流速VG2I(m/sec)で通過
する水車流出通水断面積SG2I(m)=前記水車流
入通水断面積SG1Oにまで徐々に縮小して通水断面積
がより大きな前記軸流水車の軸方向の出口に円周方向に
偏向した状態で接続することにより、 前記軸流水車が無負荷であり後述のようにして人為的に
供給する流入・流出損失補償圧力及び前記水速Vの動
圧が流水に対する抵抗と釣り合って後述の所定流量を維
持する状態、又は、前記軸流水車が有負荷であり後述の
ようにして人為的に供給する流入・流出損失補償圧力及
び前記水速Vの動圧が流水に対する抵抗と釣り合って
後述の所定流量を維持し、更に、後述のようにして人為
的に供給する後部流量維持用補充運動エネルギEC2K
が後述の水車駆動エネルギEの消費を補充している状
態では、 流水が通水断面積の縮小に伴って増速して前記軸流水車
に流入し、前記軸流水車を通過した流水が通水断面積の
増加に伴って減速しながら前記排水口から流出し、これ
らの増速と減速とに伴って、大気と水流とに対する重力
の作用に基づく前記水圧管各部の前記固有静圧PSH
前記流入口と前記排水口との双方から前記軸流水車に向
かって対称的に減圧することにより、前記流入口外の大
気と水流とに対する重力の作用が、前記水圧管内の流水
の前述の単位時間単位通過流量1当たりの前記水深Hで
の前記固有エネルギEFH=1×ρ×g×(H+10.
33mAq)を構成する前記固有全圧PFH=ρ×g×
(H+10.33mAq)として、前記流入口から前記
軸流水車の出口まで作用し、前記排水口外の大気と水流
とに対する重力の作用が、前記水圧管内の流水の前述の
単位時間単位通過流量1当たりの前記水深Hでの前記固
有エネルギEFH=1×ρ×g×(H+10.33m
Aq)の(前記固有静圧PSH)/(前記固有全圧P
FH)を構成する排水口静圧PS2=排水口での前記固
有全圧PFH−排水口での前記固有動圧PKH=排水口
での前記固有全圧PFH−水速Vの動圧=[{ρ×g
×(H+10.33mAq)}−{ρ×(V÷
2}]として、前記排水口から前記軸流水車の出口まで
遡るようにしておき、 前記流入口と前記軸流水車の出口間の水車駆動エネルギ
系の前記所定流量の流水に発生する流入損失圧力
(t/m)の全部と、前記軸流水車の出口と前記排水
口間の流量維持エネルギE系の前記所定流量の流水に
発生する流出損失圧力(t/m)の全部とを0に補償
する流入・流出損失補償圧力(t/m)を発生させる
流入・流出損失補償圧力エネルギ(t・m/sec)=
(S×V10)×(流入・流出損失補償圧力)、及
び、(前記所定流量)×(前記水速Vの動圧)を、自
然界の水流における前述の大気と水流とに対する重力の
流れ方向への作用による圧力の偏り、及び、前記固有全
圧PFHと前記配水口静圧PS2との差に相当するもの
として、前記水圧管内の前記水車駆動エネルギE系の
流水に人為的に供給し、前記所定流量の流水に対する前
記水圧管の抵抗と釣り合わせると共に前記流量維持エネ
ルギE系の流水に発生する流出損失圧力を上流側から
補償し且つ前記固有全圧PFHと前記配水口静圧PS2
との差を上流側から補償することにより、後述のように
して前記流量維持エネルギE系の流水に後述の水車駆
動エネルギEの消費に入れ代わる形で発生させる流量
維持エネルギEが、前記流量維持エネルギE系の流
水内を後述の水車駆動エネルギEの消費に入れ代わる
形で前記軸流水車まで遡って前記所定流量を維持し、前
記水圧管各部の流速を大気と水流とに作用する重力に基
づく固有水速V(m/sec)=(前記所定流量S×
10)/(各部の通水断面積)に固定し、前記水深H
に位置する前記水圧管内各部の単位時間単位通過流量1
当たりの流水が、自然界の水流と同様に、前述の大気と
水流とに対する重力の作用に基づく前記水深Hでの前記
固有エネルギEFH(t・m/sec)=(前記固有静
圧PSHに対応する固有圧力エネルギEPH)+(前記
固有動圧PKHに対応する固有運動エネルギEKH)=
1×[ρ×g×(H+10.33mAq−{ρ×
(V÷2}]+1×{ρ×(V÷2}=1
×ρ×g×(H+10.33mAq)を有するようにす
ることと、 前記軸流水車の負荷の有無には関係なく、前記流量維持
エネルギE系の流水に、流出エネルギE(t・m/
sec)=(S×V20)×[前記水深Hでの単位時
間単位通過流量1当たりの水流の前記固有エネルギE
FH{1×ρ×g×(H+10.33mAq)}]が存
在すれば、前記排水口における前述の大気と水流とに対
する重力の作用と、前記排水口外の大気と水流とに対す
る重力の流れ方向への作用による圧力の偏りと、前記水
深Hでの単位時間単位通過流量1当たりの水流の前記固
有エネルギEFH=1×ρ×g×(H+10.33m
Aq)と、前記排水口静圧PS2とが、前記流量維持エ
ネルギE系の流水を前記所定流量を上限として前記排
水口から前記排水口静圧PS2の水流中に吸い出し、水
流に変化を残すことなく流れ去らせる流量維持作用を有
することとにより、 前記軸流水車が無負荷の場合には、流入エネルギE
(t・m/sec)=(前記所定流量S×V10
×[前記水深Hでの単位時間単位通過流量1当たりの水
流の前記固有エネルギEFH{1×ρ×g×(H+1
0.33mAq)}]=前記流出エネルギEを、前記
流入口から流入し前記排水口から流出する前記所定流量
の流水と共に前記水圧管内を通過させ、 負荷をかけられた前記軸流水車が、水車駆動エネルギE
={前記水車流入流速VG1Oの所定流量の水車駆動
エネルギE系の流水の運動エネルギ}−{前記軸流水
車の軸方向の出口での水車流出流速VTO(m/se
c)の所定流量の水車駆動エネルギE系の流水の運動
エネルギ}を消費する場合には、 前記軸流水車の出口と前記排水口間の任意の位置にあ
り、前述の前記水深Hでの前記固有エネルギEFH=1
×ρ×g×(H+10.33mAq)と前記固有全圧P
FH=ρ×g×(H+10.33mAq)とを構成する
前記のようにして遡る前記排水口静圧PS2及び前述の
ようにして上流側から供給される前記水速Vの動圧が
作用する通水断面積が前記水車流出通水断面積SG2I
のn倍であることにより、必要な前述の単位時間単位通
過流量1当たりの前記水深Hでの流水の前記固有エネル
ギEFHが前記流量維持流速VG2Iの1/nの後部流
量維持流速VC2Oで得られる後部縮小通水断面積S
C2Oにおいて、後部流量維持用補充運動エネルギE
C2O≧[後部流量維持流速VC2O={(S×V
20)/SC2O}の所定流量の流水の運動エネルギ]
×[1−〔{(前記流入エネルギE−前記水車駆動エ
ネルギE)が前記後部縮小通水断面積SC2Oを通過
する流水に与える流速VC2O0/{前記流入エネ
ルギEが前記後部縮小通水断面積SC2Oを通過する
流水に与える前記後部流量維持流速VC2O〕]
を、前記水車流出流速VTOの運動エネルギと前記流出
損失補償圧力と(所定流量)×(前記水速Vの動圧)
とが上流側から供給され且つ前記排水口外の水流による
前記配水口静圧PS2と前記流量維持作用とを受ける前
記所定流量の前記流量維持エネルギE系の流水に人為
的に供給し、前記後部縮小通水断面積SC2Oでの流速
を前記後部流量維持流速VC2Oに維持することによ
り、前記水車駆動エネルギEの消費に入れ代わる形で
流量維持エネルギE=前記水車駆動エネルギEを発
生させ前記軸流水車まで遡らせ、前記水深Hにある前記
水圧管内の前記流量維持エネルギE系の流水に、前述
の単位時間単位通過流量1当たりの前記水深Hでの前記
固有エネルギEFH=1×ρ×g×(H+10.33m
Aq)に基づく前記流出エネルギE=(S×
20)×[前記水深Hでの前記固有エネルギE
FH{1×ρ×g×(H+10.33mAq)}]を維
持させて、 前記水圧管の全長にわたる前記所定流量の流水に、円周
方向にランナーを回転しながら前記軸流水車内を回動し
て存在する前記水車駆動エネルギEを含めて、大気と
水流とに対する重力の作用に基づく前記流入エネルギE
=前記流出エネルギEと前記水深Hでの前記固有全
圧PFH=ρ×g×(H+10.33mAq)とを存在
させ、抵抗と釣り合って流速を維持する人為エネルギに
よる人為全圧P={(前記流入・流出損失補償圧力)−
(損失圧力)}の分布を前記固有全圧PFHに加えた流
水の全圧P=(固有全圧PFH+人為全圧P)が前記
流入口から前記排水口に向かって前記所定流量を維持し
ながら前記排水口静圧PS2まで低下し、前記排水口外
の水流が有する前記流量維持作用が、前記水圧管内で前
記流出エネルギEを有する前記所定流量の前記流量維
持エネルギE系の流水を、前記排水口から前記所定流
出流速V20で前記排水口静圧PS2の水流中に吸い出
して前記水流に変化を残すことなく流れ去らせて、前記
水圧管内の流水の流量を前記所定流量に安定させること
により、 前記のように小さな3つの人為エネルギの供給を受け
て、流体の流れに作用する重力を大きな前記水車駆動エ
ネルギEと前記流量維持エネルギEとに変換して前
記軸流水車を駆動し前記水圧管内の流水の前記所定流量
を維持する第3種永久運動機関を実現し、 水車出力容量(kW)={所定流量(S×V10)}
×{g×(H+10.33mAq)}×水車効率−
{(流入・流出損失補償圧力エネルギ)+{所定流量
(S×V10)}×(水速Vの動圧)+(後部流量
維持用補充運動エネルギEC2K)}÷(人為エネルギ
の電力効率) を得ることを特徴とする流体の流れに作用する重力を運
動エネルギに変換する方法。
1. The effect of gravity on the atmosphere and the water flow, the water velocity V H (m / sec) at the water depth H (m), and the resistance to each part of the water flow that acts on each part of the water flow and the water depth H is balanced.
At the water depth V, the inherent total pressure P FH of the water flow at the water depth H based on the bias of the pressure on the air and the water flow maintaining the water velocity V H due to the action of gravity in the flow direction and the action of gravity on the atmosphere and the water flow. = Specific static pressure P SH + Specific dynamic pressure P KH = [ρ ×
g × (H + 10.33m Aq ) − {ρ × (V H ) 2 ÷
2}] + {ρ × (V H ) 2 ÷ 2} = ρ × g × (H + 1
0.33 m Aq ) (t / m 2 ) and a unit time unit flow rate 1 (m 3 / based on the action of gravity on the atmosphere and water flow)
specific energy E of the water flow at the water depth H per sec)
FH = (the unique static P specific pressure energy corresponding to the SH E PH) + (the inherent dynamic pressure P inherent kinetic energy corresponding to KH E KH) = 1 (m 3 / sec) × [ρ × g ×
(H + 10.33m Aq) - { ρ × (V H) 2 ÷ 2}]
(T / m 2 ) +1 (m 3 / sec) × {ρ × (V H ) 2
÷ 2} (t / m 2 ) = 1 × ρ × g × (H + 10.33 m
Aq ) (t · m / sec) in a water stream that circulates on a global scale such as a sea current or a tidal current, in a water stream that flows by a gradient such as a river or an open channel, or relative to water In the moving body above or underwater, the force for maintaining the motion and the relative velocity with water can be treated as the bias of pressure due to the action of gravity in the flow direction of the atmosphere and the water flow and the moving body on or under water as the water velocity V H. The water velocity V 1 (m / se) is set at the inlet of the area S 1 (m 2 ).
c) Arbitrary water depth H 1 (m), the axial flow turbine provided near the central portion is arranged at the water depth H, and the water flow cross-sectional area S
A drainage port of 2 (m 2 ) is arranged at the water depth H of water velocity V 2 (m / sec) or a deeper water depth H 2 (m), and a water pressure difference between the axial flow turbine and the inflow port, Water pressure difference between the axial flow turbine and the drainage port, gravity acting on the running water in the penstock between the axial flow turbine and the inlet, respectively, and running water in the penstock between the axial flow turbine and the drainage port. Installed in the water flow or in the moving body, which is counteracted by gravity acting on, and the effective water depth of the inflow port and the drain port with respect to the axial flow turbine becomes the same water depth H as the axial flow turbine. Based on the equation of the turbine output capacity described later, the water flow cross-sections S 1 and S 2 are calculated as (S 1 × predetermined inflow velocity V 10 ) = (S 2 ×
Predetermined outflow velocity V 20 below water velocity V 2 ) (m 3 / sec)
= (Predetermined flow rate at which the required output is obtained), and the cross sectional area of water flowing from the inflow port toward the axial flow turbine is increased by the flowing water and the turbine inflow velocity V G1O (m / s
ec) is reduced to a turbine inflow water cross sectional area S G1O (m 2 ) so as to flow into the axial water turbine, and the water cross sectional area from the drain port to the axial water turbine is set to the axial water turbine. The flowing water flowing out of the axial flowing water turbine while being deflected in the circumferential direction passes through at a flow rate maintaining flow velocity V G2I (m / sec). The water turbine outflow cross-sectional area S G2I (m 2 ) = the water turbine inflow communication By gradually reducing the water cross-sectional area S G1O and connecting it to the axial outlet of the axial flow turbine having a larger water cross-sectional area in the state of being circumferentially deflected, the axial flow turbine is unloaded. Yes As will be described later, the inflow / outflow loss compensation pressure artificially supplied and the dynamic pressure of the water velocity V 2 balance with the resistance to the running water to maintain a predetermined flow rate described later, or the axial water turbine is present. It is a load and is artificially supplied as described below. The inflow / outflow loss compensating pressure and the dynamic pressure of the water velocity V 2 are balanced with the resistance to running water to maintain a predetermined flow rate described below, and further, supplemental kinetic energy for artificially supplying the rear flow rate as described below. E C2K
Is but in a state that supplemented with consumption of water turbine driving energy E T described later, running water and accelerated with the reduction of the cross-sectional flow area to flow into the shaft running water wheel, flowing water having passed through the shaft running water wheel The specific static pressure P of each part of the hydraulic pipe based on the effect of gravity on the atmosphere and the water flow is discharged from the drain port while decelerating with the increase of the cross-sectional area of water flow, and with the acceleration and deceleration of these. The SH symmetrically reduces the pressure from both the inlet and the drain toward the axial flow turbine, so that the action of gravity on the atmosphere and the water flow outside the inlet causes the flowing water in the penstock to move as described above. The specific energy E FH = 1 × ρ × g × (H + 10.
33m Aq ), the intrinsic total pressure P FH = ρ × g ×
(H + 10.33 m Aq ), which acts from the inlet to the outlet of the axial flow turbine, and the action of gravity on the atmosphere and the water flow outside the drainage outlet causes the flowing water in the penstock to pass through the above-mentioned unit time unit flow rate 1 The specific energy E FH at the water depth H per hit = 1 × ρ × g × (H + 10.33 m
Aq ) (the specific static pressure P SH ) / (the specific total pressure P
FH ) drainage port static pressure P S2 = the specific total pressure P FH at the drainage port-the specific dynamic pressure P KH at the drainage port = the specific total pressure P FH at the drainage port-water velocity V 2 Dynamic pressure = [{ρ × g
× (H + 10.33m Aq )}-{ρ × (V 2 ) 2 ÷
As 2}], leave as dating back from the water outlet to the outlet of the shaft running water vehicle, flows occurring in flowing water of the predetermined flow rate of the water turbine drive energy E T system between the inlet and the axis running water car outlet and all of the loss pressure (t / m 2), all of the outflow losses pressure generated flowing water of the predetermined flow rate maintained energy E F system between said shaft running water vehicle exit the water outlet (t / m 2) Inflow / outflow loss compensation pressure energy (t · m / sec) that generates inflow / outflow loss compensation pressure (t / m 2 ) that compensates and
(S 1 × V 10 ) × (compensation pressure for inflow / outflow loss) and (predetermined flow rate) × (dynamic pressure at the water velocity V 2 ) are defined as the gravity of the atmosphere and the water flow in the natural water flow. the pressure bias due to the action of the flow direction, and the unique total pressure P FH and as corresponding to the difference between the distribution Mizuguchi static pressure P S2, artificially flowing water of the water turbine drive energy E T system of the hydraulic tube Is supplied to balance the resistance of the penstock to the flowing water of the predetermined flow rate, compensates the outflow loss pressure generated in the flowing water of the flow rate maintaining energy E F system from the upstream side, and the intrinsic total pressure P FH and Water outlet static pressure P S2
By compensating for the difference from the upstream side of the flow rate maintained energy E F for generating in the form of change places with consumption of water turbine driving energy E T described later to the flowing water of the flow rate maintained energy E F system as described later, the maintaining the predetermined flow back in the flowing water flow maintaining the energy E F system with change places the form on the consumption of the water turbine drive energy E T below to said axis running water wheel, acting the flow velocity of the penstock each portion with the atmosphere and water Inherent water velocity V (m / sec) based on gravitational force = (the predetermined flow rate S 1 ×
V 10 ) / (water passage cross-sectional area of each part), and the water depth H
Per unit time unit flow rate of each part in the penstock located at
Similar to the natural water flow, the flowing water is the specific energy E FH (t · m / sec) = (at the specific static pressure P SH at the water depth H based on the action of gravity on the atmosphere and the water flow described above. corresponding unique pressure energy E PH) + (specific kinetic energy E KH corresponding to the unique dynamic pressure P KH) =
1 × [ρ × g × ( H + 10.33m Aq - {ρ ×
(V H ) 2 ÷ 2}] + 1 × {ρ × (V H ) 2 ÷ 2} = 1
And that to have a × ρ × g × (H + 10.33m Aq), said shaft regardless of whether the load of the flowing water wheel, the flowing water of the flow rate maintained energy E F system, the outflow energy E 2 (t · m /
sec) = (S 2 × V 20 ) × [the specific energy E of the water flow per unit time unit flow rate at the water depth H]
FH {1 × ρ × g × (H + 10.33m Aq )}] exists, the action of gravity on the atmosphere and the water flow at the drain, and the flow direction of gravity on the atmosphere and the water flow outside the drain. Deviation due to the action on the water flow and the specific energy E FH = 1 × ρ × g × (H + 10.33 m of the water flow per unit time unit flow rate at the water depth H.
And Aq), and the water outlet static pressure P S2 is sucked out flowing water of the flow rate maintained energy E F system from the drain outlet of said predetermined flow rate as an upper limit in water of the water outlet static pressure P S2, change the water flow By having a flow rate maintaining action that allows the water to flow away without leaving, the inflow energy E can be obtained when the axial flow turbine has no load.
1 (t · m / sec) = (predetermined flow rate S 1 × V 10 ).
× [The specific energy E FH of the water flow per unit time unit flow rate 1 at the water depth H {1 × ρ × g × (H + 1
0.33 m Aq )}] = The outflow energy E 2 is passed through the penstock together with the predetermined amount of flowing water flowing in from the inflow port and flowing out from the drainage port, and the loaded axial flow turbine is , Turbine drive energy E
T = {the water turbine inlet flow velocity V running water kinetic energy of the water wheel drive energy E T system at a predetermined flow rate of G1o} - {waterwheel outlet flow velocity V TO (m / se in the axial direction of the outlet of the shaft running water wheel
When consuming the flowing water of the kinetic energy of the water wheel drive energy E T system at a predetermined flow rate of c)} it is located at any position between the drain port and the axis running water car outlet, at the depth H of the above The specific energy E FH = 1
× ρ × g × (H + 10.33m Aq ) and the intrinsic total pressure P
FH = ρ × g × (H + 10.33m Aq ) and the drain port static pressure P S2 traced back as described above and the dynamic pressure of the water speed V 2 supplied from the upstream side as described above are The acting water flow cross-sectional area is the water turbine outflow water flow cross-sectional area S G2I
By being n times the required rear flow maintaining the flow velocity V C2O of 1 / n of the specific energy E FH running water in the water depth H of the unit time unit passing flow per the aforementioned the flow maintaining the flow velocity V G2i Rear reduced cross-sectional water flow area S obtained in
In C2O , supplemental kinetic energy E for maintaining the rear flow rate
C2O ≧ [rear flow rate maintenance flow velocity V C2O = {(S 2 × V
20 ) / S C2O } kinetic energy of flowing water at a predetermined flow rate]
× [1-[{(the inflow energy E 1 −the water turbine drive energy E T ) gives the flow velocity V C2O0 } 2 / {the inflow energy E 1 to the running water passing through the rear reduced water passage sectional area S C2O] The rear flow rate maintaining flow velocity V C2O } 2 ] given to the flowing water passing through the rear reduced water flow cross-sectional area S C2O ]]
Is the kinetic energy of the turbine outflow velocity V TO and the outflow loss compensation pressure (predetermined flow rate) × (dynamic pressure of the water velocity V 2 ).
Are supplied from the upstream side and are artificially supplied to the flowing water of the flow rate maintaining energy E F system of the predetermined flow rate that receives the static pressure P S2 of the water outlet and the flow rate maintaining action by the water flow outside the drain port, by maintaining the flow velocity in the rear reduced water passage cross-sectional area S C2O to said rear flow maintaining the flow velocity V C2O, the flow rate maintained energy E F = the water turbine driving energy E T in a form change places with consumption of the water turbine drive energy E T The specific energy E FH at the water depth H per unit time unit flow rate 1 is added to the flowing water of the flow rate maintaining energy E F system in the penstock at the water depth H, which is generated and traces back to the axial flow turbine. = 1 × ρ × g × (H + 10.33m
The outflow energy E 2 = (S 2 ×) based on Aq )
V 20 ) × [the specific energy E at the water depth H
FH {1 × ρ × g × (H + 10.33m Aq )}] is maintained, and the inside of the axial flow turbine is rotated while the runner is rotated in the circumferential direction to the running water of the predetermined flow rate over the entire length of the penstock. Including the existing turbine drive energy E T , which is present in the air, the inflow energy E based on the action of gravity on the atmosphere and the water flow.
1 = The outflow energy E 2 and the inherent total pressure P FH = ρ × g × (H + 10.33 m Aq ) at the water depth H, and the artificial total pressure P due to the artificial energy for maintaining the flow velocity in balance with the resistance = {(The inflow / outflow loss compensation pressure)-
(Loss pressure)} is added to the intrinsic total pressure P FH to determine the total flow pressure P F = (intrinsic total pressure P FH + manual total pressure P) from the inlet to the drain outlet. It dropped to the drain outlet static pressure P S2 while maintaining the flow rate maintained action flow of the waste water extraoral has found the flow maintaining energy E F system of the predetermined flow rate with the outflow energy E 2 in the pressure pipe Of the flowing water is sucked into the water flow of the drain outlet static pressure P S2 from the drain at the predetermined outflow velocity V 20 and is allowed to flow away without changing the water flow, and the flow rate of the flowing water in the penstock is set to the above. by stabilizing the predetermined flow rate, supplied with three small artificial energy as described above, it is converted into a large the water turbine driving energy E T of gravity acting on the flow of fluid and the flow rate maintained energy E F The above A class 3 permanent motion engine that drives an axial water turbine to maintain the predetermined flow rate of the flowing water in the penstock is realized, and the turbine output capacity (kW) = {predetermined flow rate (S 1 × V 10 )}.
X {g x (H + 10.33 m Aq )} x turbine efficiency-
{(Inflow / outflow loss compensation pressure energy) + {Predetermined flow rate (S 1 × V 10 )} × ( Dynamic pressure of water velocity V 2 ) + (Replacement kinetic energy for rear flow rate maintenance E C2K )} ÷ (of artificial energy A method of converting gravitational force acting on a fluid flow into kinetic energy, which is characterized by obtaining electric power efficiency.
【請求項2】 請求項1に記載の流体の流れに作用する
重力を運動エネルギに変換する方法において、勾配水路
と、前記勾配水路の低水位端の水流を揚水手段の揚水に
より前記勾配水路の高水位端に循環・復水させる循環・
復水路とを有する循環水路を設け、前記勾配水路内に水
圧管を設置し、前記水圧管の設置による前記勾配水路の
水速の変化を前記勾配水路の勾配分布を調整することに
より打ち消し、前記揚水手段の揚水による循環・復水量
を調整して、前記勾配水路全長にわたって水速が略一定
になるようにし、前記勾配水路に、大気と水流とに対す
る重力の作用と、水深H(m)での水速V(m/se
c)と、水流の各部に作用し水流の各部に対する抵抗と
釣り合い前記水深Hでの前記水速Vを維持する大気と
水流とに対する重力の流れ方向への作用による圧力の偏
りと、大気と水流とに対する重力の作用に基づく前記水
深Hでの水流の固有全圧PFH=固有静圧PSH+固有
動圧PKH=[ρ×g×(H+10.33mAq)−
{ρ×(V÷2}]+{ρ×(V÷2}=
ρ×g×(H+10.33mAq)(t/m)と、大
気と水流とに対する重力の作用に基づく単位時間単位通
過流量1(m/sec)当たりの前記水深Hでの水流
の固有エネルギEFH=(前記固有静圧PSHに対応す
る固有圧力エネルギEPH)+(前記固有動圧PKH
対応する固有運動エネルギEKH)=1(m/se
c)×[ρ×g×(H+10.33mAq)−{ρ×
(V÷2}](t/m)+1(m/sec)
×{ρ×(V÷2}(t/m)=1×ρ×g×
(H+10.33mAq)(t・m/sec)とを有す
る水流を構成することを特徴とする流体の流れに作用す
る重力を運動エネルギに変換する方法。
2. The method for converting gravity acting on a fluid flow into kinetic energy according to claim 1, wherein a gradient water channel and a water flow at a low water level end of the gradient water channel are pumped by a water pumping means. Circulation at high water level
A circulating water channel having a condensate channel is provided, a water pressure pipe is installed in the gradient water channel, and a change in the water velocity of the gradient water channel due to the installation of the water pressure pipe is canceled by adjusting the gradient distribution of the gradient water channel. The amount of circulation / condensation by pumping of the pumping means is adjusted so that the water velocity becomes substantially constant over the entire length of the gradient channel, and the gradient channel has the effect of gravity on the atmosphere and the water flow and the water depth H (m). Water speed V H (m / se
c), a pressure bias due to the action of gravity in the flow direction on the atmosphere and the atmosphere that acts on each part of the water stream and balances the resistance to each part of the water stream and maintains the water velocity V H at the water depth H; Inherent total pressure P FH of water flow at the depth H based on the action of gravity on the water flow and intrinsic static pressure P SH + intrinsic dynamic pressure P KH = [ρ × g × (H + 10.33 m Aq ) −
{Ρ × (V H ) 2 ÷ 2}] + {ρ × (V H ) 2 ÷ 2} =
ρ × g × (H + 10.33m Aq ) (t / m 2 ) and the characteristic of the water flow at the water depth H per unit time unit flow rate 1 (m 3 / sec) based on the action of gravity on the atmosphere and the water flow energy E FH = (specific kinetic energy E KH corresponding to the unique dynamic pressure P KH) + (the unique static P specific pressure energy E PH corresponding to the SH) = 1 (m 3 / se
c) × [ρ × g × (H + 10.33m Aq ) − {ρ ×
(V H ) 2 ÷ 2}] (t / m 2 ) +1 (m 3 / sec)
× {ρ × (V H ) 2 ÷ 2} (t / m 2 ) = 1 × ρ × g ×
A method for converting gravity acting on a fluid flow into kinetic energy, which comprises forming a water flow having (H + 10.33 m Aq ) (t · m / sec).
【請求項3】 請求項1に記載の流体の流れに作用する
重力を運動エネルギに変換する方法において、水圧管
を、水流に設けたもぐりオリフィスの上流側と下流側間
の水位差に跨がって、或いは、水面間に水位差がある2
つの水流間に跨がって設置し、前記水位差を、水車駆動
エネルギE又は/及び流入・流出損失補償圧力の全部
又は一部として使用し、水車流入通水断面積SG1O
水車流出通水断面積SG2Iとを調整して、(前記水車
流入通水断面積SG1Oを通過する流水の水車流入口静
圧PSTI)−(前記水車流出通水断面積SG2Iを通
過する流水の水車流出口静圧PSTO)=流入・流出損
失補償圧力+水速Vの動圧とすることを特徴とする流
体の流れに作用する重力を運動エネルギに変換する方
法。
3. The method for converting gravity acting on a fluid flow into kinetic energy according to claim 1, wherein the penstock extends over a difference in water level between an upstream side and a downstream side of a muzzle orifice provided in the water flow. Or, there is a water level difference between the water surfaces 2
One of the installed straddling between water flow, the water level difference, used as all or part of the water wheel drive energy E T or / and the inflow and outflow loss compensation pressure, water turbine inlet water passage cross-sectional area S G1o and waterwheel outlet flowing water passing through (the waterwheel outlet water passage cross-sectional area S G2i - by adjusting the cross-sectional flow area S G2i, (running water waterwheel inlet static pressure P STI passing through the water turbine inlet water passage cross-sectional area S G1o) Water turbine outlet static pressure PSTO ) = inflow / outflow loss compensation pressure + dynamic pressure of water velocity V 2 A method of converting gravity acting on a fluid flow into kinetic energy.
【請求項4】 大気に対する重力の作用と、風速V
(m/sec)と、大気の各部に作用し大気の各部の
移動に対する抵抗と釣り合い前記風速Vを維持する大
気に対する重力の作用を伴う風の方向への圧力の偏り
と、大気に対する重力の作用に基づく前記風速Vの風
の固有全圧PFH=固有静圧PSH+固有動圧PKH
[ρ×g×10.33mAq−{ρ×(V÷
2}]+{ρ×(V÷2}=ρ×g×10.3
3mAq(t/m)と、大気に対する重力の作用に基
づく単位時間単位通過流量1(m/sec)当たりの
前記風速Vの風の固有エネルギEFH=(前記固有静
圧PSHに対応する固有圧力エネルギEPH)+(前記
固有動圧PKHに対応する固有運動エネルギEKH)=
1(m/sec)×[ρ×g×10.33mAq
{ρ×(V÷2}](t/m)+1(m
sec)×{ρ×(V÷2}(t/m)=1
×ρ×g×10.33mAq(t・m/sec)とを有
する風の中、又は、大気との相対運動を維持する力と大
気との相対速度とを前記の大気に対する重力の作用を伴
う風の方向への圧力の偏りと前記風速Vとして扱える
大気中の移動体において、 通気断面積S(m)の流入口を風速V(m/se
c)の位置に有し、軸流風車を中央部付近に有し、通気
断面積S(m)の排気口を風速V(m/sec)
の位置に有する風圧管を設置し、 流速によるρの変化を補正した前記通気断面積S
を、後述の風車出力容量の式に基づいて、(S×
所定流入流速V10)=(S×風速V以下の所定流
出流速V20)(m/sec)=(所要出力が得られ
る所定流量)となるように設定すると共に、前記流入口
から前記軸流風車に向かう通気断面積を、流通空気が増
速して風車流入流速VG1O(m/sec)で前記軸流
風車に流入するように風車流入通気断面積SG1O(m
)にまで縮小し、前記排気口から前記軸流風車までの
通気断面積を、前記軸流風車に向かって円周方向に偏向
させながら前記軸流風車から流出してくる流通空気が流
量維持流速VG2I(m/sec)で通過する風車流出
通気断面積SG2I(m)=前記風車流入通気断面積
G1Oにまで徐々に縮小して通気断面積がより大きな
前記軸流風車の軸方向の出口に円周方向に偏向した状態
で接続することにより、 前記軸流風車が無負荷であり後述のようにして人為的に
供給する流入・流出損失補償圧力及び前記風速Vの動
圧が流通空気に対する抵抗と釣り合って後述の所定流量
を維持する状態、又は、前記軸流風車が有負荷であり後
述のようにして人為的に供給する流入・流出損失補償圧
力及び前記風速Vの動圧が流通空気に対する抵抗と釣
り合って後述の所定流量を維持し、更に、後述のように
して人為的に供給する後部流量維持用補充運動エネルギ
C2Kが後述の風車駆動エネルギEの消費を補充し
ている状態では、 流通空気が通気断面積の縮小に伴って増速して前記軸流
風車に流入し、前記軸流風車を通過した流通空気が通気
断面積の増加に伴って減速しながら前記排気口から流出
し、これらの増速と減速とに伴って、大気に対する重力
の作用に基づく前記風圧管各部の前記固有静圧PSH
前記流入口と前記排気口との双方から前記軸流風車に向
かって対称的に減圧することにより、前記流入口外の大
気に対する重力の作用が、前記風圧管内の流通空気の前
述の単位時間単位通過流量1当たりの前記固有エネルギ
FH=1×ρ×g×10.33mAqを構成する前記
固有全圧PFH=ρ×g×10.33mAqとして、前
記流入口から前記軸流風車の出口まで作用し、前記排水
口外の大気に対する重力の作用が、前記風圧管内の流通
空気の前述の単位時間単位通過流量1当たりの前記固有
エネルギEFH=1×ρ×g×10.33mAqの(前
記固有静圧PSH)/(前記固有全圧PFH)を構成す
る排気口静圧PS2=排気口での前記固有全圧PFH
排気口での前記固有動圧PKH=排気口での前記固有全
圧PFH−風速Vの動圧=[{ρ×g×10.33m
Aq}−{ρ×(V÷2}]として、前記排気
口から前記軸流風車の出口まで遡るようにしておき、 前記流入口と前記軸流風車の出口間の風車駆動エネルギ
系の前記所定流量の流通空気に発生する流入損失圧
力(t/m)の全部と、前記軸流風車の出口と前記排
気口間の流量維持エネルギE系の前記所定流量の流通
空気に発生する流出損失圧力(t/m)の全部とを0
に補償する流入・流出損失補償圧力(t/m)を発生
させる流入・流出損失補償圧力エネルギ(t・m/se
c)=(S×V10)×(流入・流出損失補償圧
力)、及び、(前記所定流量)×(前記風速Vの動
圧)を、自然界の風における前述の大気に対する重力の
作用を伴う風の方向への圧力の偏り、及び、前記固有全
圧PFHと前記排気口静圧PS2との差に相当するもの
として、前記風圧管内の前記風車駆動エネルギE系の
流通空気に人為的に供給し、前記所定流量の流通空気に
対する前記風圧管の抵抗と釣り合わせると共に前記流量
維持エネルギE系の流通空気に発生する流出損失圧力
を上流側から補償し且つ前記固有全圧PFHと前記排気
口静圧PS2との差を上流側から補償することにより、
後述のようにして前記流量維持エネルギE系の流通空
気に後述の風車駆動エネルギEの消費に入れ代わる形
で発生させる流量維持エネルギEが、前記流量維持エ
ネルギE系の流通空気内を後述の風車駆動エネルギE
の消費に入れ代わる形で前記軸流風車まで遡って前記
所定流量を維持し、前記風圧管各部の流速を大気に対す
る重量の作用に基づく固有水速V(m/sec)=(前
記所定流量S×V10)/(流速によるρの変化を
補正した各部の通気断面積)に固定し、前記風圧管内各
部の単位時間単位通過流量1当たりの流通空気が、自然
界の風と同様に、前述の大気に対する重力の作用に基づ
く前記固有エネルギEFH(t・m/sec)=(前記
固有静圧PSHに対応する固有圧力エネルギEPH)+
(前記固有動圧PKHに対応する固有運動エネルギE
KH)=1×[ρ×g×10.33mAq−{ρ×
(V÷2}]+1×{ρ×(V÷2}=
1×ρ×g×10.33mAqを有するようにすること
と、 前記軸流風車の負荷の有無には関係なく、前記流量維持
エネルギE系の流通空気に、流出エネルギE(t・
m/sec)=(S×V20)×[大気圧での単位時
間単位通過流量1当たりの風の前記固有エネルギEFH
{1×ρ×g×10.33mAq}]が存在すれば、前
記排気口における前述の大気に対する重力の作用と、前
記排気口外の大気に対する重力の作用を伴う風の方向へ
の圧力の偏りと、大気圧での単位時間単位通過流量1当
たりの風の前記固有エネルギEFH=1×ρ×g×1
0.33mAqと、前記排気口静圧PS2とが、前記流
量維持エネルギE系の流通空気を前記所定流量を上限
として前記排気口から前記排気口静圧PS2の風の中に
吸い出し、風に変化を残すことなく流れ去らせる流量維
持作用を有することとにより、 前記軸流風車が無負荷の場合には、流入エネルギE
(t・m/sec)=(前記所定流量S×V10
×[大気圧での単位時間単位通過流量1当たりの風の前
記固有エネルギEFH{1×ρ×g10.33
Aq}]=前記流出エネルギEを、前記流入口から
流入し前記排気口から流出する前記所定流量の流通空気
と共に前記風圧管内を通過させ、 負荷をかけられた前記軸流風車が、風車駆動エネルギE
={前記風車流入流速VG1Oの所定流量の風車駆動
エネルギE系の流通空気の運動エネルギ}−{前記軸
流風車の軸方向の出口での風車流出流速VTO(m/s
ec)の所定流量の風車駆動エネルギE系の流通空気
の運動エネルギ}を消費する場合には、 前記軸流風車の出口と前記排気口間の任意の位置にあ
り、前述の大気圧での風の前記固有エネルギEFH=1
×ρ×g×10.33mAqと前記固有全圧PFH=ρ
×g×10.33mAqとを構成する前述のようにして
遡る前記排気口静圧PS2及び前述のようにして上流側
から供給される前記風速Vの動圧が作用する通気断面
積が前記風車流出通気断面積SG2Iのn倍であること
により、必要な前述の単位時間単位通過流量1当たりの
流通空気の前記固有エネルギEFHが前記流量維持流速
G2Iの1/nの後部流量維持流速VC2Oで得られ
る後部縮小通気断面積SC2Oにおいて、後部流量維持
用補充運動エネルギEC2K≧[後部流量維持流速V
C2O={(S×V20)/SC2O}の所定流量の
流通空気の運動エネルギ]×[1−〔{(前記流入エネ
ルギE−前記風車駆動エネルギE)が前記後部縮小
通気断面積SC2Oを通過する流通空気に与える流速V
C2O0/{前記流入エネルギEが前記後部縮小
通気断面積SC2Oを通過する流通空気に与える前記後
部流量維持流速VC2O〕]を、前記風車流出流速
TOの運動エネルギと前記流出損失補償圧力と(所定
流量)×(前記風速Vの動圧)とが上流側から供給さ
れ且つ前記排気口外の風による前記流量維持作用を受け
る前記所定流量の前記流量維持エネルギE系の流通空
気に人為的に供給し、前記後部縮小通気断面積SC2O
での流速を前記後部流量維持流速VC2Oに維持するこ
とにより、前記風車駆動エネルギEの消費に入れ代わ
る形で流量維持エネルギE=前記風車駆動エネルギE
を発生させ前記軸流風車まで遡らせ、大気圧中にある
前記風圧管内の前記流量維持エネルギE系の流通空気
に、前述の流通空気の単位時間単位通過流量1当たりの
前記固有エネルギEFH=1×ρ×g×10.33m
Aqに基づく前記流出エネルギE=(S×V20
×[前記固有エネルギEFH{1×ρ×g×10.33
Aq}]を維持させて、 前記風圧管の全長にわたる前記所定流量の流通空気に、
円周方向にランナーを回転しながら前記軸流風車内を回
動して存在する前記風車駆動エネルギEを含めて、大
気に対する重力の作用に基づく前記流入エネルギE
前記流出エネルギEと大気圧での風の前記固有全圧P
FH=ρ×g×10.33mAqとを存在させ、抵抗と
釣り合って流速を維持する人為エネルギによる人為全圧
P={(前記流入・流出損失補償圧力)−(損失圧
力)}の分布を前記固有全圧PFHに加えた流通空気の
全圧P=(固有全圧PFH+人為全圧P)が前記流入
口から前記排気口に向かって前記所定流量を維持しなが
ら前記排気口静圧PS2まで低下し、前記排気口外の風
が有する前記流量維持作用が、前記風圧管内で前記流出
エネルギEを有する前記所定流量の前記流量維持エネ
ルギE系の流通空気を、前記排気口から前記所定流出
流速V20で前記排気口静圧PS2の風の中に吸い出し
て風に変化を残すことなく流れ去らせて、前記風圧管内
の流通空気の流量を前記所定流量に安定させることによ
り、 前記のように小さな3つの人為エネルギの供給を受け
て、流体の流れに作用する重力を大きな前記風車駆動エ
ネルギEと前記流量維持エネルギEとに変換して前
記軸流風車を駆動し前記風圧管内の流通空気の前記所定
流量を維持する第3種永久運動機関を実現し、 風車出力容量(kW)={所定流量(S×V10)}
×{g×10.33mAq}×風車効率−{(流入・流
出損失補償圧力エネルギ)+{所定流量(S×
10)}×(風速Vの動圧)+(後部流量維持用補
充運動エネルギEC2K)}÷(人為エネルギの電力効
率) を得ることを特徴とする流体の流れに作用する重力を運
動エネルギに変換する方法。
4. The effect of gravity on the atmosphere and the wind speed V
H (m / sec) is balanced with resistance to movement of each part of the atmosphere and movement of each part of the atmosphere, and the bias of pressure in the direction of the wind accompanied by the action of gravity on the atmosphere maintaining the wind speed V H , and the gravity on the atmosphere. The inherent total pressure P FH of the wind at the wind speed V H based on the action of the following: intrinsic static pressure P SH + intrinsic dynamic pressure P KH =
[Ρ × g × 10.33 m Aq − {ρ A × (V H ) 2 ÷
2}] + {ρ A × (V H ) 2 ÷ 2} = ρ × g × 10.3.
3 m Aq (t / m 2 ) and the specific energy E FH of the wind at the wind speed V H per unit time unit passing flow rate 1 (m 3 / sec) based on the effect of gravity on the atmosphere E FH = (the specific static pressure P SH specific pressure energy E PH) corresponding to + (the unique dynamic pressure P KH corresponding to the unique kinetic energy E KH) =
1 (m 3 /sec)×[ρ×g×10.33 m Aq
A × (V H ) 2 ÷ 2}] (t / m 2 ) +1 (m 3 /
sec) × {ρ A × (V H ) 2 ÷ 2} (t / m 2 ) = 1
Xρ × g × 10.33 m Aq (t · m / sec) in the wind or the force for maintaining the relative motion with the atmosphere and the relative velocity with the atmosphere are the effects of gravity on the atmosphere. In the moving body in the atmosphere that can be treated as the wind velocity V H accompanied by the deviation of the pressure in the wind direction, the inlet of the ventilation cross-sectional area S 1 (m 2 ) is introduced into the wind velocity V 1 (m / se).
c), an axial wind turbine near the center, and an exhaust port with a ventilation cross-sectional area S 2 (m 2 ) of wind speed V 2 (m / sec).
The wind cross section S 1 corrected by the change of ρ A due to the flow velocity by installing the wind pressure pipe at the position
S 2 is calculated by (S 1 ×
The predetermined inflow velocity V 10 ) = (S 2 × predetermined outflow velocity V 20 equal to or less than the wind velocity V 2 ) (m 3 / sec) = (predetermined flow rate at which required output is obtained), and from the inflow port The ventilation cross-section area S G1O (m) is set so that the circulating air is accelerated to flow into the axial flow turbine at a wind turbine inflow velocity V G1O (m / sec).
2 ) to reduce the ventilation cross-sectional area from the exhaust port to the axial flow wind turbine in the circumferential direction toward the axial flow wind turbine while maintaining the flow rate of the circulating air flowing out from the axial flow wind turbine. Wind turbine outflow ventilation cross-sectional area S G2I (m 2 ) that passes at a flow velocity V G2I (m / sec) = the wind turbine inflow ventilation cross-sectional area S G1O is gradually reduced to a larger ventilation cross-sectional area. By connecting to the outlet in the circumferential direction in a state of being deflected in the circumferential direction, the axial flow wind turbine has no load, and the inflow / outflow loss compensation pressure and the dynamic pressure of the wind speed V 2 artificially supplied as described later. Is in a state of maintaining a predetermined flow rate described later in balance with the resistance to the circulating air, or the inflow / outflow loss compensation pressure and the wind speed V 2 of the axial flow wind turbine with a load and being artificially supplied as described later. Dynamic pressure in circulating air Resistance commensurate with maintaining a predetermined flow rate will be described later, further, the state artificially supplied rear flow maintained refill kinetic energy E C2K as described below is supplemented with consumption of the wind turbine drive energy E T below Then, the circulating air is accelerated with a decrease in the ventilation cross-sectional area and flows into the axial wind turbine, and the circulating air passing through the axial wind turbine is decelerated with the increase in the ventilation cross-sectional area from the exhaust port. Outflowing, and as these speeds up and slow down, the intrinsic static pressure P SH of each part of the wind pressure pipe based on the action of gravity on the atmosphere is directed toward the axial wind turbine from both the inlet and the exhaust port. By symmetrically reducing the pressure, the action of gravity on the atmosphere outside the inflow port causes the specific energy E FH = 1 × ρ × g × 10 per unit time unit flow rate of the circulating air in the wind pressure tube. .33m Aq As the intrinsic total pressure P FH = ρ × g × 10.33 m Aq , which acts from the inlet to the outlet of the axial flow wind turbine, and the action of gravity on the atmosphere outside the drainage outlet causes the flow in the wind pressure pipe. Exhaust that constitutes the (specific static pressure P SH ) / (the specific total pressure P FH ) of the specific energy E FH = 1 × ρ × g × 10.33 m Aq per one unit time unit flow rate of the air Mouth static pressure P S2 = the above-mentioned specific total pressure P FH − at the exhaust port
The intrinsic dynamic pressure P KH at the exhaust port = the intrinsic total pressure P FH at the exhaust port−the dynamic pressure of the wind speed V 2 = [{ρ × g × 10.33 m
Aq }-{ρ A × (V 2 ) 2 ÷ 2}] so as to trace back from the exhaust port to the outlet of the axial wind turbine, and the wind turbine drive energy between the inlet and the outlet of the axial wind turbine. and all of the inflow loss pressure (t / m 2) generated in the circulated air of the predetermined flow rate of the E T system, distribution of the predetermined flow rate maintained energy E F system between the outlet and the exhaust port of the axial flow wind turbine The total outflow loss pressure (t / m 2 ) generated in the air is set to 0
Inflow / outflow loss compensation pressure energy (t · m / se) to generate inflow / outflow loss compensation pressure (t / m 2 )
c) = (S 1 × V 10 ) × (inflow / outflow loss compensation pressure), and (the predetermined flow rate) × (the dynamic pressure of the wind speed V 2 ), the action of gravity on the atmosphere in the natural wind. the associated pressure deviation in the direction of the wind, and the specific total pressure P FH and as corresponding to the difference between the exhaust port static pressure P S2, distribution air in the wind turbine drive energy E T system of the wind pressure pipe artificially supplied to the predetermined flow rate the flow rate maintained to compensate the outflow losses pressure generated in the distribution air energy E F system from the upstream side and the specific total pressure with balancing the resistance of the wind pressure pipe for circulation of air By compensating for the difference between P FH and the exhaust port static pressure P S2 from the upstream side,
Flow rate maintained energy E F to be generated by the consumed change places the form of the flow rate maintained energy E F based wind turbine drive energy E T below the distribution of air as described later, the flow rate maintained energy E F system flow within the air Wind turbine drive energy E described later
The predetermined flow rate is maintained by going back to the axial-flow wind turbine in a manner that replaces the consumption of T , and the flow velocity of each part of the wind pressure tube is set to a specific water speed V (m / sec) = (the predetermined flow rate S 1 × V 10 ) / (aeration cross-sectional area of each part corrected for changes in ρ A due to flow velocity), and the circulating air per unit time unit passing flow rate 1 of each part in the wind pressure tube is the same as the natural wind, The specific energy E FH (tm · sec) = (specific pressure energy E PH corresponding to the specific static pressure P SH ) based on the action of gravity on the atmosphere described above +
(Natural kinetic energy E corresponding to the above-mentioned intrinsic dynamic pressure P KH
KH ) = 1 × [ρ × g × 10.33 m Aq − {ρ A ×
(V H ) 2 ÷ 2}] + 1 × {ρ A × (V H ) 2 ÷ 2} =
And that to have a 1 × ρ × g × 10.33m Aq , regardless of whether the load of the axial flow wind turbine, the flow of air the flow rate maintained energy E F system, the outflow energy E 2 (t ·
m / sec) = (S 2 × V 20 ) × [the specific energy E FH of the wind per unit time unit flow rate at atmospheric pressure]
{1 × ρ × g × 10.33 m Aq }] exists, the bias of the pressure in the direction of the wind accompanied by the action of gravity on the atmosphere at the exhaust port and the action of gravity on the atmosphere outside the exhaust port. And the specific energy E FH of the wind per unit flow rate per unit time at atmospheric pressure E FH = 1 × ρ × g × 1
0.33 m Aq and the exhaust port static pressure P S2 suck the circulating air of the flow rate maintenance energy E F system into the wind of the exhaust port static pressure P S2 from the exhaust port with the predetermined flow rate as the upper limit. In addition, when the axial-flow wind turbine has no load, the inflow energy E has the effect of maintaining the flow rate that allows the wind to flow away without leaving any change.
1 (t · m / sec) = (predetermined flow rate S 1 × V 10 ).
× [The above-mentioned specific energy E FH of wind per unit time unit passing flow rate at atmospheric pressure E FH {1 × ρ × g10.33
m Aq }] = The outflow energy E 2 is passed through the wind pressure pipe together with the predetermined amount of circulating air flowing in from the inflow port and flowing out from the exhaust port, and the loaded axial flow wind turbine is a wind turbine. Drive energy E
T = {Windmill inflow velocity V G1O of a predetermined flow rate of wind turbine drive energy E T Kinetic energy of the circulating air of the system}-{Windmill outflow velocity V TO (m / s at the axial outlet of the axial wind turbine)
ec) when the wind turbine driving energy E T system kinetic energy of the circulating air of a predetermined flow rate} is consumed, it is located at an arbitrary position between the outlet of the axial wind turbine and the exhaust port, and at the above-mentioned atmospheric pressure. The characteristic energy of the wind E FH = 1
× ρ × g × 10.33 m Aq and the intrinsic total pressure P FH = ρ
Xg × 10.33 m Aq is defined by the exhaust port static pressure P S2 traced as described above and the ventilation cross-sectional area on which the dynamic pressure of the wind speed V 2 supplied from the upstream side acts as described above. Since the wind turbine outflow ventilation cross-sectional area S G2I is n times, the necessary specific energy E FH of the circulating air per unit time unit passing flow rate 1 is the rear flow rate of 1 / n of the flow rate maintaining flow rate V G2I. In the rear reduced ventilation cross-sectional area S C2O obtained with the maintenance flow velocity V C2O , the supplemental kinetic energy for maintaining the rear flow amount E C2K ≧ [rear flow maintenance flow velocity V
C2O = {(S 2 × V 20 ) / S C 2 O } kinetic energy of the circulating air at a predetermined flow rate] × [1-[{(the inflow energy E 1 −the wind turbine drive energy E T ) is the rear reduction ventilation cutoff. Velocity V given to the circulating air passing through the area S C2O
C2O0} 2 / {the said rear flow maintained velocity V C2O inflow energy E 1 has on the circulation air passing through the rear reduced ventilation cross-sectional area S C2O} 2]], wherein the kinetic energy of the wind turbine outlet flow velocity V TO outflow loss compensation pressure and (predetermined flow rate) × the flow rate maintained energy E F system of the predetermined flow rate (the wind speed V 2 of the dynamic pressure) and is supplied from the upstream side and receiving said flow maintenance action by the wind of the exhaust extraoral artificially supplied to a distribution air, said rear reduced ventilation cross-sectional area S C2O
By maintaining the flow velocity at the rear flow rate maintenance flow velocity V C2O at a flow rate, the flow maintenance energy E F = the wind turbine drive energy E in lieu of consumption of the wind turbine drive energy E T.
T is generated and traced back to the axial flow wind turbine, and the flow rate maintenance energy E F in the wind pressure tube at atmospheric pressure is added to the flowing air of the F system, and the specific energy E per unit time unit flow rate of the flowing air E FH = 1 × ρ × g × 10.33 m
The outflow energy E 2 = (S 2 × V 20 ) based on Aq
× [said characteristic energy E FH {1 × ρ × g × 10.33
m Aq }] is maintained, and the circulating air of the predetermined flow rate over the entire length of the wind pressure pipe is
The inflow energy E 1 based on the action of gravity on the atmosphere, including the wind turbine drive energy E T that exists by rotating inside the axial wind turbine while rotating the runner in the circumferential direction.
The outflow energy E 2 and the intrinsic total pressure P of the wind at atmospheric pressure
FH = ρ × g × 10.33 m Aq is present, and the distribution of the artificial total pressure P = {(the inflow / outflow loss compensation pressure) − (loss pressure)} by the artificial energy that maintains the flow velocity in balance with the resistance is calculated. the specific total pressure P total pressure distribution air added to FH P F = (specific total pressure P FH + human total pressure P) is the exhaust port while maintaining a predetermined flow toward the exhaust port from the inlet dropped to static pressure P S2, the flow maintains action winds the exhaust extraoral has found a predetermined flow rate the flow rate maintained energy E F system circulation air of having said outflow energy E 2 at the wind pressure pipe, the exhaust The flow rate of the circulating air in the wind pressure pipe is stabilized at the predetermined flow rate by sucking it into the wind of the exhaust port static pressure P S2 at the predetermined outflow velocity V 20 and letting it flow away without leaving any change in the wind. By doing so, In response to the supply of three small artificial energies, the gravity acting on the fluid flow is converted into the large wind turbine drive energy E T and the large flow maintenance energy E F to drive the axial wind turbine to drive the axial wind turbine. A third class permanent motion engine that maintains the predetermined flow rate of the circulating air is realized, and the wind turbine output capacity (kW) = {predetermined flow rate (S 1 × V 10 )}.
X {g x 10.33 m Aq } x wind turbine efficiency-{(inflow / outflow loss compensation pressure energy) + {predetermined flow rate (S 1 x
V 10 )} × (dynamic pressure of wind velocity V 2 ) + (replacement kinetic energy for rear flow rate maintenance E C2K )} ÷ (power efficiency of artificial energy) How to convert to energy.
【請求項5】 水(風)車流入通水(気)断面積S
G1Oを水(風)車流出通水(気)断面積SG2Iより
大きくして、前記水(風)車流入通水(気)断面積S
G1Oにおける水(風)車流入流速VG1Oを前記水
(風)車流出通水(気)断面積SG2Iにおける流量維
持流速VG2Iより小さくし、前記水(風)車流入流速
G1Oの動圧と前記流量維持流速VG2Iの動圧との
差によって人為エネルギの流入・流出損失補償圧力と水
(風)速Vの動圧との一部を分担する請求項1、2、
3又は4に記載の流体の流れに作用する重力を運動エネ
ルギに変換する方法。
5. A water (wind) turbine inflow water (air) cross-sectional area S
G1O is made larger than the water (wind) turbine outflow water (air) cross-sectional area S G2I so that the water (wind) turbine inflow water (air) cross-sectional area S
Smaller than the flow rate maintained the flow velocity V G2i water (wind) car inflow velocity V G1o in the water (wind) car outlet water passage (gas) cross-sectional area S G2i in G1o, motion of the water (wind) car inflow velocity V G1o A part of the inflow / outflow loss compensation pressure of the artificial energy and the dynamic pressure of the water (wind) speed V 2 are partially shared by the difference between the pressure and the dynamic pressure of the flow rate maintenance flow velocity V G2I .
5. A method for converting gravity acting on a fluid flow according to 3 or 4 into kinetic energy.
【請求項6】 水(風)車負荷が変動する場合、又は、
水(風)速が変動する場合に、変動する水(風)車負荷
の予想最大値、又は、変動する水(風)速に合わせて、
所定流量と、人為エネルギの流入・流出損失補償圧力エ
ネルギと{所定流量(S×V10)}×{(風)速V
の動圧}と後部流量維持用補充運動エネルギEC2K
と、水(風)車流入通水(気)断面積SG1Oと水
(風)車流出通水(気)断面積SG2Iとを調整して、
前記水(風)車流入通水(気)断面積SG1Oでの水
(風)車流入流速VG1Oと水(風)車流出通水(気)
断面積SG2Iでの流量維持流速VG2Iとを所定値に
維持し、水(風)車の出力を負荷及び水(風)速に合わ
せると共に、水(風)車の回転数を所定値に維持する請
求項1、2、3又は4に記載の流体の流れに作用する重
力を運動エネルギに変換する方法。
6. When the water (wind) turbine load fluctuates, or
When the water (wind) speed fluctuates, according to the expected maximum value of the fluctuating water (wind) wheel load or the fluctuating water (wind) speed,
Predetermined flow rate, artificial energy inflow / outflow loss compensation pressure energy and {predetermined flow rate (S 1 × V 10 )} × {(wind) speed V
2 dynamic pressure} and supplemental kinetic energy E C2K for maintaining rear flow rate
And adjusting the water (wind) turbine inflow water (air) cross-sectional area S G1O and the water (wind) turbine outflow water (air) cross-sectional area S G2I ,
Water (wind) turbine inflow water (air) cross-sectional area S G1O water (wind) turbine inflow velocity V G1O and water (wind) turbine outflow water (air)
A flow maintaining the flow velocity V G2i of the cross-sectional area S G2i maintained at a predetermined value, the match output of water (wind) car load and water (wind) speed, the rotational speed of the water (wind) car to a predetermined value A method for converting gravity acting on a fluid flow according to claim 1, 2, 3 or 4 into kinetic energy, which is maintained.
【請求項7】 軸流水(風)車の出力側に調速機を付加
し、水(風)速が低下する場合に、所定流量と、人為エ
ネルギの流入・流出損失補償圧力エネルギと{所定流量
(S×V10)}×{水(風)速Vの動圧}と後部
流量維持用補充運動エネルギEC2Kとを水(風)速の
変動に応じて調整して、人為エネルギが水圧管内に発生
する損失を補償して水圧管内で消費されるようにし、水
(風)車流入通水(気)断面積SG1Oと水(風)車流
出通水(気)断面積SG2Iと前記の調整した所定流量
とで決まる低下した水(風)車流入流速VG1Oと流量
維持流速VG2Iとによって前記軸流水(風)車を駆動
し、前記軸流水(風)車の低下した回転数を前記調速機
で所定回転数に調整して出力し、水(風)車の出力を水
(風)速に合わせる請求項1、2、3又は4に記載の流
体の流れに作用する重力を運動エネルギに変換する方
法。
7. When a speed governor is added to the output side of an axial water (wind) turbine to reduce the water (wind) speed, a predetermined flow rate and an artificial energy inflow / outflow loss compensation pressure energy {predetermined Flow rate (S 1 × V 10 )} × {dynamic pressure of water (wind) speed V 2 } and supplemental kinetic energy for rear flow rate maintenance E C2K are adjusted according to fluctuations in water (wind) speed, and artificial energy is adjusted. Is compensated for the loss generated in the penstock to be consumed in the penstock, and the water (wind) turbine inflow water (air) cross-sectional area S G1O and the water (wind) turbine outflow water (air) cross-sectional area S The lowered axial flow water (wind) turbine is driven by the reduced water (wind) turbine inflow velocity V G1O and the flow maintenance flow velocity V G2I determined by G2I and the adjusted predetermined flow rate, and the axial flow water (wind) turbine is lowered. The adjusted speed is adjusted to the specified speed by the speed governor and output, and the output of the water (wind) wheel is adjusted to the water (wind) speed. Method of converting gravitational force acting on fluid flow according to kinetic energy to claim 1, 2, 3 or 4 to.
【請求項8】 後部縮小通水(気)断面積SC2Oと排
水(気)口間に発生する後部流出損失エネルギを0に補
償する後部流出損失補償圧力エネルギの供給を、水
(風)車駆動エネルギE系の流水(流通空気)への供
給から、前記後部縮小通水(気)断面積SC2Oでの供
給に移した請求項1、2、又は4に記載の流体の流れに
作用する重力を運動エネルギに変換する方法。
8. A water (wind) turbine is used to supply rear outflow loss compensation pressure energy for compensating the rear outflow loss energy generated between the rear reduced water flow (air) cross-sectional area S C2O and the drainage (air) port to zero. from the supply to the drive energy E T system running water (flow air), acting on the fluid flow according to said rear reduced water flow according to claim 1, 2 were transferred to the feed in (air) cross-sectional area S C2O, or 4 A method of converting gravity into kinetic energy.
【請求項9】 大気と水流とに対する重力の作用と、水
深H(m)での水速V(m/sec)と、水流の各部
に作用し水流の各部に対する抵抗と釣り合い前記水深H
での前記水速Vを維持する大気と水流とに対する重力
の流れ方向への作用による圧力の偏りと、大気と水流と
に対する重力の作用に基づく前記水深Hでの水流の固有
全圧PFH=固有静圧PSH+固有動圧PKH=[ρ×
g×(H+10.33mAq)−{ρ×(V÷
2}]+{ρ×(V÷2}=ρ×g×(H+1
0.33mAq)(t/m)と、大気と水流とに対す
る重力の作用に基づく単位時間単位通過流量1(m
sec)当たりの前記水深Hでの水流の固有エネルギE
FH=(前記固有静圧PSHに対応する固有圧力エネル
ギEPH)+(前記固有動圧PKHに対応する固有運動
エネルギEKH)=1(m/sec)×[ρ×g×
(H+10.33mAq)−{ρ×(V÷2}]
(t/m)+1(m/sec)×{ρ×(V
÷2}(t/m)=1×ρ×g×(H+10.33m
Aq)(t・m/sec)とを有する、海流や潮流等の
ように地球規模で循環する水流の中、河川や開水路等の
ように勾配によって流れる水流の中、又は、水との相対
運動を維持する力と水との相対速度とを前記の大気と水
流とに対する重力の流れ方向への作用による圧力の偏り
と前記水速Vとして扱える水上或いは水中の移動体に
おいて、 断面積S(m)の流入口を流速V(m/sec)
の任意の水深H(m)に配置し、中央部付近に設けら
れた軸流水車を水深H(m)に配置し、通水断面積S
(m)の排水口を水速V(m/sec)の前記水深
H又はそれより深い水深H(m)に配置し、前記通水
断面積S、Sを、後述の水車出力容量の式に基づい
て、(S×所定流入流速V10)=(S×水速V
以下の所定流出流速V20)(m/sec)=(所要
出力が得られる所定流量)となるように設定すると共
に、前記流入口から前記軸流水車に向かう通水断面積
を、流水が増速して水車流入流速VG1O(m/se
c)で前記軸流水車に流入するように水車流入通水断面
積SG1O(m)にまで縮小し、前記排水口から前記
軸流水車までの通水断面積を、前記軸流水車に向かって
円周方向に偏向させながら前記軸流水車から流出してく
る流水が流量維持流速VG2I(m/sec)で通過す
る水車流出通水断面積SG2I(m)=前記水車流入
通水断面積SG1Oにまで徐々に縮小して通水断面積が
より大きな前記軸流水車の軸方向の出口に円周方向に偏
向した状態で接続した水圧管と、 前記流入口と前記軸流水車の出口間の水車駆動エネルギ
系の前記所定流量の流水に発生する流入損失圧力
(t/m)の全部と、前記軸流水車の出口と前記排水
口間の流量維持エネルギE系の前記所定流量の流水に
発生する流出損失圧力(t/m)の全部とを0に補償
する流入・流出損失補償圧力(t/m)を発生させる
流入・流出損失補償圧力エネルギ(t・m/sec)=
(S×V10)×(流入・流出損失補償圧力)と{所
定流量(S×V10)}×(水速Vの動圧)とを前
記水圧管内の前記水車駆動エネルギE系の流水に供給
する前部流量維持加圧送水手段と、 前記軸流水車の出口と前記排水口間の任意の位置にある
後部縮小通水断面積SC2Oにおいて、後部流量維持用
補充運動エネルギEC2K≧[後部流量維持流速V
C2O={(S×V20)/SC2O}の所定流量の
流水の運動エネルギ]×[1−〔{(前記流入エネルギ
−前記水車駆動エネルギE)が前記後部縮小通水
断面積SC2Oを通過する流水に与える流速
C2O0/{前記流入エネルギEが前記後部縮
小通水断面積SC2Oを通過する流水に与える前記後部
流量維持流速VC2O〕]を、前記所定流量の前記
流量維持エネルギE系の流水に供給する後部流量維持
加圧送水手段とを有し、 水車出力容量(kW)={所定流量(S×V10)}
×{g×(H+10.33mAq)}×水車効率−
{(流入・流出損失補償圧力エネルギ)+{所定流量
(S×V10)}×(水速Vの動圧)+(後部流量
維持用補充運動エネルギEC2K)}÷(人為エネルギ
の電力効率) を得ることを特徴とする流体の流れに作用する重力を運
動エネルギに変換する装置。
9. The effect of gravity on the atmosphere and the water flow, the water velocity V H (m / sec) at the water depth H (m), and the resistance to each part of the water flow that acts on each part of the water flow and the water depth H is balanced.
At the water depth V, the inherent total pressure P FH of the water flow at the water depth H based on the bias of the pressure on the air and the water flow maintaining the water velocity V H due to the action of gravity in the flow direction and the action of gravity on the atmosphere and the water flow. = Specific static pressure P SH + Specific dynamic pressure P KH = [ρ ×
g × (H + 10.33m Aq ) − {ρ × (V H ) 2 ÷
2}] + {ρ × (V H ) 2 ÷ 2} = ρ × g × (H + 1
0.33 m Aq ) (t / m 2 ) and a unit time unit flow rate 1 (m 3 / based on the action of gravity on the atmosphere and water flow)
specific energy E of the water flow at the water depth H per sec)
FH = (the unique static P specific pressure energy corresponding to the SH E PH) + (the inherent dynamic pressure P inherent kinetic energy corresponding to KH E KH) = 1 (m 3 / sec) × [ρ × g ×
(H + 10.33m Aq) - { ρ × (V H) 2 ÷ 2}]
(T / m 2 ) +1 (m 3 / sec) × {ρ × (V H ) 2
÷ 2} (t / m 2 ) = 1 × ρ × g × (H + 10.33 m
Aq ) (t · m / sec) in a water stream that circulates on a global scale, such as ocean currents and tidal currents, in a water stream that flows through a gradient such as a river or open channel, or relative to water In the moving body above or underwater, the force for maintaining the motion and the relative velocity with water can be treated as the pressure bias due to the action of gravity on the flow direction of the atmosphere and the water flow and the water velocity V H , and the cross-sectional area S Flow velocity V 1 (m / sec) at the inlet of 1 (m 2 ).
At an arbitrary water depth H 1 (m), and the axial flow turbine provided near the central portion is arranged at a water depth H (m), and the water cross-section S 2
The water discharge port of (m 2 ) is arranged at the water depth H of water velocity V 2 (m / sec) or at a water depth H 2 (m) deeper than that, and the water passage cross-sections S 1 and S 2 are set to the water turbine described later. Based on the formula of the output capacity, (S 1 × predetermined inflow velocity V 10 ) = (S 2 × water velocity V 2
The following predetermined outflow velocity V 20 ) (m 3 / sec) = (predetermined flow rate at which required output is obtained) is set, and the water flow cross-sectional area from the inflow port toward the axial flow turbine is Speed up and flow velocity of water turbine inflow V G1O (m / se
In c), it is reduced to a turbine inflow water cross-sectional area S G1O (m 2 ) so as to flow into the axial water turbine, and the water cross-sectional area from the drain port to the axial water turbine is set to the axial water turbine. towards waterwheel outlet water passage cross-sectional area S G2I (m 2) which is flowing water flowing out from the axis running water wheel while deflected circumferentially passes at a rate maintaining the flow velocity V G2I (m / sec) and = the water turbine inlet passage A hydraulic pipe connected to the axial outlet of the axial flow turbine in a state of being circumferentially deflected, which is gradually reduced to a water cross sectional area S G1O and has a larger water cross sectional area, the inlet and the axial flow water. and all of the inflow loss pressure (t / m 2) generated in running water of the predetermined flow rate of the water turbine drive energy E T system between car outlet, the flow rate maintained energy E F between said shaft running water vehicle exit the drain outlet Outflow loss pressure (t / m) generated in flowing water of the predetermined flow rate of the system Inflow / outflow loss compensation pressure energy (t · m / sec) for generating inflow / outflow loss compensation pressure (t / m 2 ) for compensating all of 2 ) and 0 =
(S 1 × V 10 ) × (compensation pressure of inflow / outflow loss) and {predetermined flow rate (S 1 × V 10 )} × (dynamic pressure of water speed V 2 ) are the turbine driving energy E T in the hydraulic pipe. In the front flow rate maintaining pressurized water supplying means for supplying to the flowing water of the system, and in the rear reduced water flow cross-sectional area S C2O at any position between the outlet of the axial flow turbine and the drain port, supplemental kinetic energy for maintaining the rear flow rate is provided. E C2K ≧ [rear flow rate maintenance flow velocity V
C2O = {(S 2 × V 20 ) / S C 2 O } kinetic energy of flowing water at a predetermined flow rate] × [1-[{(the inflow energy E 1 −the water wheel drive energy E T ) is the rear reduction water interruption. said rear flow maintained velocity V C2O} 2]] where the flow velocity V C2O0} 2 / {the inflow energy E 1 to give the flowing water passing through the area S C2O gives the flowing water passing through said rear reduced water passage cross-sectional area S C2O, wherein and a predetermined flow rate of the flow maintaining energy E F system rear flow maintains pressure pumping water means for supplying running water, water wheel output capacitance (kW) = {a predetermined flow rate (S 1 × V 10)}
X {g x (H + 10.33 m Aq )} x turbine efficiency-
{(Inflow / outflow loss compensation pressure energy) + {Predetermined flow rate (S 1 × V 10 )} × ( Dynamic pressure of water velocity V 2 ) + (Replacement kinetic energy for rear flow rate maintenance E C2K )} ÷ (of artificial energy A device for converting gravity acting on a fluid flow into kinetic energy, which is characterized by obtaining electric power efficiency.
【請求項10】 大気に対する重力の作用と、風速V
(m/sec)と、大気の各部に作用し大気の各部の移
動に対する抵抗と釣り合い前記風速Vを維持する大気
に対する重力の作用を伴う風の方向への圧力の偏りと、
大気に対する重力の作用に基づく前記風速Vの風の固
有全圧PFH=固有静圧PSH+固有動圧PKH=[ρ
×g×10.33mAq−{ρ×(V÷2}]
+{ρ×(V÷2}=ρ×g×10.33m
Aq(t/m)と、大気に対する重力の作用に基づく
単位時間単位通過流量1(m/sec)当たりの前記
風速Vの風の固有エネルギEFH=(前記固有静圧P
SHに対応する固有圧力エネルギEPH)+(前記固有
動圧PKHに対応する固有運動エネルギEKH)=1
(m/sec)×[ρ×g×10.33mAq−{ρ
×(V÷2}](t/m)+1(m/se
c)×{ρ×(V÷2}(t/m)=1×ρ
×g×10.33mAq(t・m/sec)とを有する
風の中、又は、大気との相対運動を維持する力と大気と
の相対速度とを前記の大気に対する重力の作用を伴う風
の方向への圧力の偏りと前記風速Vとして扱える大気
中の移動体において、 通気断面積S(m)の流入口を風速V(m/se
c)の位置に有し、軸流風車を中央部付近に有し、通気
断面積S(m)の排気口を風速V(m/sec)
の位置に有し、流速によるρの変化を補正した前記通
気断面積S、Sを、後述の風車出力容量の式に基づ
いて、(S×所定流入流速V10)=(S×風速V
以下の所定流出流速V20)(m/sec)=(所
要出力が得られる所定流量)となるように設定すると共
に、前記流入口から前記軸流風車に向かう通気断面積
を、流通空気が増速して風車流入流速VG1O(m/s
ec)で前記軸流風車に流入するように風車流入通気断
面積SG1O(m)にまで縮小し、前記排気口から前
記軸流風車までの通気断面積を、前記軸流風車に向かっ
て円周方向に偏向させながら前記軸流風車から流出して
くる流通空気が流量維持流速VG2I(m/sec)で
通過する風車流出通気断面積SG2I(m)=前記風
車流入通気断面積SG1Oにまで徐々に縮小して通気断
面積がより大きな前記軸流風車の軸方向の出口に円周方
向に偏向した状態で接続する風圧管と、 前記流入口と前記軸流風車の出口間の風車駆動エネルギ
系の前記所定流量の流通空気に発生する流入損失圧
力(t/m)の全部と、前記軸流風車の出口と前記排
気口間の流量維持エネルギE系の前記所定流量の流通
空気に発生する流出損失圧力(t/m)の全部とを0
に補償する流入・流出損失補償圧力(t/m)を発生
させる流入・流出損失補償圧力エネルギ(t・m/se
c)=(S×V10)×(流入・流出損失補償圧力)
と{所定流量(S×V10)}×(風速Vの動圧)
を前記風圧管内の前記風車駆動エネルギE系の流通空
気に供給する前部流量維持加圧送風手段と、 前記軸流風車の出口と前記排気口間の任意の位置にある
後部縮小通気断面積SC2Oにおいて、後部流量維持用
補充運動エネルギEC2K≧[後部流量維持流速V
C2O={(S×V20)/SC2O}の所定流量の
流通空気の運動エネルギ]×[1−〔{(前記流入エネ
ルギE−前記風車駆動エネルギE)が前記後部縮小
通気断面積SC2Oを通過する流通空気に与える流速V
C2O0/{前記流入エネルギEが前記後部縮小
通気断面積SC2Oを通過する流通空気に与える前記後
部流量維持流速VC2O〕]を前記所定流量の前記
流量維持エネルギE系の流通空気に供給する後部流量
維持加圧送風手段とを有し、 風車出力容量(kW)={所定流量(S×V10)}
×{g×10.33mAq}×風車効率−{(流入・流
出損失補償圧力エネルギ)+{所定流量(S×
10)}×(風速Vの動圧)+(後部流量維持用補
充運動エネルギEC2 )}÷(人為エネルギの電力効
率) を得ることを特徴とする流体の流れに作用する重力を運
動エネルギに変換する装置。
10. The action of gravity on the atmosphere and the wind velocity V H
( M / sec) is a bias of pressure in the direction of the wind accompanied by the effect of gravity on the atmosphere that acts on each part of the atmosphere and balances the resistance to the movement of each part of the atmosphere and maintains the wind speed V H ;
The intrinsic total pressure P FH of the wind at the wind velocity V H based on the action of gravity on the atmosphere = intrinsic static pressure P SH + intrinsic dynamic pressure P KH = [ρ
× g × 10.33m Aq - {ρ A × (V H) 2 ÷ 2}]
+ {Ρ A × (V H ) 2 ÷ 2} = ρ × g × 10.33 m
Aq (t / m 2 ) and the specific energy E FH of the wind at the wind speed V H per unit time unit passing flow rate 1 (m 3 / sec) based on the action of gravity on the atmosphere E FH = (the specific static pressure P
Specific kinetic energy E KH) = 1 corresponding to the unique pressure energy E PH) + (the inherent dynamic pressure P KH corresponding to SH
(M 3 /sec)×[ρ×g×10.33m Aq − {ρ
A × (V H ) 2 ÷ 2}] (t / m 2 ) +1 (m 3 / se
c) × {ρ A × (V H ) 2 ÷ 2} (t / m 2 ) = 1 × ρ
Xg × 10.33 m Aq (t · m / sec), or a wind accompanied by the force of maintaining the relative motion with the atmosphere and the relative velocity with the atmosphere accompanied by the action of gravity on the atmosphere. In the moving body in the atmosphere that can be treated as the bias of pressure in the direction of and the wind speed V H , the inlet of the ventilation cross-sectional area S 1 (m 2 ) is introduced into the wind speed V 1 (m / se).
c), an axial wind turbine near the center, and an exhaust port with a ventilation cross-sectional area S 2 (m 2 ) of wind speed V 2 (m / sec).
And the ventilation cross-sections S 1 and S 2 in which the change in ρ A due to the flow velocity is corrected, based on the formula of the wind turbine output capacity described later, (S 1 × predetermined inflow velocity V 10 ) = (S 2 x wind speed V
With 2 following a predetermined outflow velocity V 20) (m 3 / sec ) = ( required output is set so that a predetermined flow rate) obtained, the ventilation cross-sectional area toward the axial flow wind turbine from the inlet, circulation air And the wind turbine inflow velocity V G1O (m / s
ec) is reduced to a wind turbine inlet ventilation cross-sectional area S G1O (m 2 ) so as to flow into the axial wind turbine, and the ventilation cross-sectional area from the exhaust port to the axial wind turbine is directed toward the axial wind turbine. The wind turbine outflow aeration cross-sectional area S G2I (m 2 ) = the wind turbine inflow aeration cross-sectional area in which the circulating air flowing out from the axial wind turbine passes at a flow rate maintenance flow velocity V G2I (m / sec) while being deflected in the circumferential direction. A wind pipe connected to the axial outlet of the axial wind turbine with a larger air flow cross-sectional area in a state of being circumferentially deflected, which is gradually reduced to SG 1O , and between the inlet and the axial wind turbine outlet. Of the inflow loss pressure (t / m 2 ) generated in the circulating air of the predetermined flow rate of the wind turbine drive energy E T system, and the flow rate maintenance energy E F system between the outlet of the axial flow wind turbine and the exhaust port Outflow loss that occurs in a certain amount of circulating air Total loss (t / m 2 ) and 0
Inflow / outflow loss compensation pressure energy (t · m / se) to generate inflow / outflow loss compensation pressure (t / m 2 )
c) = (S 1 × V 10 ) × (inflow / outflow loss compensation pressure)
And {predetermined flow rate (S 1 × V 10 )} × (dynamic pressure at wind speed V 2 )
Said wind turbine drive energy E T based front flow maintains pressure pumping air means for supplying the flow of air in the wind pressure tube and rear reduced ventilation cross-sectional area at an arbitrary position between the outlet of the axial flow wind turbine outlet In S C2O , the supplemental kinetic energy for rear flow rate maintenance E C2K ≧ [rear flow rate maintenance flow velocity V
C2O = {(S 2 × V 20 ) / S C 2 O } kinetic energy of the circulating air at a predetermined flow rate] × [1-[{(the inflow energy E 1 −the wind turbine drive energy E T ) is the rear reduction ventilation cutoff. Velocity V given to the circulating air passing through the area S C2O
C2O0} 2 / {the inflow energy E 1 is the flow rate maintained energy E F system of the predetermined flow rate the rear flow maintained velocity V C2O} 2]] to give the distribution air passing through said rear reduced ventilation cross-sectional area S C2O A rear flow rate maintaining pressurized air blower for supplying to the circulating air, and a wind turbine output capacity (kW) = {predetermined flow rate (S 1 × V 10 )}
X {g x 10.33 m Aq } x wind turbine efficiency-{(inflow / outflow loss compensation pressure energy) + {predetermined flow rate (S 1 x
V 10 )} × (dynamic pressure of wind velocity V 2 ) + (replacement kinetic energy for rear flow rate maintenance E C2 K )} ÷ (power efficiency of artificial energy) A device that converts kinetic energy.
【請求項11】 水圧管又は風圧管は、 流入口から通水(気)断面積が縮小する通水(気)路を
有する流入部と、 前記流入部に接続する前部円筒形類似空間と、前記前部
円筒形類似空間内にあり円周方向への偏向角を次第に大
きくして前記前部円筒形類似空間の通水(気)断面積を
次第に小さくする複数枚の前部ガイドベーンとからな
り、出口での水(風)車流入通水(気)断面積SG1O
(m)と流水(流通空気)の水(風)車流入流速V
G1O(m/sec)とを有する前部ガイドベーン部
と、 前記水(風)車流入流速VG1Oで前記前部ガイドベー
ン部から円周方向に偏向して流出する流水(流通空気)
を受け、円周方向に偏向した前記水(風)車流入流速V
G1Oの方向を軸方向に変えることにより、前記水
(風)車流入流速VG1Oの円周方向成分流速V
TK(m/sec)の運動エネルギで円周方向に回転駆
動され、前記水(風)車流入流速VG1Oの軸方向成分
流速、或いは、負荷率で決まる水(風)車流出流速V
TO(m/sec)で通水(気)断面積STO(m
の水(風)車出口から流水(流通空気)を流出させ、
{(水(風)車流入流速VG1Oの運動エネルギ)−
(水(風)車流出流速VTOの運動エネルギ)}からな
る水(風)車駆動エネルギEによって駆動されるラン
ナーを有する軸流水(風)車と、 前記軸流水(風)車の出力を外部に伝える出力装置と、 前記軸流水(風)車の出口に接続する後部円筒形類似空
間と、前記後部円筒形類似空間内にあり上流側入口では
円周方向への偏向角が最も大きく、下流に向かって円周
方向への偏向角を徐々に小さくして前記後部円筒形類似
空間の通水(気)断面積を徐々に大きくする複数枚の後
部ガイドベーンとからなり、入口での水(風)車流出通
水断面積SG2I(m)と流水(流通空気)の流量維
持流速VG2I(m/sec)とを有する後部ガイドベ
ーン部と、 前記後部ガイドベーン部の出口に接続し、その通水
(気)断面積を徐々に拡大する流出部とを有する請求項
9又は10に記載の流体の流れに作用する重力を運動エ
ネルギに変換する装置。
11. A water pressure pipe or a wind pressure pipe has an inflow portion having a water (air) passage from which the water (air) cross-sectional area is reduced, and a front cylindrical similar space connected to the inflow portion. A plurality of front guide vanes that are present in the front cylindrical similar space and gradually increase the deflection angle in the circumferential direction to gradually reduce the water (air) cross-sectional area of the front cylindrical similar space. Consists of the water (wind) turbine inflow water (air) cross-sectional area S G1O
(M 2 ) and water (wind) turbine flow velocity V of flowing water (circulating air)
A front guide vane portion having G1O (m / sec), and running water (circulating air) that is deflected in the circumferential direction from the front guide vane portion and flows out at the water (wind) turbine inflow velocity V G1O.
In response to this, the water (wind) turbine inflow velocity V deflected in the circumferential direction
By changing the direction of G1O to the axial direction, the circumferential component flow velocity V of the water (wind) turbine inflow velocity V G1O
It is rotationally driven in the circumferential direction with kinetic energy of TK (m / sec), and the water (wind) wheel inflow velocity V G1O axial component flow velocity or the water (wind) wheel outflow velocity V determined by the load factor.
Water (air) cross-sectional area S TO (m 2 ) at TO (m / sec)
Flowing water (circulating air) from the water (wind) wheel outlet of
{(Kinematic energy of water (wind) turbine inflow velocity V G1O )-
A shaft running water (wind) car with a runner which is driven by a (water (wind) car outflow velocity V TO kinetic energy) consisting} water (wind) car drive energy E T, said axis running water (wind) Car Output To the outside, a rear cylindrical similar space connected to the outlet of the axial water (wind) turbine, and a deflection angle in the circumferential direction is the largest at the upstream inlet in the rear cylindrical similar space. , A plurality of rear guide vanes that gradually decrease the deflection angle in the circumferential direction toward the downstream side and gradually increase the water (air) cross-sectional area of the rear cylindrical similar space. At a rear guide vane portion having a water (wind) turbine outflow water cross-sectional area S G2I (m 2 ) and a flow rate maintenance flow velocity V G2I (m / sec) of flowing water (circulating air), and at an outlet of the rear guide vane portion. Connect and gradually expand the water flow (air) cross-sectional area Apparatus for converting the kinetic energy of the gravitational force acting on the fluid flow according to claim 9 or 10 and a outlet portion for.
JP7201256A 1994-07-05 1995-07-04 Method for converting gravity acting on flow of fluid into kinetic energy and device thereof Pending JPH0874729A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7201256A JPH0874729A (en) 1994-07-05 1995-07-04 Method for converting gravity acting on flow of fluid into kinetic energy and device thereof
PCT/JP1996/000045 WO1997002429A1 (en) 1995-07-04 1996-01-08 Method and device for using gravity total pressure energy of flowing fluid
AU44002/96A AU4400296A (en) 1995-07-04 1996-01-08 Method and device for using gravity total pressure energy of flowing fluid
PCT/JP1996/001829 WO1997002430A1 (en) 1995-07-04 1996-06-28 Method and device for using the gravitational total pressure energy of a flowing fluid
AU62438/96A AU6243896A (en) 1995-07-04 1996-06-28 Method and device for using the gravitational total pressure energy of a flowing fluid

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP18769194 1994-07-05
JP6-189801 1994-07-08
JP6-187691 1994-07-08
JP18980194 1994-07-08
JP7201256A JPH0874729A (en) 1994-07-05 1995-07-04 Method for converting gravity acting on flow of fluid into kinetic energy and device thereof

Publications (1)

Publication Number Publication Date
JPH0874729A true JPH0874729A (en) 1996-03-19

Family

ID=27325931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7201256A Pending JPH0874729A (en) 1994-07-05 1995-07-04 Method for converting gravity acting on flow of fluid into kinetic energy and device thereof

Country Status (1)

Country Link
JP (1) JPH0874729A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279531B1 (en) * 2011-07-18 2013-06-28 정의국 apparatus for transforming leanar motion of a fluid into rotating motion
CN117606568A (en) * 2023-12-07 2024-02-27 武汉大水云科技有限公司 Real-time flow measuring method and system for water outlet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279531B1 (en) * 2011-07-18 2013-06-28 정의국 apparatus for transforming leanar motion of a fluid into rotating motion
CN117606568A (en) * 2023-12-07 2024-02-27 武汉大水云科技有限公司 Real-time flow measuring method and system for water outlet

Similar Documents

Publication Publication Date Title
US9000604B2 (en) Unidirectional hydro turbine with enhanced duct, blades and generator
CA1179238A (en) Hydropower turbine system
KR100579036B1 (en) Generator for a hydro-electric station
AU750680B2 (en) Apparatus for extracting power from a fluid flow
CN101319648B (en) Flow guiding device of vertical axis tidal current generator
US20110109089A1 (en) Free-flow hydro-powered turbine system
US20150014995A1 (en) Marine power generating system and marine power generating method
JPH0874729A (en) Method for converting gravity acting on flow of fluid into kinetic energy and device thereof
GB2283285A (en) Water powered generating apparatus
KR101871703B1 (en) Hydroelectric system
WO1994016215A1 (en) Water-jet hydraulic power generation method
GB2032008A (en) Method of and means for generating hydro-electric power
CN107701243A (en) Natural gas pipeline air flow gravitational force TRT
JP2015140802A (en) Hydraulic generating equipment
JPS6187983A (en) Water flow energy utilizing device
JP2018145956A (en) Hydraulic power generation system
JPH04121459A (en) Hydraulic turbine for low flow rate
KR101956720B1 (en) Small hydropower generation system with easy water level control
CN107762713A (en) A kind of Multifunction pressure-reducing valve suitable for big flow
US20240133357A1 (en) System for altering flow of liquids and method
Obriki et al. Design Analysis of Pump as Turbine for a Coastal Region of Nigeria
Dick et al. Hydraulic turbines
GR1009326B (en) Perpetual-motion system based on power-generation obtained by hydrostatic, gravitational, atmospheric pressure and up-and-down water motion
KR20200145287A (en) Pressure Pump type Hydraulic power generator using the seawater
NL1011283C2 (en) Useful energy, from flow of fluid such as water or air, producing system