JPH0874089A - Electrogalvanized steel sheet excellent in whiteness and production of the same - Google Patents

Electrogalvanized steel sheet excellent in whiteness and production of the same

Info

Publication number
JPH0874089A
JPH0874089A JP21591994A JP21591994A JPH0874089A JP H0874089 A JPH0874089 A JP H0874089A JP 21591994 A JP21591994 A JP 21591994A JP 21591994 A JP21591994 A JP 21591994A JP H0874089 A JPH0874089 A JP H0874089A
Authority
JP
Japan
Prior art keywords
whiteness
plating
depth
steel sheet
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21591994A
Other languages
Japanese (ja)
Inventor
Takayuki Urakawa
隆之 浦川
Hideharu Koga
秀晴 古賀
Toyofumi Watanabe
豊文 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21591994A priority Critical patent/JPH0874089A/en
Publication of JPH0874089A publication Critical patent/JPH0874089A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE: To produce an electrogalvanized steel sheet excellent in whiteness. CONSTITUTION: This production comprises subjecting a steel sheet to plating treatment in a sulfuric acid-acidic Zn plating bath which contains 1 to 20g/l of one or two kinds of glycine and aspartic acid or 1 to 30g/l of a carboxylic acid having at least two carboxyl groups or its salt. Thus, the rate of occurrence of grooves having >=1.5μm depth in the plated surface becomes zero and the whiteness of the plated surface is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、家電製品、自動車、
建材等の広範な用途で使用されている白色度に優れる電
気亜鉛めっき鋼板及びその製造方法に関する。
BACKGROUND OF THE INVENTION This invention relates to home appliances, automobiles,
The present invention relates to an electrogalvanized steel sheet having excellent whiteness, which is used in a wide range of applications such as building materials, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、家電用途で無塗装で使用される各
種クロメート処理電気亜鉛めっきの需要が増大してお
り、重要な用途分野となっている。この用途では無塗装
で使用されるために表面外観に優れることが要求され
る。また、りん酸塩処理後は通常塗装されるが淡色系の
塗装や塗膜厚が薄い場合にはりん酸原板の白色度が低い
と塗装後の鮮明性が劣るためにやはり白色度が高いこと
が要求される。塗装後の外観が良好な外観とはムラ等の
表面欠陥が無いことが第一であるが、白色度が高いこと
もまた良好な外観には要求される。これらのムラ等が無
く、白色度が高い外観はりん酸塩処理、各種クロメート
処理後に要求されるが、当然、これら各種化成処理後の
外観はめっき後の外観に依存し、化成処理前の亜鉛めっ
き鋼板の白色度が高いことが必要である。
2. Description of the Related Art In recent years, the demand for various chromate-treated electrogalvanizing used without coating for home electric appliances has been increasing, and has become an important application field. In this application, it is required to have an excellent surface appearance because it is used without painting. In addition, after the phosphate treatment, it is usually painted, but if it is a light-colored coating or the coating thickness is thin, if the whiteness of the phosphoric acid original plate is low, the sharpness after coating will be poor and the whiteness will also be high. Is required. A good appearance after painting is that there is no surface defect such as unevenness, but a high whiteness is also required for a good appearance. An appearance with no such unevenness and high whiteness is required after phosphate treatment and various chromate treatments, but of course, the appearance after these chemical conversion treatments depends on the appearance after plating, and zinc before chemical conversion treatment It is necessary that the whiteness of the plated steel sheet is high.

【0003】亜鉛めっき鋼板の外観改善に関する提案と
して、古くは特公昭46-38888号公報に示されているよう
にめっき浴にポリアクリルアミドやポリビニルアルコー
ルを添加することにより光沢度を向上させる方法、特開
昭61-244769 号公報に示されているようにめっき前処理
後に酸化処理を行ってギラつきが無い外観を得る方法、
特公平1-36559 号公報に示されているように酸性亜鉛め
っき浴に非イオン性ポリアクリルアミドを添加して高電
流密度でめっき行うことにより平滑で白色のめっきを行
う方法が開示されている。これらの中では特公平1-3655
9 号公報のみが白色度に言及しているが、その白色度向
上効果は電流密度100〜450A/dm2の高電流密度に
限定され、通常行われる100A/dm2 未満のめっきでは
効果が認められず、実用性には問題がある。
As a proposal for improving the appearance of galvanized steel sheets, there is a method of improving glossiness by adding polyacrylamide or polyvinyl alcohol to a plating bath, as disclosed in Japanese Patent Publication No. 46-38888. As disclosed in Japanese Patent Laid-Open No. 61-244769, a method of performing an oxidation treatment after plating pretreatment to obtain a glare-free appearance,
As disclosed in JP-B-1-36559, a method is disclosed in which nonionic polyacrylamide is added to an acidic zinc plating bath and plating is performed at a high current density to perform smooth and white plating. Among these
Only the 9th publication mentions whiteness, but its whiteness improving effect is limited to high current density of 100 to 450A / dm 2 , and the effect is recognized in the plating less than 100A / dm 2 which is usually performed. There is a problem in practicability.

【0004】[0004]

【発明が解決しようとする課題】以上のように亜鉛めっ
きの白色度は重要な特性にもかかわらずその改善方法に
関する報告は少ない。その理由は白色度を支配している
亜鉛めっき側の要因が明かではないためだと考えられ
る。
As described above, although the whiteness of galvanization is an important characteristic, there are few reports on how to improve it. It is considered that the reason is that the factor on the galvanizing side that controls the whiteness is not clear.

【0005】本発明者らは亜鉛めっきの白色度支配要因
に関する検討を進めた結果、白色度が亜鉛めっき結晶形
態に支配されることを見出した。ここで、白色度は白さ
の尺度であり、色調管理法として常用されるハンターの
LabのL値を用いると、 白色度 W(Lab)=100 −[(100 −L)2 +a2 +b21/2 …(1) で表わされる。ここで、L値はJIS Z 8722によって求め
る明度指数であり、aは赤味を、b値は黄味を表わす指
数である。
As a result of further studies on the factors governing the whiteness of zinc plating, the present inventors have found that the whiteness is governed by the zinc plating crystal morphology. Here, whiteness is a measure of the whiteness, the use of L value in the Lab of Hunter commonly used as a color management method, the whiteness W (Lab) = 100 - [ (100 -L) 2 + a 2 + b 2 ] 1/2 ... (1) Here, the L value is a lightness index determined by JIS Z 8722, a is a redness index, and b value is a yellowness index.

【0006】亜鉛めっきのような無彩色の場合には、a
値,b値は小さく無視できるため、白色度はほぼ明度指
数L値と一致する。JIS Z 8722の条件C,DによるL値
の測定では正反射光は測定系外に出されるために、L値
は表面での拡散反射光の強度で表わされる。従って、拡
散反射光はおおよそ入射光より正反射光と表面吸収光を
差し引いた光成分であると考えることができ、拡散反射
光すなわち、L値(白色度とほぼ同じ)を高めるために
は正反射光および表面吸収光を減少させることが有効で
ある。ここで、正反射光の強度はすなわち光沢度であ
り、光沢度を大きく低下させることはめっき表面の外観
低下を招き好ましくない。従って、白色度を高めるため
にはめっき表面での光の吸収を低下させることが有効で
ある。ここで、めっき表面には結晶による凹凸が存在す
るが、光の吸収は大部分が結晶の溝部(凹部)にあたる
部分で起こっていると考えられることから、結論とし
て、白色度に優れるめっき表面を得るには、結晶の溝部
の深さを浅くして光の吸収をできるだけ少なくすること
が重要である。そこで、電子線三次元粗さ測定により、
結晶の溝部の深さを測定し、その分布状態を評価した。
図1には結晶の溝部深さの測定原理を示した。図1に示
したように電子線三次元粗さ測定により表面の凹凸を定
量的に測定し、次にそのデータを加工してめっき表面か
ら原板方向へ一定間隔で平行に切断した場合の切断面の
個数を求める。この切断面の個数から1を引いた数が結
晶の存在しない空間、すなわち、溝部の個数となる。図
1の左図に示したように、切断面の表面からの距離を横
軸にして溝部の個数を縦軸とすると、表面からの結晶溝
部の深さ方向の分布図となる。
In the case of an achromatic color such as zinc plating, a
Since the value and the b value are small and can be ignored, the whiteness almost coincides with the lightness index L value. In the measurement of the L value under the conditions C and D of JIS Z 8722, the specularly reflected light is emitted outside the measurement system, so the L value is represented by the intensity of the diffusely reflected light on the surface. Therefore, it can be considered that the diffuse reflection light is a light component obtained by subtracting the specular reflection light and the surface absorption light from the incident light, and in order to increase the diffuse reflection light, that is, the L value (about the same as the whiteness), It is effective to reduce the reflected light and the surface absorbed light. Here, the intensity of the specularly reflected light is the glossiness, and a large reduction in the glossiness is not preferable because it causes a deterioration in the appearance of the plating surface. Therefore, in order to increase the whiteness, it is effective to reduce the light absorption on the plating surface. Here, although there are irregularities due to crystals on the plating surface, it is considered that most of the light absorption occurs at the portions that correspond to the grooves (recesses) of the crystal, so the conclusion is that a plating surface with excellent whiteness is selected. To obtain it, it is important to make the groove of the crystal shallow so as to absorb light as little as possible. Therefore, by electron beam three-dimensional roughness measurement,
The depth of the groove portion of the crystal was measured and its distribution state was evaluated.
FIG. 1 shows the principle of measuring the groove depth of the crystal. As shown in Fig. 1, the surface roughness is measured quantitatively by electron beam three-dimensional roughness measurement, and then the data is processed to cut the surface parallel to the plate from the plating surface at regular intervals. Find the number of. The number obtained by subtracting 1 from the number of cut surfaces is the space where no crystal exists, that is, the number of grooves. As shown in the left diagram of FIG. 1, when the distance from the surface of the cut surface is the horizontal axis and the number of groove portions is the vertical axis, a distribution diagram in the depth direction of the crystal groove portions from the surface is obtained.

【0007】図2〜図5にはそれぞれ白色度(L値)が
異なる亜鉛めっき鋼板の結晶溝部の深さ方向の存在頻度
を示した。図2、図3はそれぞれ86.9と87.2と
白色度が高いめっき鋼板の結晶溝部の深さ方向の存在密
度であるが、図2では1μmより深い溝は存在せず、図
3では1.5μmより深い溝は存在しなかった。図4,
図5はそれぞれ76.1と80.5と白色度が低いめっ
き鋼板の結晶溝部の深さ方向の存在頻度であるが、図
4,図5ともに2μmを越える深さの溝が存在してい
る。これらの結果から、めっきの白色度と溝部の深さと
が相関を有していることが分かる。特に、図2,図3の
比較から1.5μm未満の深さの溝が存在しても白色度
は低下せず、さらに図4、図5との比較から、1.5μ
m以上の深さの溝が存在すると白色度が大きく低下する
ことが分かる。ここで、白色度に及ぼす溝部の深さの影
響をより明らかにするために白色度の異なる多数のめっ
き鋼板での白色度と1.5μm以上の溝の存在比率との
関係を調査し、図6に示した。図6から明らかなよう
に、1.5μm以上の溝部の存在比率が0の場合には白
色度は86以上の値を示したのに対し、1.5μm以上
の溝部が存在すると白色度が低下し、その存在比率が大
きくなるにつれて白色度も低下した。
2 to 5 show the frequency of existence in the depth direction of the crystal grooves of galvanized steel sheets having different whiteness (L value). 2 and 3 show the existence densities in the depth direction of the crystal grooves of the plated steel sheet having high whiteness of 86.9 and 87.2, respectively. In FIG. 2, there are no grooves deeper than 1 μm, and in FIG. There were no grooves deeper than 1.5 μm. Figure 4,
FIG. 5 shows the frequency of existence in the depth direction of the crystal groove portion of the plated steel sheet having a low whiteness of 76.1 and 80.5, respectively, but in both FIG. 4 and FIG. 5, there is a groove having a depth exceeding 2 μm. . From these results, it can be seen that the whiteness of the plating and the depth of the groove have a correlation. In particular, according to the comparison between FIGS. 2 and 3, the whiteness does not decrease even if there is a groove having a depth of less than 1.5 μm. Further, according to the comparison with FIGS.
It can be seen that the whiteness is greatly reduced when the groove having a depth of m or more is present. Here, in order to further clarify the influence of the depth of the groove portion on the whiteness, the relationship between the whiteness and the abundance ratio of grooves of 1.5 μm or more in a large number of plated steel sheets having different whitenesses was investigated, 6 shows. As is clear from FIG. 6, when the existence ratio of the grooves of 1.5 μm or more is 0, the whiteness shows a value of 86 or more, whereas when the grooves of 1.5 μm or more are present, the whiteness decreases. However, the whiteness also decreased as the abundance ratio increased.

【0008】さらに、本発明者らは上記知見に基づき白
色度の大きな亜鉛めっきを得る方法に関する検討を進め
た結果、結晶溝部の深さがめっき浴成分により変化する
ことを見出し、その深さを1.5μm以上にしないめっ
き方法を見出した。本発明は上記知見に基づいてなされ
たもので、白色度が86以上の値を示す電気亜鉛めっき
鋼板及びその製造方法を提供することを目的とする。
Further, as a result of further studies on the method of obtaining zinc plating having a large whiteness based on the above findings, the present inventors have found that the depth of the crystal groove portion changes depending on the plating bath component, and We have found a plating method that does not exceed 1.5 μm. The present invention has been made based on the above findings, and an object thereof is to provide an electrogalvanized steel sheet having a whiteness value of 86 or more, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明の電気
亜鉛めっき鋼板は、任意の位置における表面の溝部がい
ずれも1.5μm未満である白色度に優れる電気亜鉛め
っき鋼板であり、本発明の電気亜鉛めっき鋼板の製造方
法は、1〜20g/lのグリシン、1〜20g/lのア
スパラギン酸、1〜30g/lのカルボン酸基を2つ以
上有するカルボン酸又はその塩の群から選択された1種
又は2種を含む硫酸酸性Znめっき浴中で鋼板をめっき
処理することを特徴とする白色度に優れる電気亜鉛めっ
き鋼板の製造方法である。
That is, the electrogalvanized steel sheet of the present invention is an electrogalvanized steel sheet excellent in whiteness, in which any groove on the surface at any position is less than 1.5 μm. The manufacturing method of the electrogalvanized steel sheet is selected from the group of 1 to 20 g / l glycine, 1 to 20 g / l aspartic acid, and 1 to 30 g / l carboxylic acid having two or more carboxylic acid groups or salts thereof. It is a method for producing an electrogalvanized steel sheet having excellent whiteness, which is characterized in that the steel sheet is plated in a sulfated Zn plating bath containing one or two kinds.

【0010】[0010]

【作用】本発明方法によれば、硫酸酸性Znめっき浴
に、アミノ酸の一種であるグリシンおよびアスパラギン
酸及び/又は1分子内にカルボン酸基を2基以上含有す
るカルボン酸塩を添加することにより白色度が大きく向
上する。これらの添加剤を添加しためっき浴から得られ
た亜鉛めっきの白色度は無添加の場合に比べて2〜4ポ
イント向上する。白色度の向上はめっき結晶の観察か
ら、先に述べたように結晶溝部の深さが浅くなったため
である。これらの添加剤がめっき結晶形態を変化させる
機構は明かではないが、いずれのアミノ酸やカルボン酸
も亜鉛イオンと安定なキレートを形成することから、亜
鉛が電析する過程でこれらのキレートが表面近傍に生成
して結晶核の生成を抑制して結晶粒の微細化を妨げ、析
出過電圧を増大させることによって析出を均一化して結
晶粒界部の深さを浅くしているものと考えられる。これ
らの錯体やキレートは通常の硫酸浴中での亜鉛イオンの
存在形態である水和イオンに比べて安定化しており、亜
鉛の錯体あるいはキレートが電析表面近傍で安定に存在
し、亜鉛の水和イオンのみの放電・析出が起こっている
状況が推定される。
According to the method of the present invention, glycine and aspartic acid, which are one of the amino acids, and / or a carboxylic acid salt containing two or more carboxylic acid groups in one molecule are added to a sulfuric acid acidic Zn plating bath. The whiteness is greatly improved. The whiteness of the zinc plating obtained from the plating bath containing these additives is improved by 2 to 4 points as compared with the case of no addition. The improvement of whiteness is due to the observation of the plated crystal that the depth of the crystal groove portion became shallow as described above. The mechanism by which these additives change the plating crystal morphology is not clear, but since any amino acid or carboxylic acid forms stable chelates with zinc ions, these chelates near the surface during the process of zinc electrodeposition. It is conceivable that the formation of crystal nuclei suppresses the formation of crystal nuclei to hinder the refinement of crystal grains, and the precipitation overvoltage is increased to make the precipitation uniform and the depth of the crystal grain boundary portion shallow. These complexes and chelates are more stable than hydrated ions, which is the existing form of zinc ions in ordinary sulfuric acid baths, and zinc complexes or chelates are stably present near the electrodeposition surface, and It is estimated that discharge and deposition of only cations occur.

【0011】ここで、カルボン酸基を1基のみ有するカ
ルボン酸塩が外観改善に効果がないのは、表1に示すよ
うに亜鉛との錯イオンの安定度定数が小さいために電極
表面近傍に錯イオンが安定に存在しにくいためであると
考えられる。これに対してカルボン酸基を2つ以上有す
るカルボン酸の安定度定数は総じて大きく、亜鉛と安定
な錯イオンまたはキレートを生成していると考えられ
る。
Here, the reason why the carboxylic acid salt having only one carboxylic acid group is not effective in improving the appearance is that, as shown in Table 1, the stability constant of the complex ion with zinc is small, so that it is near the electrode surface. It is considered that this is because complex ions are unlikely to exist stably. On the other hand, the stability constants of carboxylic acids having two or more carboxylic acid groups are generally large, and it is considered that they form stable complex ions or chelates with zinc.

【0012】[0012]

【表1】 [Table 1]

【0013】さてここで、用いる亜鉛めっき浴は硫酸浴
とする。塩化物浴はめっき電圧が低い、高電流密度電解
が容易等の長所があるが、不溶性アノードが使用出来ず
アノード交換コストが高いという重大な問題があり、鋼
板の亜鉛めっき浴としては次第に使用されなくなってい
る。
The zinc plating bath used here is a sulfuric acid bath. Chloride bath has advantages such as low plating voltage and easy high current density electrolysis, but it has a serious problem that insoluble anode cannot be used and anode replacement cost is high, so it is gradually used as a galvanizing bath for steel sheets. It's gone.

【0014】めっき電流密度は40〜150A/dm2
とするのがよい。これは白色度向上効果が電流密度の影
響を受け、40A/dm2 未満150A/dm2 超の電
流密度では白色度向上効果が無くなるためである。白色
度向上効果が顕著であるのは50〜120A/dm2
あるので、この電流密度範囲でめっきすることがより望
ましい。
The plating current density is 40 to 150 A / dm 2.
It is good to do. This is because the whiteness improving effect is influenced by the current density, and the whiteness improving effect is lost at a current density of less than 40 A / dm 2 and more than 150 A / dm 2 . Since the effect of improving whiteness is remarkable at 50 to 120 A / dm 2 , it is more desirable to plate in this current density range.

【0015】適用可能なめっき浴pHはアノードシステ
ムにより異なる。不溶性アノードを使用する場合はめっ
き浴pH0.8〜2.5が望ましい。pH0.8未満で
は亜鉛−アミノ酸キレートの安定度が小さいために白色
度向上効果が不充分であり、また、めっき効率が低いこ
ともあり不適である。pH2.5を越えると亜鉛イオン
の補給反応である金属亜鉛・酸化亜鉛等の化学溶解速度
が大きく低下するためにイオン補給が困難となる。自溶
性アノードを使用する場合はpH3.0〜5.0が望ま
しい。pH3.0未満では亜鉛アノードの化学溶解反応
速度が大きくめっき浴中の亜鉛イオン濃度が増加するた
めに望ましくない。pH5.0を越えると水酸化亜鉛の
沈澱が生成するために不適である。
The applicable plating bath pH depends on the anode system. When using an insoluble anode, a plating bath pH of 0.8 to 2.5 is desirable. If the pH is less than 0.8, the stability of the zinc-amino acid chelate is low, so that the whiteness improving effect is insufficient, and the plating efficiency is low, which is not suitable. If the pH exceeds 2.5, the rate of chemical dissolution of metallic zinc, zinc oxide, etc., which is a zinc ion replenishment reaction, is greatly reduced, making ion replenishment difficult. When using a self-dissolving anode, pH 3.0-5.0 is desirable. If the pH is less than 3.0, the chemical dissolution reaction rate of the zinc anode is large and the zinc ion concentration in the plating bath increases, which is not desirable. Above pH 5.0, zinc hydroxide precipitates, which is not suitable.

【0016】添加するアミノ酸の添加量は1〜20g/
lに、カルボン酸の添加量は1〜30g/lに限定され
る。1g/l未満の添加量では白色度向上効果が不充分
であり、上限を越えて添加しても白色度向上効果は飽和
するか低下しており、めっき効率は低下するためであ
る。なお、本発明の目的を達成する範囲内において、本
発明にかかるアミノ酸、カルボン酸の2種を添加しても
よい。
The amount of amino acid added is 1 to 20 g /
The amount of carboxylic acid added is limited to 1 to 30 g / l. This is because if the addition amount is less than 1 g / l, the whiteness improving effect is insufficient, and if the addition amount exceeds the upper limit, the whiteness improving effect is saturated or lowered, and the plating efficiency decreases. Two types of amino acids and carboxylic acids according to the present invention may be added within the range where the object of the present invention is achieved.

【0017】[0017]

【実施例】【Example】

実施例1 冷延鋼板を通常の方法で脱脂・酸洗した後に、表2に示
すようなめっき浴組成・めっき条件で20g/m2 の付
着量となるようにめっきを行った。得られためっきの白
色度をJIS Z 8722に規定されている方法(条件d、ハン
ター方式)で測定した明度指数L値で評価し、図7に示
した。前述のように、白色度W(Lab)は下記のように
表されるが、 白色度 W(Lab)=100 −[(100 −L)2 +a2
21/2 L:明度指数L値 亜鉛めっきの場合はa値,b値は小さいのでほぼ無視で
き、 白色度 W(Lab)=L で近似できる。従って、以降の白色度評価は明度指数L
値で評価した。
Example 1 A cold-rolled steel sheet was degreased and pickled by a usual method, and then plated at a coating amount of 20 g / m 2 under the plating bath composition and plating conditions shown in Table 2. The whiteness of the obtained plating was evaluated by the lightness index L value measured by the method (condition d, Hunter method) specified in JIS Z 8722, and shown in FIG. 7. As described above, the whiteness W (Lab) is expressed as follows, and the whiteness W (Lab) = 100 − [(100−L) 2 + a 2 +
b 2 ] 1/2 L: lightness index L value In the case of galvanizing, since the a value and the b value are small, they can be almost ignored, and the whiteness can be approximated by W (Lab) = L. Therefore, the subsequent whiteness evaluation is based on the lightness index L.
The value was evaluated.

【0018】[0018]

【表2】 [Table 2]

【0019】また、3次元表面粗さ測定結果から求めた
深さ1.5μm以上の溝部の存在比率も合わせて図7に
示した。図7に示すように、硫酸酸性めっき液にグリシ
ンを添加しない場合の深さ1.5μm以上の溝部の存在
比率は0.03であり、その比率はグリシン添加量の増
加と共に減少し、1〜20g/lの添加量では0にな
る。更に30g/lまで増加させると再びその比率は
0.01まで増加した。白色度の変化は深さ1.5μm
以上の溝部の存在比率の変化とは逆に、グリシン添加量
の増加と共に一旦高くなった後に30g/lの添加量で
は低下した。図7から明らかなように深さ1.5μm以
上の溝部の存在比率が0の場合には白色度はいずれも8
6以上の高い値を示した。
FIG. 7 also shows the existence ratios of the groove portions having a depth of 1.5 μm or more, which are obtained from the measurement results of the three-dimensional surface roughness. As shown in FIG. 7, when glycine was not added to the sulfuric acid plating solution, the existence ratio of grooves having a depth of 1.5 μm or more was 0.03, and the ratio decreased with an increase in the amount of glycine added. It becomes 0 at the addition amount of 20 g / l. Further increase to 30 g / l again increased the ratio to 0.01. Change in whiteness is 1.5 μm deep
Contrary to the above change in the abundance ratio of the groove portion, it increased once with the increase in the amount of glycine added and then decreased with the addition amount of 30 g / l. As is clear from FIG. 7, when the existence ratio of the groove portions having a depth of 1.5 μm or more is 0, the whiteness is 8 in each case.
A high value of 6 or more was shown.

【0020】実施例2 実施例1と同様に表3に示すようなめっき浴組成・めっ
き条件で20g/m2の付着量となるようにめっきを行
った。得られためっき皮膜のL値を図8に示した。図8
に示すように、硫酸酸性めっき液にアスパラギン酸を添
加しない場合の深さ1.5μm以上の溝部の存在比率は
0.05であり、その比率はアスパラギン酸添加量の増
加と共に減少し、1〜20g/lの添加量では0にな
る。さらに30g/lまで増加させると再びその比率は
0.01まで増加した。白色度の変化は深さ1.5μm
以上の溝部の存在比率の変化とは逆に、アスパラギン酸
添加量の増加と共に一旦高くなった後に30g/lの添
加量では低下した。図8から明らかならように深さ1.
5μm以上の溝部の存在比率が0の場合には白色度はい
ずれも86以上の高い値を示した。
Example 2 As in Example 1, plating was performed under the plating bath composition and plating conditions shown in Table 3 so that the deposition amount was 20 g / m 2 . The L value of the obtained plating film is shown in FIG. FIG.
As shown in, the existence ratio of the groove portions having a depth of 1.5 μm or more when aspartic acid is not added to the sulfuric acid plating solution is 0.05, and the ratio decreases with an increase in the amount of aspartic acid added. It becomes 0 at the addition amount of 20 g / l. Further increase to 30 g / l again increased the ratio to 0.01. Change in whiteness is 1.5 μm deep
Contrary to the above change in the abundance ratio of the groove portion, it increased once as the amount of aspartic acid added increased and then decreased with the amount of 30 g / l added. As is clear from FIG. 8, depth 1.
When the existence ratio of the groove portions having a size of 5 μm or more was 0, the whiteness values were all high values of 86 or more.

【0021】[0021]

【表3】 [Table 3]

【0022】実施例3 実施例1と同様に表4に示すようなめっき浴組成・めっ
き条件で20g/m2の付着量となるようにめっきを行
った。得られためっき皮膜の深さ1.5μm以上の溝部
の存在比率とL値を図9に示した。本実施例はめっき電
流密度の影響を明らかにするために電流密度を変化させ
て深さ1.5μm以上の溝部の存在比率とめっきの白色
度を評価した。図9からわかるように、電流密度の増加
と共に深さ1.5μm以上の溝部の存在比率は減少し、
白色度は一旦上昇するが更に電流密度を増加させると逆
に低下した。86以上の高い白色度は深さ1.5μm以
上の溝部の存在比率が0となる電流密度40〜150A/
dm2 で得られている。更に87以上の白色度は電流密度
60〜120A/dm2 で得られている。
Example 3 As in Example 1, plating was carried out under the conditions of plating bath composition and plating conditions shown in Table 4 so that the deposition amount would be 20 g / m 2 . FIG. 9 shows the existence ratio and L value of the groove portions having a depth of 1.5 μm or more in the obtained plating film. In this example, in order to clarify the influence of the plating current density, the current density was changed to evaluate the existence ratio of the groove portions having a depth of 1.5 μm or more and the whiteness of the plating. As can be seen from FIG. 9, the abundance ratio of the groove portions having a depth of 1.5 μm or more decreases as the current density increases,
The whiteness increased once, but it decreased when the current density was further increased. A high whiteness of 86 or more has a current density of 40 to 150 A / in which the existence ratio of the grooves having a depth of 1.5 μm or more becomes zero.
Got with dm 2 . Further, a whiteness of 87 or more is obtained at a current density of 60 to 120 A / dm 2 .

【0023】[0023]

【表4】 [Table 4]

【0024】実施例4 実施例1と同様に表5に示すようなめっき浴組成・めっ
き条件で20g/m2の付着量となるようにめっきを行
った。得られためっき皮膜の深さ1.5μm以上の溝部
の存在比率とL値を図10に示した。本実施例は実施例
3と同様にめっき電流密度の影響を明らかにするために
電流密度を変化させて深さ1.5μm以上の溝部の存在
比率とめっきの白色度を評価した。図10からわかるよ
うに、電流密度の増加と共に白色度は一旦上昇するが更
に電流密度を増加させると逆に低下した。86以上の高
い白色度は深さ1.5μm以上の溝部の存在比率が0と
なる電流密度40〜150A/dm2 で得られている。更に
87以上の白色度は電流密度60〜120A/dm2 で得ら
れている。この結果は実施例3と同様であった。
Example 4 As in Example 1, plating was carried out under the plating bath composition and plating conditions as shown in Table 5 so that the deposition amount would be 20 g / m 2 . FIG. 10 shows the existence ratio and L value of the groove portions having a depth of 1.5 μm or more in the obtained plating film. In this example, in order to clarify the influence of the plating current density as in Example 3, the current density was changed and the existence ratio of the groove portions having a depth of 1.5 μm or more and the whiteness of the plating were evaluated. As can be seen from FIG. 10, the whiteness once increased with the increase of the current density, but it decreased on the contrary when the current density was further increased. A high whiteness of 86 or more is obtained at a current density of 40 to 150 A / dm 2 at which the existence ratio of the groove portion having a depth of 1.5 μm or more becomes zero. Further, a whiteness of 87 or more is obtained at a current density of 60 to 120 A / dm 2 . The results were the same as in Example 3.

【0025】[0025]

【表5】 [Table 5]

【0026】比較例1 実施例1〜4と同様に表6に示すようなめっき浴組成・
めっき条件で20g/m2 の付着量となるようにめっき
を行った。ここでの添加剤は実施例と同じアミノ酸の範
疇に属するが、表から判るように得られためっき皮膜の
白色度は向上しなかった。またこれに対応して、深さ
1.5μm以上の溝部が存在した。従って、本発明のグ
リシン,アスパラギン酸が有する白色度向上効果はアミ
ノ酸全てに共有されるものではなく、グリシン,アスパ
ラギン酸特有の効果である。なお、グリシンとアスパラ
ギン酸との2種を添加した場合も1種の場合と同様の効
果を発揮する。
Comparative Example 1 Similar to Examples 1 to 4, the plating bath composition as shown in Table 6
Plating was performed so that the amount of adhesion was 20 g / m 2 under the plating conditions. Although the additives here belong to the same amino acid category as in the examples, the whiteness of the obtained plated film was not improved as can be seen from the table. Correspondingly, there was a groove having a depth of 1.5 μm or more. Therefore, the whiteness improving effect of glycine and aspartic acid of the present invention is not shared by all amino acids and is an effect peculiar to glycine and aspartic acid. In addition, when two kinds of glycine and aspartic acid are added, the same effect as in the case of one kind is exhibited.

【0027】[0027]

【表6】 [Table 6]

【0028】実施例5 実施例1と同様に表7に示すようなめっき浴組成・めっ
き条件で20g/m2の付着量となるようにめっきを行
った。得られためっき皮膜のL値を図11に示した。ま
た、3次元表面粗さ測定結果から求めた深さ1.5μm
以上の溝部の存在比率も合わせて図11に示した。図1
1に示すように、硫酸酸性めっき液にこはく酸を添加し
ない場合の深さ1.5μm以上の溝部の存在比率は0.
04であり、その比率はこはく酸添加量の増加と共に減
少し、1〜30g/lの添加量では0になる。さらに5
0g/lまで増加させると再びその比率は0.05まで
増加した。白色度の変化は深さ1.5μm以上の溝部の
存在比率の変化とは全く逆に、こはく酸添加量の増加と
共に一旦高くなった後に50g/lの添加量では低下し
た。図11から明らかならように深さ1.5μm以上の
溝部の存在比率が0の場合には白色度はいずれも86以
上の高い値を示した。
Example 5 As in Example 1, plating was performed under the plating bath composition and plating conditions shown in Table 7 so that the deposition amount was 20 g / m 2 . The L value of the obtained plating film is shown in FIG. In addition, the depth of 1.5 μm obtained from the measurement result of the three-dimensional surface roughness
The existence ratio of the above groove portions is also shown in FIG. FIG.
As shown in FIG. 1, when the succinic acid is not added to the sulfuric acid plating solution, the existence ratio of the groove portions having a depth of 1.5 μm or more is 0.1.
The ratio is 04, and the ratio decreases with an increase in the amount of succinic acid added, and becomes 0 when the amount added is 1 to 30 g / l. 5 more
Increasing it to 0 g / l again increased the ratio to 0.05. Contrary to the change in the abundance ratio of the grooves having a depth of 1.5 μm or more, the change in whiteness increased once with the increase in the amount of succinic acid added, and then decreased with the addition amount of 50 g / l. As is clear from FIG. 11, when the existence ratio of the groove portions having a depth of 1.5 μm or more was 0, the whiteness values were all high values of 86 or more.

【0029】[0029]

【表7】 [Table 7]

【0030】実施例6 実施例1と同様に表8に示すようなめっき浴組成・めっ
き条件で20g/m2の付着量となるようにめっきを行
った。得られためっき皮膜のL値を図12に示した。ま
た、3次元表面粗さ測定結果から求めた深さ1.5μm
以上の溝部の存在比率も合わせて図12に示した。図1
2に示すように、硫酸酸性めっき液にクエン酸を添加し
ない場合の深さ1.5μm以上の溝部の存在比率は0.
04であり、その比率はクエン酸添加量の増加と共に減
少し、1〜50g/lの添加量では0になる。白色度の
変化は深さ1.5μm以上の溝部の存在比率の変化とは
全く逆に、クエン酸添加量の増加と共に一旦高くなっ
た。図12から明らかならように深さ1.5μm以上の
溝部の存在比率が0の場合には白色度はいずれも86以
上の高い値を示した。クエン酸の場合には、30g/l
以上の添加量でも白色度の低下はなかったが、添加量が
30g/lから50g/lに増加すると電解効率は96
%から82%に減少し、生産コストの点から不適であ
る。
Example 6 As in Example 1, plating was performed under the plating bath composition and plating conditions shown in Table 8 so that the deposition amount would be 20 g / m 2 . The L value of the obtained plating film is shown in FIG. In addition, the depth of 1.5 μm obtained from the measurement result of the three-dimensional surface roughness
The presence ratio of the above groove portions is also shown in FIG. FIG.
As shown in FIG. 2, when the citric acid was not added to the sulfuric acid plating solution, the existence ratio of the groove portions having a depth of 1.5 μm or more was 0.
The ratio is 04, and the ratio decreases with an increase in the amount of citric acid added, and becomes 0 when the amount added is 1 to 50 g / l. Contrary to the change in the abundance ratio of the grooves having a depth of 1.5 μm or more, the change in whiteness was once high with the increase of the citric acid addition amount. As is clear from FIG. 12, when the existence ratio of the groove portions having a depth of 1.5 μm or more was 0, the whiteness values were all high values of 86 or more. 30 g / l for citric acid
Although the whiteness did not decrease even with the above addition amount, the electrolytic efficiency was 96 when the addition amount was increased from 30 g / l to 50 g / l.
% To 82%, which is unsuitable in terms of production cost.

【0031】実施例7 実施例1と同様に表9に示すようなめっき浴組成・めっ
き条件で20g/m2の付着量となるようにめっきを行
った。得られためっき皮膜のL値を図13に示した。ま
た、3次元表面粗さ測定結果から求めた深さ1.5μm
以上の溝部の存在比率も合わせて図13に示した。図1
3に示すように、硫酸酸性めっき液にイミノジ酢酸を添
加しない場合の深さ1.5μm以上の溝部の存在比率は
0.07であり、その比率はイミノジ酢酸添加量の増加
と共に減少し、1〜30g/lの添加量では0になる。
さらに50g/lまで増加させると再びその比率は0.
01まで増加した。白色度の変化は深さ1.5μm以上
の溝部の存在比率の変化とは全く逆に、イミノジ酢酸添
加量の増加と共に一旦高くなった後に50g/lの添加
量では低下した。図13から明らかならように深さ1.
5μm以上の溝部の存在比率が0の場合には白色度はい
ずれも86以上の高い値を示した。添加量が30g/l
から50g/lに増加すると電解効率は96%から75
%に減少し、生産コストの点から不適である。
Example 7 As in Example 1, plating was performed under the plating bath composition and plating conditions shown in Table 9 so that the deposition amount was 20 g / m 2 . The L value of the obtained plating film is shown in FIG. In addition, the depth of 1.5 μm obtained from the measurement result of the three-dimensional surface roughness
The existence ratio of the above groove portions is also shown in FIG. FIG.
As shown in 3, the existence ratio of the groove portion having a depth of 1.5 μm or more in the case where iminodiacetic acid was not added to the sulfuric acid plating solution was 0.07, and the ratio decreased with an increase in the amount of iminodiacetic acid added. It becomes 0 at the added amount of ˜30 g / l.
When the ratio is further increased to 50 g / l, the ratio becomes 0.
It increased to 01. Contrary to the change in the abundance ratio of the groove portions having a depth of 1.5 μm or more, the change in the whiteness was once increased with the increase in the iminodiacetic acid addition amount, and then decreased at the addition amount of 50 g / l. As is clear from FIG. 13, depth 1.
When the existence ratio of the groove portions having a size of 5 μm or more was 0, the whiteness values were all high values of 86 or more. Addition amount is 30g / l
From 50% to 50 g / l, the electrolysis efficiency increases from 96% to 75
%, Which is unsuitable in terms of production cost.

【0032】[0032]

【表8】 [Table 8]

【0033】実施例8 実施例7と同様に表9に示すようなめっき浴組成・めっ
き条件で20g/m2の付着量となるようにめっきを行
った。得られためっき皮膜の深さ1.5μm以上の溝部
の存在比率とL値も合せてを表9に示した。表9の実施
例A〜Mに示されているように、硫酸酸性めっき液にカ
ルボン酸基を2つ以上有するカルボン酸を1〜30g/
l添加すると深さ1.5μm以上の溝部の存在比率は0
になり、これに対応して白色度は向上し、いずれも86
以上のL値を示した。これに対して、比較例A〜Fに示
すようにカルボン酸を含まない場合、および比較例G〜
Lに示すようにカルボン酸基が1つであるモノカルボン
の添加では深さ1.5μm以上の溝部が存在し、白色度
は向上しなかった。
Example 8 As in Example 7, plating was performed under the plating bath composition and plating conditions shown in Table 9 so that the deposition amount was 20 g / m 2 . Table 9 also shows the existence ratio of the groove portions having a depth of 1.5 μm or more and the L value of the obtained plating film. As shown in Examples A to M of Table 9, 1 to 30 g of carboxylic acid having two or more carboxylic acid groups in the sulfuric acid plating solution is used.
When 1 is added, the existence ratio of the groove portion having a depth of 1.5 μm or more becomes 0.
Corresponding to this, the whiteness is correspondingly improved, and both are 86
The above L values are shown. On the other hand, as shown in Comparative Examples A to F, when no carboxylic acid is contained, and Comparative Examples G to
As shown in L, the addition of monocarboxylic having one carboxylic acid group had a groove with a depth of 1.5 μm or more, and the whiteness was not improved.

【0034】[0034]

【表9】 [Table 9]

【0035】[0035]

【発明の効果】硫酸酸性めっき液にグリシン又はアスパ
ラギン酸若しくはカルボン酸基を2つ以上有するカルボ
ン酸またはその塩を添加することにより、深さ1.5μ
m以上の溝部の存在比率を0となり、めっき面の白色度
が向上する。
EFFECTS OF THE INVENTION By adding glycine, aspartic acid, or a carboxylic acid having two or more carboxylic acid groups or a salt thereof to a sulfuric acid plating solution, a depth of 1.5 μm can be obtained.
The existence ratio of the groove portions of m or more becomes 0, and the whiteness of the plated surface is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】3次元粗さ測定による溝部の数測定原理を示す
図で、(a)は切断面が横切る切断面の数を示す説明
図、(b)は結晶溝部の深さと切断面の数、溝部の数と
の関係を示す図。
FIG. 1 is a diagram showing the principle of measuring the number of grooves by three-dimensional roughness measurement, (a) is an explanatory view showing the number of cutting surfaces that the cutting surface crosses, and (b) is the depth of the crystal grooves and the number of cutting surfaces. FIG. 4 is a diagram showing a relationship with the number of groove portions.

【図2】高白色度材の粗さ分布(L値:86.9)を示
す図。
FIG. 2 is a diagram showing a roughness distribution (L value: 86.9) of a high whiteness material.

【図3】高白色度材の粗さ分布の他の例(L値:87.
2)を示す図。
FIG. 3 is another example of the roughness distribution of the high-whiteness material (L value: 87.
The figure which shows 2).

【図4】低白色度材の粗さ分布(L値:76.1)を示
す図。
FIG. 4 is a diagram showing a roughness distribution (L value: 76.1) of a low whiteness material.

【図5】低白色度材の粗さ分布の他の例(L値:80.
5)を示す図。
FIG. 5 is another example of roughness distribution of low whiteness material (L value: 80.
The figure which shows 5).

【図6】白色度と1.5μm以上の溝部数との関係を示
す図。
FIG. 6 is a diagram showing the relationship between whiteness and the number of grooves of 1.5 μm or more.

【図7】深さ1.5μm以上の溝部の存在比率とめっき
白色度に及ぼすグリシンの影響を示す図。
FIG. 7 is a diagram showing the influence of glycine on the abundance ratio of grooves having a depth of 1.5 μm or more and the plating whiteness.

【図8】深さ1.5μm以上の溝部の存在比率とめっき
白色度に及ぼすアスパラギン酸の影響を示す図。
FIG. 8 is a diagram showing the influence of aspartic acid on the abundance ratio of grooves having a depth of 1.5 μm or more and the plating whiteness.

【図9】グリシン添加浴での、深さ1.5μm以上の溝
部の存在比率とめっき白色度に及ぼす電流密度の影響を
示す図。
FIG. 9 is a diagram showing the effect of current density on the abundance ratio of groove portions having a depth of 1.5 μm or more and plating whiteness in a glycine addition bath.

【図10】アスパラギン酸添加浴での、深さ1.5μm
以上の溝部の存在比率とめっき白色度に及ぼす電流密度
の影響を示す図。
FIG. 10: Depth of 1.5 μm in aspartic acid addition bath
The figure which shows the influence of the current density which affects the existence ratio of the said groove part, and plating whiteness.

【図11】深さ1.5μm以上の溝部の存在比率とめっ
き白色度に及ぼすこはく酸の効果を示す図。
FIG. 11 is a diagram showing the effect of succinic acid on the abundance ratio of groove portions having a depth of 1.5 μm or more and the plating whiteness.

【図12】深さ1.5μm以上の溝部の存在比率とめっ
き白色度に及ぼすクエン酸の効果を示す図。
FIG. 12 is a diagram showing the effect of citric acid on the abundance ratio of groove portions having a depth of 1.5 μm or more and the plating whiteness.

【図13】深さ1.5μm以上の溝部の存在比率とめっ
き白色度に及ぼすイミノジ酢酸の効果を示す図。
FIG. 13 is a diagram showing the effect of iminodiacetic acid on the abundance ratio of grooves having a depth of 1.5 μm or more and the plating whiteness.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 任意の位置における表面の溝部がいずれ
も1.5μm未満である白色度に優れる電気亜鉛めっき
鋼板。
1. An electrogalvanized steel sheet having excellent whiteness, in which any groove on the surface at any position is less than 1.5 μm.
【請求項2】 1〜20g/lのグリシン、1〜20g
/lのアスパラギン酸、1〜30g/lのカルボン酸基
を2つ以上有するカルボン酸又はその塩の群から選択さ
れた1種又は2種を含む硫酸酸性Znめっき浴中で鋼板
をめっき処理することを特徴とする白色度に優れる電気
亜鉛めっき鋼板の製造方法。
2. Glycine of 1 to 20 g / l, 1 to 20 g
/ L aspartic acid, 1 to 30 g / l, the steel sheet is plated in a sulfated Zn plating bath containing one or two selected from the group of carboxylic acids having two or more carboxylic acid groups or salts thereof. A method for producing an electrogalvanized steel sheet having excellent whiteness, which is characterized by the following.
JP21591994A 1994-09-09 1994-09-09 Electrogalvanized steel sheet excellent in whiteness and production of the same Pending JPH0874089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21591994A JPH0874089A (en) 1994-09-09 1994-09-09 Electrogalvanized steel sheet excellent in whiteness and production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21591994A JPH0874089A (en) 1994-09-09 1994-09-09 Electrogalvanized steel sheet excellent in whiteness and production of the same

Publications (1)

Publication Number Publication Date
JPH0874089A true JPH0874089A (en) 1996-03-19

Family

ID=16680437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21591994A Pending JPH0874089A (en) 1994-09-09 1994-09-09 Electrogalvanized steel sheet excellent in whiteness and production of the same

Country Status (1)

Country Link
JP (1) JPH0874089A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322034B1 (en) * 1997-09-27 2002-04-17 이구택 Plating solution suitable for the manufacture of electro galvanized steel sheet with excellent surface appearance
JP2008046477A (en) * 2006-08-18 2008-02-28 Toyo Kohan Co Ltd Reflecting plate for liquid crystal backlight
WO2022186183A1 (en) * 2021-03-05 2022-09-09 ユケン工業株式会社 Additive for acidic zinc alloy plating bath, acidic zinc alloy plating bath and zinc alloy plating film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322034B1 (en) * 1997-09-27 2002-04-17 이구택 Plating solution suitable for the manufacture of electro galvanized steel sheet with excellent surface appearance
JP2008046477A (en) * 2006-08-18 2008-02-28 Toyo Kohan Co Ltd Reflecting plate for liquid crystal backlight
WO2022186183A1 (en) * 2021-03-05 2022-09-09 ユケン工業株式会社 Additive for acidic zinc alloy plating bath, acidic zinc alloy plating bath and zinc alloy plating film

Similar Documents

Publication Publication Date Title
US20050067057A1 (en) Treating liquid for surface treatment of aluminum or magnesium based metal and method of surface treatment
US4541903A (en) Process for preparing Zn-Fe base alloy electroplated steel strips
EP0247290B1 (en) Chromate-treated zinc-plated steel strip and method for making
De Almeida et al. Voltammetric and morphological characterization of copper electrodeposition from non-cyanide electrolyte
CN1061603C (en) Steel plate plated with zinc and method for preparation of same
US4629659A (en) Corrosion resistant surface-treated steel strip and process for making
US6585812B2 (en) High current density zinc sulfate electrogalvanizing process and composition
EP0250792A1 (en) A chromate treatment of a metal coated steel sheet
JPH0874089A (en) Electrogalvanized steel sheet excellent in whiteness and production of the same
US3729396A (en) Rhodium plating composition and method for plating rhodium
JP4661627B2 (en) Surface-treated zinc-based plated metal material and method for producing the same
US5395510A (en) Efficient preparation of blackened steel strip
KR100419659B1 (en) A plating solution for blackening zinc-nickel alloy coated steel sheet and electroplating method for zinc-nickel steel sheet
KR20090052370A (en) Phosphate-treated galvanized steel sheet and method for producing the same
KR0143502B1 (en) Manufacturing method of zinc electric plated steel plate
JP2001040494A (en) Electrogalvanized steel sheet excellent in surface appearance and its production
KR100256427B1 (en) Method of making znic electroplating with excellent surface
KR100349141B1 (en) Method for manufacturing electro galvanized steel sheet with good appearance
JPS6027757B2 (en) Highly corrosion resistant electrogalvanized steel sheet and its manufacturing method
KR100293237B1 (en) Plating solution for electrogalvanization and method for manufacturing electrogalvanized steel strips with uniform appearance using the same
JPH0676675B2 (en) Method for producing galvanized steel sheet with excellent chemical conversion treatability and post-painting performance
JP2940288B2 (en) Zinc electroplated steel sheet excellent in blackening resistance and method for producing the same
JP3319461B2 (en) Electrogalvanized steel sheet having excellent appearance and method for producing the same
KR920010777B1 (en) Electroplating steel sheet with two layer being of alloy metal and process for making
RU2379381C1 (en) Iron plating electrolyte