JPH0874082A - Operation of ion-exchange membrane electrtolytic cell - Google Patents

Operation of ion-exchange membrane electrtolytic cell

Info

Publication number
JPH0874082A
JPH0874082A JP6240819A JP24081994A JPH0874082A JP H0874082 A JPH0874082 A JP H0874082A JP 6240819 A JP6240819 A JP 6240819A JP 24081994 A JP24081994 A JP 24081994A JP H0874082 A JPH0874082 A JP H0874082A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
cell
tank
value
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6240819A
Other languages
Japanese (ja)
Inventor
Kazutoyo Yorozu
一豊 萬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP6240819A priority Critical patent/JPH0874082A/en
Publication of JPH0874082A publication Critical patent/JPH0874082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: To efficiently operate an ion-exchange membrane alkali chloride electrolytic cell by establishing a method for detecting the abnormality of the cell and optimizing the renewal order of ion-exchange membranes. CONSTITUTION: When plural ion-exchange membrane alkali chloride electrolytic cells are operated, the oxygen concn. in gaseous chlorine and the supply of hydrochloric acid to each cell are measured for each cell, and hydrochloric acid is supplied separately to each cell based on the measured values so that the oxygen concn. in gaseous chlorine is kept at 0.1-0.5vol.%. The unit requirement of hydrochloric acid (hydrochloric acid supply/chlorine yield) in each cell is compared with a specified value or relatively compared with the average value of the cells to detect the abnormality of the cell. The renewal order of the ion-exchange membranes is determined by the total cost of the respective cells calculated by converting the manipulated variables on the unit requirement of hydrochloric acid, cell voltage and working days for each cell separately into cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の電解槽を有する
塩化アルカリ電解工場における電解槽管理の容易な運転
方法に関するものである。詳しくは、本発明はイオン交
換膜法による塩化ナトリウム、塩化カリウム等の塩化ア
ルカリの電解によって、苛性ソーダ、苛性カリ等の苛性
アルカリ、塩素及び水素を製造する方法において、イオ
ン交換膜の物理的・化学的劣化に起因する電解性能の低
下動向を監視並びに相対比較する事により、電解槽及び
イオン交換膜の異常の早期発見を図り、またイオン交換
膜更新の優先順位を最適化する運転方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an easy operation method for controlling an electrolytic cell in an alkali chloride electrolysis plant having a plurality of electrolytic cells. More specifically, the present invention relates to a method for producing caustic alkali such as caustic soda and caustic potash, chlorine and hydrogen by electrolysis of alkali chloride such as sodium chloride and potassium chloride by the ion exchange membrane method, wherein the physical and chemical properties of the ion exchange membrane are used. The present invention relates to an operating method for early detection of abnormalities in an electrolytic cell and an ion exchange membrane by monitoring a decrease in electrolytic performance due to deterioration and making a relative comparison, and optimizing the priority of ion exchange membrane renewal. .

【0002】[0002]

【従来の技術】イオン交換膜法塩化アルカリ電解にあっ
ては、通常、有機材料からなるイオン交換膜を挟んで、
一方の陽極側は塩素及び強い酸化性雰囲気、他方の陰極
側は強いアルカリ溶液が存在するので、イオン交換膜は
極めて過酷な状況下に曝されている事になり長期間に亘
る操業では、イオン交換膜の経時的な劣化現象が生起す
ることは避け難い。このような現象は、単にイオン交換
膜の性能上の劣化に止まらず、一般にピンホールと言わ
れるような膜の破損が生じた場合には、陽極側の塩素と
陰極側の水素が混合し、最悪の場合は爆発する危険性さ
えある。また、膜にピンホールが発生すると、高圧側の
苛性アルカリが陽極室へ流入し、塩素と反応して次亜塩
素酸を生成し、これが電槽ガスケット(EPDMラバー製)
を腐食するため、外部への液洩れの原因となり、電槽寿
命を縮めることにもなる。よって、イオン交換膜法電解
にあっては、使用するイオン交換膜の劣化等の異常現象
を出来るだけ早期に発見することは、事故防止及びコス
ト低減の意味からも極めて重要である。
2. Description of the Related Art In the ion-exchange membrane method alkali chloride electrolysis, usually, an ion-exchange membrane made of an organic material is sandwiched between
Chlorine and a strong oxidizing atmosphere exist on one anode side, and a strong alkaline solution exists on the other cathode side, so the ion exchange membrane is exposed to extremely harsh conditions, and in the operation for a long time, It is unavoidable that a deterioration phenomenon of the exchange membrane with time occurs. Such a phenomenon is not limited to deterioration of the performance of the ion exchange membrane, and in the case where a membrane generally called a pinhole is damaged, chlorine on the anode side and hydrogen on the cathode side are mixed, In the worst case there is even a risk of explosion. Also, when pinholes are generated in the membrane, the caustic on the high pressure side flows into the anode chamber and reacts with chlorine to produce hypochlorous acid, which is a battery case gasket (made of EPDM rubber).
As it corrodes, it causes liquid leakage to the outside and shortens the life of the battery case. Therefore, in the electrolysis using the ion exchange membrane method, it is extremely important to detect an abnormal phenomenon such as deterioration of the ion exchange membrane used as early as possible from the viewpoint of preventing accidents and reducing costs.

【0003】従来、イオン交換膜の異常発見方法として
は、オルザット分析による塩素純度の測定、陽極液pH
の測定、陽極液中の遊離塩素及び次亜塩素酸の分析等が
一般的であった。しかしながら、オルザット分析法は、
塩素純度が高い領域では十分な精度が得られず、また、
陽極液pHを測定する方法では、特公昭57−5931
2号公報にも記載されているように、pH4を越える領
域においては電流効率(実生産量を理論生産量で除した
もの。以下、同義で使用する。)の変動に対するpH値
の感度が非常に低く、pHの変化で異常を検出する事が
困難であるのに加えて、pHの測定値は測定時の液温の
ばらつき・サンプリング時のガス放散の影響により誤差
を与える等の問題がある。更に陽極液中の遊離塩素及び
次亜塩素酸を分析する方法は、手間が掛かり過ぎ十分な
頻度での実施は困難である等の問題点が多く、上記の何
れの方法も異常発見方法として十分満足出来るものでな
く、異常槽の見落とし、正常槽のオーバーメンテナンス
等の問題点が解決出来なかった。
Conventionally, as a method for detecting an abnormality in the ion exchange membrane, chlorine purity is measured by Olsat analysis, and anolyte pH is measured.
And the analysis of free chlorine and hypochlorous acid in the anolyte were common. However, the Olsat analysis method
Sufficient accuracy cannot be obtained in the high chlorine purity range.
A method for measuring the pH of the anolyte is disclosed in Japanese Examined Patent Publication No. 57-5931.
As described in Japanese Patent Laid-Open No. 2 (1994), the sensitivity of the pH value to the fluctuation of the current efficiency (the actual production amount divided by the theoretical production amount; hereinafter synonymously used) is extremely high in the region where the pH exceeds 4. It is very low and it is difficult to detect abnormalities due to changes in pH. In addition, there is a problem that the measured pH value causes an error due to variations in liquid temperature during measurement and the influence of gas emission during sampling. . Furthermore, the method for analyzing free chlorine and hypochlorous acid in the anolyte has many problems such as being too time-consuming and difficult to carry out at a sufficient frequency, and any of the above methods is sufficient as an abnormality detection method. It was not satisfactory, and problems such as oversight of abnormal tanks and overmaintenance of normal tanks could not be resolved.

【0004】通常、イオン交換膜は2〜4年毎に更新が
必要となるが、多くの電解槽の中でこの優先順位を決定
するには、各電解槽の性能(電流効率、電槽電圧等)を
厳密に相対比較する事が必要であるので、上記の異常発
見方法によっては、優先順位の最適化を図ることは困難
である。特公昭57−59312の方法では、陽極液p
Hを1〜3程度に保つことにより、電流効率の変化を間
接的に陽極液pHの変化として捉えるものであるが、電
流効率は膜の劣化以外にも温度、苛性アルカリ濃度等に
より変動するので、これらの変化によりpHも大きく変
動することになる。また、陽極液pHは、陽極室への水
酸イオンの流入量と供給塩酸量とのバランスの指標では
あるが、直接電流効率を量論的に反映する事は出来ない
ため、イオン交換膜更新の確実な目安とは成り得ない。
Usually, the ion exchange membrane needs to be renewed every 2 to 4 years, but in order to determine this priority among many electrolytic cells, the performance (current efficiency, cell voltage) of each electrolytic cell is determined. It is difficult to optimize the priority depending on the above anomaly detection method because it is necessary to strictly compare the above. In the method of JP-B-57-59312, the anolyte p
By keeping H at about 1 to 3, changes in current efficiency are indirectly captured as changes in anolyte pH. However, current efficiency changes due to temperature, caustic alkali concentration, etc. in addition to deterioration of the membrane. However, due to these changes, the pH also greatly changes. Although the anolyte pH is an index of the balance between the amount of hydroxide ions flowing into the anode chamber and the amount of hydrochloric acid supplied, it cannot directly reflect the current efficiency quantitatively. Cannot be a reliable guide to

【0005】[0005]

【発明が解決しようとする課題】本発明者は上記の状況
に鑑み、電解槽及びイオン交換膜の効果的な異常発見方
法を見出すべく電解槽の陽極反応について鋭意検討した
結果、塩素ガス中の酸素濃度は、陽極液pH値と同様に
陽極室への水酸イオン流入量と供給塩酸量とのバランス
のための指標となるが、同時に直接電流効率の悪化分の
一部を量論的に反映するので、この事に着目して酸素濃
度と供給塩酸流量を組み合わせることにより、電流効率
を適確に把握し得る事を見出した。更に塩素ガス中の酸
素濃度を0.5(容量)%以下にした場合には、陽極室
へ流入した水酸イオンの大半が、電槽に供給する塩酸の
中和及び酸素ガスの生成に費やされ、遊離塩素及び次亜
塩素酸・塩素酸の生成には、10〜15%しか費やされ
ない事も見出した。
In view of the above situation, the present inventor has diligently studied the anodic reaction of the electrolytic cell in order to find an effective method for finding an abnormality in the electrolytic cell and the ion exchange membrane, and as a result, The oxygen concentration is an index for the balance between the amount of inflow of hydroxide ions into the anode chamber and the amount of supplied hydrochloric acid, similar to the pH value of the anolyte solution, but at the same time, a part of the direct current efficiency deterioration is stoichiometrically Since it is reflected, it was found that current efficiency can be accurately grasped by combining this with the oxygen concentration and the supply hydrochloric acid flow rate. Furthermore, when the oxygen concentration in chlorine gas is set to 0.5 (volume)% or less, most of the hydroxide ions flowing into the anode chamber are spent on neutralizing the hydrochloric acid supplied to the battery case and generating oxygen gas. It has also been found that only 10 to 15% is spent on the production of free chlorine and hypochlorous acid / chloric acid.

【0006】よって、塩素ガス中の酸素濃度を0.5
(容量)%以下にすれば塩素酸等の生成を殆ど無視し得
るので、塩酸供給量と酸素濃度を把握する事で各電解槽
の電流効率の動向管理及び全槽の相対比較を行う事が十
分可能となるのである。本発明者は、上記の如き新規な
知見に基づき塩酸供給量と酸素濃度の両方を所定範囲で
制御する運転指針及び塩酸原単位(塩酸供給量/塩素発
生量、以下、同義で使用する。)を管理し、各電解槽の
塩酸原単位を予め定めた値と比較または全槽の相対比較
を行う事により、電解槽の異常を早期発見する方法を達
成した。
Therefore, the oxygen concentration in chlorine gas should be 0.5.
If it is less than (capacity)%, generation of chloric acid, etc. can be almost ignored. Therefore, by grasping the supply amount of hydrochloric acid and oxygen concentration, trend management of current efficiency of each electrolytic cell and relative comparison of all cells can be performed. It is possible enough. The present inventor, based on the above-mentioned novel findings, the operating guideline for controlling both the supply amount of hydrochloric acid and the oxygen concentration within a predetermined range and the basic unit of hydrochloric acid (supply amount of hydrochloric acid / amount of chlorine generation, which will be used interchangeably below). We have achieved a method for early detection of abnormalities in the electrolytic cell by controlling the unit and comparing the basic unit of hydrochloric acid in each electrolytic cell with a predetermined value or by making a relative comparison of all electrolytic cells.

【0007】[0007]

【課題を解決するための手段】本発明は、イオン交換膜
法塩化アルカリ電解槽の異常を検出する有効な方法を提
供するとともに、イオン交換膜の更新順位を最適化し、
電解槽を効率的に運転する方法を提供するものである。
そして、本発明の要旨は、複数個のイオン交換膜法塩化
アルカリ電解槽からなる電槽列を運転するにあたり、各
電解槽の陽極室からの塩素ガス中の酸素濃度及び各槽へ
の塩酸供給量を各槽毎に測定し、該測定値に基づいて塩
素ガス中の酸素濃度を0.1から0.5(容量)%に保
つ様に各電解槽に個別的に塩酸を供給し、且つ各槽の塩
酸原単位(塩酸供給量/塩素発生量)を算出し、この算
出値を予め定めた値と比較するか、或いは全槽の塩酸原
単位の平均値と相対比較することによって、電解槽の異
常を検出する事よりなる塩化アルカリのイオン交換膜法
電解槽の運転方法並びに各槽毎に塩酸原単位、電槽電圧
及び稼働日数の操作変数につき、各々所定値との差異を
個別にコスト換算して各槽の合計コストを算出し、その
合計コストを対比して電解槽のイオン交換膜の更新順位
を決定することよりなる運転方法に存する。
The present invention provides an effective method for detecting an abnormality in an ion-exchange membrane method alkaline chloride electrolytic cell, and optimizes the renewal order of the ion-exchange membrane,
It is intended to provide a method for efficiently operating an electrolytic cell.
Then, the gist of the present invention is to operate the battery array consisting of a plurality of ion-exchange membrane method alkaline chloride electrolytic cells, to supply oxygen concentration in the chlorine gas from the anode chamber of each electrolytic cell and supply hydrochloric acid to the respective cells. The amount is measured for each tank, and hydrochloric acid is individually supplied to each electrolytic tank so that the oxygen concentration in chlorine gas is maintained at 0.1 to 0.5 (volume)% based on the measured value, and By calculating the basic unit of hydrochloric acid (hydrochloric acid supply amount / chlorine generation amount) in each tank and comparing this calculated value with a predetermined value, or by making a relative comparison with the average value of the basic hydrochloric acid values of all tanks, electrolysis Ion exchange membrane method of alkali chloride consisting of detecting abnormalities in the cell The operating method of the electrolysis cell and the operation variables of the hydrochloric acid unit, cell voltage and number of operating days for each cell are individually different from the specified values. Calculate the total cost of each tank by converting the cost and compare the total cost Te resides in method of operation consists in determining the update order of the ion exchange membrane electrolyzer.

【0008】以下に本発明を詳細に説明する。本発明方
法においては、各電解槽から排出される塩素ガス中の酸
素濃度を0.5(容量)%以下に保持しながら、塩酸原
単位の値を比較することにより電解槽を制御運転する
が、この塩酸原単位は各電解槽に付設された塩酸流量計
の指示値を当該槽の塩素発生量で除することにより算出
されるものである。そして、塩素発生量は通電電流、酸
素濃度、HClO生成量及びClO3生成量より計算されるが、
その際、本発明の如く塩素ガス中の酸素濃度が0.5
(容量)%以下の場合には、HClO生成量及びClO3生成量
については、陽極室に流入した水酸イオンの高々十数パ
ーセントの僅かな部分しか関与しない、つまり電流効率
悪化分のうちの寄与率が低い事並びに計算簡易化の点か
ら、それらの生成量としては一定値(実績値見合い)を
採用する。また酸素濃度については、電槽温度及び苛性
アルカリ濃度の影響が大であるので、温度及び苛性アル
カリ濃度の基準値よりの偏差を補正した標準状態での補
正酸素濃度を使用する。このような値に基づいて算出さ
れた塩酸原単位を用いることにより電解槽の運転状況、
殊にイオン交換膜性能の厳密な相対比較を可能にするの
である。
The present invention will be described in detail below. In the method of the present invention, while controlling the oxygen concentration in the chlorine gas discharged from each electrolytic cell to 0.5 (volume)% or less, the electrolytic cell is controlled and operated by comparing the values of the basic unit of hydrochloric acid. The basic unit of hydrochloric acid is calculated by dividing the indicated value of the hydrochloric acid flow meter attached to each electrolytic cell by the amount of chlorine generated in the electrolytic cell. Then, the chlorine generation amount is calculated from the energization current, oxygen concentration, HClO generation amount and ClO 3 generation amount,
At that time, the oxygen concentration in the chlorine gas is 0.5 as in the present invention.
In the case of (volume)% or less, the amount of generated HClO and the amount of generated ClO 3 are involved in only a small part of at most ten and several percent of the hydroxide ions that have flowed into the anode chamber, that is, in the amount of deterioration of current efficiency. From the viewpoint of low contribution rate and simplification of calculation, a fixed value (actual value balance) is adopted as the amount of generation. Regarding the oxygen concentration, the effect of the battery temperature and the caustic alkali concentration is great, so the corrected oxygen concentration in the standard state in which the deviation from the reference value of the temperature and the caustic alkali concentration is corrected is used. By using the basic unit of hydrochloric acid calculated based on such values, the operating conditions of the electrolytic cell,
In particular, it enables a strict relative comparison of ion exchange membrane performance.

【0009】以下、本発明を図1によって食塩電解を例
として説明する。図1にあっては、n個の電解槽よりな
る工場の例を示す。電解槽4123・・・・・4nに対し
て、供給塩水ヘッダー1及び塩酸ヘッダー2より濃塩水
及び塩酸が付設された枝管により供給され、陽極液のオ
ーバーフローは淡塩水ヘッダー3により回収される。ま
た、塩素ガスは各槽の塩素ガス排出口から塩素ガスヘッ
ダー5に集められ回収される。なお、本図では、本発明
を明確にし、且つ説明図が煩雑になるのを避けるため、
陰極側の配管については省略している。本発明にあって
は、各槽の塩素ガス排出口にサンプリング自動弁812
3・・・・8nを設け、これをサンプリングシーケンサー1
1でオンオフ制御することにより、各電解槽から順次サ
ンプリングする。サンプルガスは、前処理装置9を経由
して、分析計10に送られ塩素ガス中の酸素濃度を測定
する。前処理装置9は、塩素ガス中の水及び固形不純物
を除去し、分析計をこれらより保護するためのものであ
る。
The present invention will be described below with reference to FIG. 1 using salt electrolysis as an example. FIG. 1 shows an example of a factory consisting of n electrolytic cells. The salt solution is supplied to the electrolytic cell 4 1 4 2 4 3 ... 4 n from the supply salt water header 1 and the hydrochloric acid header 2 by a branch pipe provided with concentrated salt water and hydrochloric acid, and the overflow of the anolyte is caused by the fresh salt water header. Recovered by 3. The chlorine gas is collected and collected in the chlorine gas header 5 from the chlorine gas outlet of each tank. In addition, in this figure, in order to clarify the present invention and to prevent the explanatory diagram from becoming complicated,
The piping on the cathode side is omitted. In the present invention, the sampling automatic valve 8 1 8 2 is provided at the chlorine gas outlet of each tank.
8 3 ... 8 n are provided and this is a sampling sequencer 1
By performing on / off control at 1, sampling is performed sequentially from each electrolytic cell. The sample gas is sent to the analyzer 10 via the pretreatment device 9 to measure the oxygen concentration in the chlorine gas. The pretreatment device 9 removes water and solid impurities in chlorine gas and protects the analyzer from these.

【0010】塩素ガス中の酸素濃度を0.1〜0.5
(容量)%、好ましくは0.3〜0.5(容量)%に保
つ為、塩酸ヘッダー2から分岐した枝管により適量の塩
酸を供給する。各槽に供給される塩酸流量の調整は、6
123・・・・・6nの調整バルブの開閉を調整することに
より行い、流量の記録は7123・・・・・7nのローター
メーター等の測定器の指示値を記録し、その値の変動を
監視する。塩酸の供給量は、塩素ガス中の酸素濃度が上
記範囲に維持されるような量であり、一般に、塩酸供給
量を増やせば酸素濃度は減少する。そして、イオン交換
膜の性能が低下する(電流効率が低下する)と、塩酸供
給量が一定であれば酸素濃度は上昇する。よって、酸素
濃度を一定に保つためには、塩酸供給量を増やすことが
必要となる。
The oxygen concentration in chlorine gas is set to 0.1 to 0.5.
In order to maintain (volume)%, preferably 0.3 to 0.5 (volume)%, an appropriate amount of hydrochloric acid is supplied through a branch pipe branched from the hydrochloric acid header 2. Adjustment of the flow rate of hydrochloric acid supplied to each tank is 6
It is performed by adjusting the opening and closing of the adjusting valve of 1 6 2 6 3 ... 6 n , and the flow rate is recorded by the instruction of the measuring instrument such as the rotor meter of 7 1 7 2 7 3 ... 7 n. Record the value and monitor the variation in that value. The supply amount of hydrochloric acid is such that the oxygen concentration in chlorine gas is maintained in the above range, and generally, the oxygen concentration decreases as the supply amount of hydrochloric acid increases. Then, when the performance of the ion exchange membrane deteriorates (current efficiency decreases), the oxygen concentration increases if the supply amount of hydrochloric acid is constant. Therefore, in order to keep the oxygen concentration constant, it is necessary to increase the supply amount of hydrochloric acid.

【0011】本発明では、この補正酸素濃度と塩酸流量
及び通電電流・電槽温度・苛性アルカリ濃度等のデータ
より計算される塩素発生量、各電解槽の塩酸原単位を計
算し、この計算値の動向を監視する。そして、その計算
値が予め設定しておいた初期の塩酸原単位に対してある
割合で変化した場合、例えばその変化率が10%増或い
は2倍等に達した場合にはその時点で当該槽を異常槽と
判定することが出来る。又各槽の塩酸原単位を全槽の塩
酸原単位と相対比較する、即ち全槽の塩酸原単位の平均
値及び標準偏差(σ)に対して、平均値±3σ以上であ
れば、当該槽を異常槽と判定することもできる。異常槽
の判断基準となる変化率或いは偏差の程度は、電解槽の
操作条件等から試験的及び経験的に定められる。これら
の方法により異常槽を早期発見する事で、当該槽の異常
箇所の割り出しを行い、液洩れトラブルに至る前にイオ
ン交換膜の更新又は補修その他の処置を施す事ができ
る。
In the present invention, the amount of chlorine generated calculated from the corrected oxygen concentration, the flow rate of hydrochloric acid, the data of the energizing current, the temperature of the cell, the caustic alkali concentration, etc., and the basic unit of hydrochloric acid of each electrolytic cell are calculated, and the calculated values are calculated. Monitor trends. Then, when the calculated value changes at a certain rate with respect to a preset initial unit of hydrochloric acid, for example, when the rate of change reaches 10% or doubles, the tank concerned at that time Can be determined as an abnormal tank. Also, compare the basic unit of hydrochloric acid of each tank with the basic unit of hydrochloric acid of all tanks, that is, if the average value and standard deviation (σ) of the basic unit of hydrochloric acid of all tanks are ± 3σ or more, the tank concerned Can also be determined as an abnormal tank. The rate of change or the degree of deviation that serves as a criterion for the abnormal cell is determined experimentally and empirically from the operating conditions of the electrolytic cell. By detecting an abnormal tank early by these methods, the abnormal portion of the tank can be identified, and the ion exchange membrane can be renewed or repaired before the liquid leakage trouble occurs.

【0012】また、イオン交換膜は2〜4年毎に更新が
必要となるが、従来電解工場での多数の電解槽の中から
イオン交換膜を更新すべき槽の優先順位を決定する方法
については、十分満足できるものがなかった。本発明で
は、塩素ガス中の酸素濃度を測定して塩酸供給量を調節
して、塩素ガス中の酸素濃度を0.1〜0.5、好まし
くは0.3〜0.5(容量)%にするとともに、塩酸原
単位を算出して、その値の所定値に対する変化率で電解
槽の異常を検出することを可能にしたが、本発明者は、
この方法を基にして理想的なイオン交換膜の更新方法に
ついて鋭意検討した結果、更に運転性能及び稼働日数の
ような操作変数を組み入れ、これらの諸変数につき各槽
毎に基準値を設定し、この基準値よりの差異を各々コス
ト換算し、各槽の合計コストを相対比較することにより
効率的にイオン交換膜の更新順位を選定する事を可能に
した。
Further, the ion exchange membrane needs to be renewed every 2 to 4 years. Regarding the method of determining the priority of the cell in which the ion exchange membrane should be renewed from a large number of electrolytic cells in the conventional electrolysis plant. There was nothing satisfactory. In the present invention, the oxygen concentration in chlorine gas is measured and the supply amount of hydrochloric acid is adjusted so that the oxygen concentration in chlorine gas is 0.1 to 0.5, preferably 0.3 to 0.5 (volume)%. In addition to the above, by calculating the basic unit of hydrochloric acid, it was possible to detect the abnormality of the electrolytic cell at the rate of change of the value with respect to a predetermined value.
Based on this method, as a result of diligent examination of an ideal ion exchange membrane updating method, further incorporating operating variables such as operating performance and number of operating days, setting reference values for each tank for these various variables, The difference from this reference value was converted into cost, and the total cost of each tank was compared to make it possible to efficiently select the order of renewal of the ion exchange membrane.

【0013】具体的には、実際の操業条件を考慮して塩
酸原単位、電槽電圧、稼働日数の各々につき各槽毎に任
意の基準値を定める。そして、前述の方法により、各槽
の塩酸原単位を計算し、その算出値と基準値との差異を
苛性アルカリ生産量、塩素生産量、塩酸消費量の夫々に
ついてのコストに換算する。電槽電圧については、通電
電流及び各槽の槽電圧より電力原単位を計算し、基準値
との差異を電力使用量についてコスト換算する。以上の
コスト差を各槽毎に合計したものを全槽につき相対比較
し、コスト差の大きいものより順位付けを行えば、概ね
経済的なイオン交換膜更新順位を決定する事が可能とな
る。尚、電槽電圧についてはイオン交換膜の劣化要因以
外にも、電極の活性低下に伴う電圧上昇が発生する可能
性もあるので、これらが明らかな場合はコスト計算より
電槽電圧の項目を外した方が好ましい。また、本発明に
おいて、分析値の処理、塩酸原単位の算出、コスト計算
等の演算処理並びに相対比較手段等はプロセスコンピュ
ーターにより効率的且つ最経済操作的に行うことが可能
である。
Specifically, in consideration of actual operating conditions, arbitrary reference values are set for each of the hydrochloric acid basic unit, the cell voltage, and the number of operating days for each tank. Then, the basic unit of hydrochloric acid in each tank is calculated by the above-described method, and the difference between the calculated value and the reference value is converted into the cost for each of the caustic production amount, the chlorine production amount, and the hydrochloric acid consumption amount. For the battery voltage, calculate the power consumption rate from the current supplied and the battery voltage of each battery, and convert the difference from the reference value into the cost for power consumption. It is possible to determine a generally economical ion-exchange membrane renewal order by comparing the sum of the above cost differences for all tanks for all tanks and ranking the ones with the largest cost difference. In addition to the factors causing deterioration of the ion-exchange membrane, there is a possibility that a voltage increase may occur due to a decrease in the electrode activity, so if these are clear, the item of battery voltage should be excluded from the cost calculation. Is preferred. Further, in the present invention, the processing of the analytical value, the calculation of the basic unit of hydrochloric acid, the calculation processing such as the cost calculation, the relative comparison means and the like can be efficiently and economically performed by the process computer.

【0014】[0014]

【発明の効果】本発明方法では、塩酸供給量と塩素ガス
中の酸素濃度を把握し、これらの値を所定範囲に制御す
る事で、各電解槽の電流効率の動向管理及び全槽の相対
比較を行い、これにより電解槽の異常を容易に早期検出
することが出来、また、イオン交換膜の更新順位も最適
化することが出来るので、電解槽を長期間に渡り、効率
的、且つ経済的にも安定して操業することを可能にす
る。
According to the method of the present invention, by grasping the supply amount of hydrochloric acid and the oxygen concentration in chlorine gas and controlling these values within a predetermined range, the trend of current efficiency of each electrolytic cell and the relative relationship of all the electrolytic cells are controlled. By making a comparison, it is possible to easily detect the abnormality of the electrolytic cell at an early stage and optimize the update order of the ion exchange membrane, so that the electrolytic cell can be used for a long time, efficiently and economically. It also enables stable operation.

【0015】[0015]

【実施例】次に、本発明を実施例によりさらに具体的に
説明するが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist.

【0016】実施例 1 有効面積20dm2のモノポーラ型電解ユニット220
対よりなる電解槽82槽を図1に示す如く、配管接続し
た電解工場において、陽イオン交換膜(旭硝子(株)
製:商品名 フレミオン)を用い、陽極液食塩濃度20
0g/l以上及び陰極液苛性ソーダ濃度32%、82
℃、30A/dm2の条件で運転をおこなった。各電解
槽の塩素ガス出口にサンプリング自動弁を設け、これを
サンプリングシーケンサーでオンオフ制御する事によ
り、各電解槽から順次塩素ガスをサンプリングし、サン
プルガスは分析計(横河電機(株)製:磁気式酸素計)
に供給し、ガス中の酸素濃度を測定した。酸素濃度の測
定値は、各槽毎にプロセスコンピューターのデータベー
ス上に自動的に格納し、これをもとに各槽の塩素ガス中
の酸素濃度を0.3〜0.5(容量)%に保つように、
塩酸流量の調整を行いながら塩酸を各槽に供給した。
Example 1 A monopolar type electrolytic unit 220 having an effective area of 20 dm 2.
As shown in Fig. 1, a pair of electrolyzers 82 were connected by pipes in a cation exchange membrane (Asahi Glass Co., Ltd.).
Made: Brand name Flemion), using 20 salt concentration of anolyte
0 g / l or more and catholyte caustic soda concentration 32%, 82
The operation was carried out under the conditions of ° C and 30 A / dm 2 . The chlorine gas outlet of each electrolysis tank is equipped with a sampling automatic valve, and by controlling this with a sampling sequencer, chlorine gas is sequentially sampled from each electrolysis tank, and the sample gas is an analyzer (Yokogawa Electric Co., Ltd .: (Magnetic oxygen meter)
And the oxygen concentration in the gas was measured. The measured oxygen concentration is automatically stored in the database of the process computer for each tank, and based on this, the oxygen concentration in chlorine gas in each tank is adjusted to 0.3-0.5 (volume)%. To keep
Hydrochloric acid was supplied to each tank while adjusting the flow rate of hydrochloric acid.

【0017】そして、酸素濃度、他の運転条件(通電電
流等)並びに塩素発生量から所定の演算式に従いプロセ
スコンピューターにより塩酸原単位を計算し、その結果
を塩酸原単位の動向管理図及び相対比較表として出力さ
せる。運転管理者は、この出力結果を定期的に確認し電
解槽の異常の有無を判断する。また、各槽の塩酸原単位
及び電槽電圧、稼働日数のデータをプロセスコンピュー
タで処理し、槽毎の運転コストの相対比較を随時行える
ようして、電解槽のイオン交換膜の更新順位を容易に決
定できるようにした。上記システム稼働後は、従来の方
法では液洩れ発生に至るまで発見し得なかったイオン交
換膜の異常が早期に発見出来るようになり、突発停止ト
ラブルの頻度が減少し、また、電解槽寿命の延長が図れ
た。
Then, the basic unit of hydrochloric acid is calculated from the oxygen concentration, other operating conditions (current flowing, etc.) and the amount of chlorine generated by a process computer according to a predetermined calculation formula, and the result is a trend control chart of the basic unit of hydrochloric acid and a relative comparison. Output as a table. The operation manager periodically checks this output result to determine whether there is any abnormality in the electrolytic cell. In addition, the processing unit processes the data on the basic unit of hydrochloric acid, the cell voltage, and the number of operating days of each tank, so that the relative comparison of the operating costs of each tank can be performed at any time, making it easy to update the ion-exchange membranes of the electrolytic cells. I was able to decide. After the above system started operation, it became possible to detect abnormalities in the ion exchange membrane early, which could not be detected until the occurrence of liquid leakage by the conventional method, the frequency of sudden stop troubles decreased, and the life of the electrolytic cell was reduced. I was able to extend it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施した工場の配管系統図の一部であ
る。
FIG. 1 is a part of a piping system diagram of a factory in which the present invention is implemented.

【符号の説明】[Explanation of symbols]

1 供給塩水ヘッダー 2 塩酸ヘッダー 3 淡塩水ヘッダー 4123・・・・4n 電解槽 5 塩素ガスヘッダー 6123・・・・6n 塩酸流量調整バルブ 7123・・・・7n 塩酸流量計 8123・・・・8n サンプリング自動弁 9 前処理装置 10 分析計 11 サンプリングシーケンサー1 Supply salt water header 2 Hydrochloric acid header 3 Fresh salt water header 4 1 4 2 4 3・ ・ ・ ・ 4 n Electrolyzer 5 Chlorine gas header 6 1 6 2 6 3・ ・ ・ ・ 6 n Hydrochloric acid flow control valve 7 1 7 2 7 3・ ・ ・ ・ 7 n Hydrochloric acid flow meter 8 1 8 2 8 3・ ・ ・ ・ 8 n Sampling automatic valve 9 Pretreatment device 10 Analyzer 11 Sampling sequencer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数個のイオン交換膜法塩化アルカリ電
解槽からなる電槽列を運転するにあたり、各電解槽の陽
極室からの塩素ガス中の酸素濃度及び各槽への塩酸供給
量を各槽毎に測定し、該測定値に基づいて塩素ガス中の
酸素濃度を0.1から0.5(容量)%に保つ様に各電
解槽に個別的に塩酸を供給し、且つ各槽の塩酸原単位
(塩酸供給量/塩素発生量)を算出し、この算出値を予
め定めた値と比較するか、或いは全槽の塩酸原単位の平
均値との相対比較によって、電解槽の異常を検出する事
を特徴とする塩化アルカリのイオン交換膜法電解槽の運
転方法。
1. When operating a battery array consisting of a plurality of ion-exchange membrane method alkaline chloride electrolytic cells, the oxygen concentration in chlorine gas from the anode chamber of each electrolytic cell and the supply amount of hydrochloric acid to each cell are adjusted. It is measured for each tank, and hydrochloric acid is individually supplied to each electrolytic tank so that the oxygen concentration in chlorine gas is kept at 0.1 to 0.5 (volume)% based on the measured value. Calculate the basic unit of hydrochloric acid (hydrochloric acid supply amount / chlorine generation amount) and compare this calculated value with a predetermined value, or by comparing the calculated value with the average value of the hydrochloric acid basic unit of all tanks A method for operating an electrolytic cell of an ion exchange membrane method of alkali chloride characterized by detecting.
【請求項2】 各槽の塩酸原単位は、各槽への塩酸供給
量を、通電電流値及び塩素ガス中の酸素濃度より計算し
た塩素発生量で除して算出するが、該酸素濃度としては
電槽温度及び苛性アルカリ濃度による補正をした補正酸
素濃度値を用いる事を特徴とする請求項1に記載の方
法。
2. The basic unit of hydrochloric acid in each tank is calculated by dividing the amount of hydrochloric acid supplied to each tank by the chlorine generation amount calculated from the energization current value and the oxygen concentration in chlorine gas. The method according to claim 1, wherein the corrected oxygen concentration value corrected by the battery cell temperature and the caustic alkali concentration is used.
【請求項3】 各電解槽の塩素ガス排出管にサンプリン
グ自動弁を設け、該弁をシーケンス制御する事により自
動的に各電解槽から順次サンプリングし、サンプルガス
中の酸素濃度を自動分析計により測定し、該測定値並び
に各槽への通電電流値、電槽温度及び苛性ソーダ濃度を
演算処理し、補正酸素濃度値及び塩酸原単位を算出し且
つ算出値と所定値との比較を行うことにより各電解槽の
運転性能の動向監視及び異常検出を行う請求項1に記載
の方法。
3. A chlorine gas discharge pipe of each electrolysis tank is provided with a sampling automatic valve, the valves are sequence-controlled to automatically sample from each electrolysis tank, and the oxygen concentration in the sample gas is measured by an automatic analyzer. By measuring the measured value, the current value to each tank, the tank temperature and the caustic soda concentration, the corrected oxygen concentration value and the basic unit of hydrochloric acid are calculated, and the calculated value is compared with a predetermined value. The method according to claim 1, wherein trend monitoring of operation performance of each electrolytic cell and abnormality detection are performed.
【請求項4】 複数個のイオン交換膜法塩化アルカリ電
解槽からなる電槽列を運転するにあたり、各電解槽の陽
極室からの塩素ガス中の酸素濃度及び各槽への塩酸供給
量を各槽毎に測定し、該測定値に基づいて塩素ガス中の
酸素濃度を0.1から0.5(容量)%に保つ様に各電
解槽に個別的に塩酸を供給し、且つ各槽の塩酸原単位
(塩酸供給量/塩素発生量)を算出し、この算出値、電
槽電圧及び稼働日数につき基準所定値との差をコストに
換算し、各槽毎のこの換算値の合計コストの大小を相対
比較し、電解槽のイオン交換膜更新順位を決定すること
を特徴とする塩化アルカリのイオン交換膜法電解槽の運
転方法。
4. The oxygen concentration in the chlorine gas from the anode chamber of each electrolytic cell and the supply amount of hydrochloric acid to each cell are controlled when operating a battery cell array comprising a plurality of ion-exchange membrane method alkali chloride electrolytic cells. It is measured for each tank, and hydrochloric acid is individually supplied to each electrolytic tank so that the oxygen concentration in chlorine gas is kept at 0.1 to 0.5 (volume)% based on the measured value. Calculate the basic unit of hydrochloric acid (hydrochloric acid supply amount / chlorine generation amount), convert the difference between this calculated value, the battery cell voltage and the number of operating days from the standard prescribed value into a cost, and calculate the total cost of this converted value for each tank. A method for operating an ion-exchange membrane method electrolytic cell of alkali chloride, characterized in that the order of renewal of ion-exchange membranes in the electrolytic cell is determined by comparing the sizes relatively.
JP6240819A 1994-09-09 1994-09-09 Operation of ion-exchange membrane electrtolytic cell Pending JPH0874082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6240819A JPH0874082A (en) 1994-09-09 1994-09-09 Operation of ion-exchange membrane electrtolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6240819A JPH0874082A (en) 1994-09-09 1994-09-09 Operation of ion-exchange membrane electrtolytic cell

Publications (1)

Publication Number Publication Date
JPH0874082A true JPH0874082A (en) 1996-03-19

Family

ID=17065173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6240819A Pending JPH0874082A (en) 1994-09-09 1994-09-09 Operation of ion-exchange membrane electrtolytic cell

Country Status (1)

Country Link
JP (1) JPH0874082A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010286A1 (en) * 1997-08-27 1999-03-04 Miz Co., Ltd. Electrolytic cell and electrolyzed water generating device
JP2013231240A (en) * 2013-08-19 2013-11-14 Ihi Corp Method and device for producing perchlorate
CN111926343A (en) * 2020-07-29 2020-11-13 上海浦辰信息科技有限公司 Method for determining optimal operation period of ionic membrane electrolytic cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010286A1 (en) * 1997-08-27 1999-03-04 Miz Co., Ltd. Electrolytic cell and electrolyzed water generating device
US6251259B1 (en) 1997-08-27 2001-06-26 Miz Co., Ltd. Method and apparatus for producing electrolyzed water
JP3349710B2 (en) * 1997-08-27 2002-11-25 ミズ株式会社 Electrolyzer and electrolyzed water generator
JP2013231240A (en) * 2013-08-19 2013-11-14 Ihi Corp Method and device for producing perchlorate
CN111926343A (en) * 2020-07-29 2020-11-13 上海浦辰信息科技有限公司 Method for determining optimal operation period of ionic membrane electrolytic cell

Similar Documents

Publication Publication Date Title
ES2675333T3 (en) Procedure and system for the diagnosis of electrolysers based on a curve fit analysis and efficiency optimization
US8114265B2 (en) Efficiency optimization and damage detection of electrolysis cells
US6375825B1 (en) Process for the production of alkaline earth hydroxide
US20110240483A1 (en) Method for ensuring and monitoring electrolyzer safety and performances
EP2226411B1 (en) Method for ensuring and monitoring electrolyzer safety and performances
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
US9933492B2 (en) Method for safely and economically operating an electrolyser
US9783899B2 (en) Apparatus and method for operating an electrolysis with an oxygen depolarized cathode
CN114369849B (en) Method and device for monitoring health degree of electrolytic cell and electrolytic cell monitoring system
CN113724804A (en) Safety fault prediction method for alkaline electrolytic cell of hydrogen energy system based on Surrogate
JP6635879B2 (en) Alkali hydroxide production apparatus and operation method of alkali hydroxide production apparatus
CN111074293A (en) Chlorate decomposition process in production of caustic soda by ion-exchange membrane method
JPH0874082A (en) Operation of ion-exchange membrane electrtolytic cell
CN116894663B (en) Intelligent AEM electrolytic tank control system
US5112464A (en) Apparatus to control reverse current flow in membrane electrolytic cells
CA2794737A1 (en) Method for ensuring and monitoring electrolyzer safety and performances
KR920003241B1 (en) Sodium hydro sulfite electrolytic cell process control system
WO2020104343A1 (en) Method and system for controlling suction of off-gases from electrolysis cells
CA1300224C (en) Method for detecting defective ion exchange membranes in monopolar and bipolar electrolyzers
US20120138483A1 (en) Method and system for electrolyser single cell current efficiency
JP4627111B2 (en) Operation method of ion exchange membrane method alkaline chloride electrolytic cell.
KR102480729B1 (en) Sodium hypochlorite generator capable of monitoring the life and replacement cycle of the electrolytic electrode
WO2024127271A1 (en) Process for the production of chlorates
CN118193997A (en) Chlor-alkali electrolytic cell process abnormality detection method based on self-adaptive threshold
JPH06238275A (en) Alkali ion water preparation device