JPH0873602A - Production of polyamide powder - Google Patents

Production of polyamide powder

Info

Publication number
JPH0873602A
JPH0873602A JP24198094A JP24198094A JPH0873602A JP H0873602 A JPH0873602 A JP H0873602A JP 24198094 A JP24198094 A JP 24198094A JP 24198094 A JP24198094 A JP 24198094A JP H0873602 A JPH0873602 A JP H0873602A
Authority
JP
Japan
Prior art keywords
polyamide
lactam
polymerization
powder
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24198094A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hata
和彦 畑
Toshikazu Minami
俊和 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinto Paint Co Ltd
Original Assignee
Shinto Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinto Paint Co Ltd filed Critical Shinto Paint Co Ltd
Priority to JP24198094A priority Critical patent/JPH0873602A/en
Publication of JPH0873602A publication Critical patent/JPH0873602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyamides (AREA)

Abstract

PURPOSE: To produce the subject powder useful for powder coating material, adsorbent, cosmetic base, etc., on an industrial scale at a low cost without causing the agglomeration and stringing of the polyamide by carrying out alkali catalyst polymerization of an alicyclic lactam in a specific polymerization medium. CONSTITUTION: This powder is produced by the alkali catalyst polymerization of (A) a 6-12C alicyclic lactam in (B) a polymerization medium consisting of a polymer solution dissolving the component A and unable to dissolve the produced polyamide using (C) an alkali catalyst such as an alkali metal, its hydroxide or borohydride. The component B is preferably a 1-20wt.% solution of PS produced by dissolving a PS having an average molecular weight of 100,000-300,000 in ethylbenzene, chlorobenzene or chlorotoluene. The amount of the component C is 0.01-10mol, especially 0.1-5mol based on 100mol of the component A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリアミド粉体の製造
方法に関する。詳しくは粉体塗装、吸着剤、化粧品基
剤、医療分野、生化学をはじめとして情報材料、接着剤
など様々な分野で利用されているポリアミド粉体の製造
方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing polyamide powder. More specifically, the present invention relates to a method for producing polyamide powder which is used in various fields such as powder coating, adsorbents, cosmetic bases, medical fields, biochemistry, and other information materials and adhesives.

【0002】[0002]

【従来の技術】従来からのポリアミド粉体の製造方法と
しては、ペレット状の塊状ポリアミドを機械的に粉砕す
る方法や、適当な溶媒を用いて温度による溶解度差を利
用するか、貧溶媒中に注入して沈澱を析出させるいわゆ
る再沈澱法が代表的であるが、これらの通常のプラスチ
ック粉体の製造に用いられている方法で製造された粉体
は球状ではなく、形状が不均一な不定形であったり多孔
質状であったりして、球状微粒子が得られない欠点があ
る。また、ポリアミド粉体の製造方法として、モノマー
を溶融状態で非溶媒に分散させた状態で重合する方法
と、ポリアミドを溶融状態で噴霧し冷却することによっ
て微粉体とする方法とが公知である。
2. Description of the Related Art Conventional methods for producing polyamide powder include a method of mechanically pulverizing pelletized massive polyamide, a method of utilizing a difference in solubility depending on temperature with an appropriate solvent, or a method of using a poor solvent in a poor solvent. A so-called reprecipitation method in which a precipitate is precipitated by injecting is typical, but the powder produced by the method used for producing these ordinary plastic powders is not spherical and has an uneven shape. It has a defect that spherical fine particles cannot be obtained due to its regular shape or porous shape. Further, as a method for producing a polyamide powder, there are known a method of polymerizing a monomer in a molten state in a state of being dispersed in a non-solvent, and a method of spraying and cooling polyamide in a molten state to form a fine powder.

【0003】例えば、特公昭45−29832号公報明
細書には環状ラクタムをパラフィン中で加熱融解し、分
散剤として脂肪族モノカルボン酸のアルカリ金属塩また
はアルカリ土類金属との塩を添加して融解モノマーを分
散し、アルカリ触媒重合を行うポリアミド粉末の製造法
が提案されている。また、特開平5−70598号公報
明細書には25℃における0.5%メタクレゾール溶液
の相対粘度が1.05以上1.40以下の、加熱によっ
て自身で重縮合しないナイロン11叉はナイロン12
を、溶融状態で噴霧し冷却することによって、粒子径2
0μm以下の粉体を製造する方法が示されている。
For example, in JP-B-45-29832, a cyclic lactam is heated and melted in paraffin, and an alkali metal salt of an aliphatic monocarboxylic acid or a salt with an alkaline earth metal is added as a dispersant. A method for producing a polyamide powder in which a molten monomer is dispersed and alkali-catalyzed polymerization is proposed. Further, Japanese Patent Application Laid-Open No. 5-70598 discloses that a 0.5% meta-cresol solution at 25 ° C. has a relative viscosity of 1.05 or more and 1.40 or less and does not polycondense itself by heating.
Is sprayed in a molten state and cooled to obtain a particle size of 2
A method for producing powder of 0 μm or less is shown.

【0004】[0004]

【発明が解決しようとする課題】しかし、これら従来の
技術は、工業的に十分満足できるものではない。例え
ば、特公昭45−29832号公報明細書には、分散剤
として炭素数11以上の脂肪族モノカルボン酸のアルカ
リ金属またはアルカリ土類金属との塩を添加し、媒体中
で加熱融解した原料ラクタムを分散してアルカリ触媒重
合を行う方法が提案されているが、工業的に実施する上
で必ずしも有利な方法とは言えない。また、特開平5−
70598号公報明細書に示されている溶融ポリアミド
を噴霧し冷却する方法は、球状の粒子を得るために溶融
粘度の十分低い原料ポリアミドを使用する必要があり通
常のポリアミドが使用できないという欠点があり、さら
にポリアミドの凝結、糸状化を防止するために大がかり
な設備が必要となり工業的に十分満足できるものではな
い。本発明の目的は、工業的に有利な方法でポリアミド
粉体を、製造する方法を提供することにある。
However, these conventional techniques are not industrially sufficiently satisfactory. For example, in JP-B-45-29832, a raw material lactam obtained by adding a salt of an aliphatic monocarboxylic acid having 11 or more carbon atoms with an alkali metal or an alkaline earth metal as a dispersant and heating and melting the medium in a medium. Although a method of dispersing and carrying out an alkali-catalyzed polymerization has been proposed, it is not necessarily an advantageous method for industrial implementation. In addition, JP-A-5-
The method of spraying and cooling molten polyamide shown in the specification of Japanese Patent No. 70598 has a drawback that it is necessary to use a raw material polyamide having a sufficiently low melt viscosity to obtain spherical particles and an ordinary polyamide cannot be used. In addition, large-scale equipment is required to prevent the polyamide from coagulating and forming into filaments, which is not industrially satisfactory. An object of the present invention is to provide a method for producing polyamide powder by an industrially advantageous method.

【0005】[0005]

【課題を解決するための手段】上記事情に鑑み、本発明
者らは脂環式ラクタムを重合することにより、ポリアミ
ド粉体を製造する方法について鋭意研究を続けてきた結
果、該原料ラクタムを溶解し且つ生成するポリアミドに
対して不溶性の高分子溶液を重合媒体として用いてアル
カリ触媒重合することによって、ポリアミド粉体が製造
できることを見いだし、本発明を完成するに至った。す
なわち、本発明は炭素数6〜12の脂環式ラクタムをア
ルカリ触媒重合するに際し、該ラクタムを溶解し且つ生
成するポリアミドに対して不溶性の高分子溶液を重合媒
体として重合することを特徴とするポリアミド粉体の製
造方法である。
In view of the above circumstances, the inventors of the present invention have conducted extensive research into a method for producing a polyamide powder by polymerizing an alicyclic lactam, and as a result, the raw material lactam was dissolved. It was found that polyamide powder can be produced by alkali-catalyzed polymerization using a polymer solution that is insoluble in the produced polyamide as a polymerization medium, and completed the present invention. That is, the present invention is characterized in that, when an alicyclic lactam having 6 to 12 carbon atoms is subjected to alkali-catalyzed polymerization, the lactam is dissolved and a polymer solution insoluble in the produced polyamide is used as a polymerization medium. It is a method for producing a polyamide powder.

【0006】本発明の方法を具体的に説明すると、不活
性ガス雰囲気中で撹拌下に、原料ラクタムを溶解し且つ
生成するポリアミドに対して不溶性の該高分子溶液に、
炭素数6〜12の脂環式ラクタムおよびアルカリ触媒を
溶解し、アルカリ触媒重合で採用される通常の重合温
度、具体的には120〜180℃に昇温して助触媒を添
加すると重合が開始され、しだいに溶液が懸濁して微紛
状ポリアミドが分散状態で析出してくる。所定時間の重
合を行った後、重合体懸濁液よりポリマー粒子を公知の
機械的分離方法で分離する。分離方法としては、例えば
吸引濾過、加圧濾過、連続式濾過、遠心沈降などの方法
が使用される。引き続いて減圧乾燥、通風乾燥等の公知
の方法にて乾燥してポリアミド粉体を得る。
The method of the present invention will be described in detail. Under stirring in an inert gas atmosphere, the starting lactam is dissolved in the polymer solution which is insoluble in the produced polyamide,
Polymerization starts when the alicyclic lactam having 6 to 12 carbon atoms and the alkali catalyst are dissolved and the temperature is raised to the usual polymerization temperature adopted in the alkali catalyst polymerization, specifically 120 to 180 ° C. and the cocatalyst is added. As a result, the solution is gradually suspended and finely divided polyamide is precipitated in a dispersed state. After carrying out the polymerization for a predetermined time, the polymer particles are separated from the polymer suspension by a known mechanical separation method. As the separation method, for example, a method such as suction filtration, pressure filtration, continuous filtration, centrifugal sedimentation or the like is used. Subsequently, a polyamide powder is obtained by drying by a known method such as vacuum drying and ventilation drying.

【0007】本発明に使用されるラクタムとしては、炭
素数6〜12の脂環式ラクタムを単独または混合して用
いることができる。原料ラクタムの仕込濃度は、該重合
媒体中、通常20重量%以下とすることが望ましく、よ
り好ましくは15重量%以下とすること望ましい。重合
媒体中の原料ラクタムの仕込濃度を小さくする程、より
均一で粒径の小さいポリアミドが生成するので、ラクタ
ム仕込濃度を調整することによって、ポリアミドの粒径
をコントロールすることができる。
As the lactam used in the present invention, alicyclic lactam having 6 to 12 carbon atoms can be used alone or in combination. The concentration of the raw material lactam charged in the polymerization medium is usually preferably 20% by weight or less, more preferably 15% by weight or less. The smaller the charge concentration of the raw material lactam in the polymerization medium, the more uniform the polyamide having a smaller particle size is formed. Therefore, the particle size of the polyamide can be controlled by adjusting the lactam charge concentration.

【0008】本発明に使用される、重合媒体となる高分
子溶液に用いる溶媒としては、該高分子を溶解するも
の、原料ラクタムを溶解するもの、生成したポリアミド
を溶解しないものであって且つラクタムの重合反応に対
して安定であるものが使用され、特に本発明の目的か
ら、エチルベンゼン、クロロベンゼン、クロロトルエン
の群から選ばれた溶媒の1種または2種以上が好ましく
使用される。また、該高分子を溶解する溶媒であって、
且つ原料ラクタムと生成したポリアミドの双方に対して
不溶性の溶媒を、上記高分子溶液に添加して使用するこ
とができる。原料ラクタムと生成したポリアミドの双方
に対して不溶性の溶媒としては、例えばノルマルオクタ
ン、ノルマルパラフィン、イソパラフィン等の脂肪族炭
化水素やデカヒドロナフタレン等の環状脂肪族炭化水を
挙げることができる。
The solvent used in the polymer solution used as the polymerization medium in the present invention is one that dissolves the polymer, one that dissolves the starting lactam, one that does not dissolve the formed polyamide, and a lactam. Those which are stable to the polymerization reaction are used, and for the purpose of the present invention, one or more solvents selected from the group consisting of ethylbenzene, chlorobenzene and chlorotoluene are preferably used. A solvent for dissolving the polymer,
Further, a solvent insoluble to both the raw material lactam and the produced polyamide can be used by adding it to the polymer solution. Examples of the solvent insoluble in both the raw material lactam and the produced polyamide include aliphatic hydrocarbons such as normal octane, normal paraffin, and isoparaffin, and cycloaliphatic hydrocarbon water such as decahydronaphthalene.

【0009】本発明に使用される、重合媒体となる高分
子溶液に使用する高分子としては、例えば、ポリエチレ
ン、ポリプロピレン、ポリ(エチレン−プロピレン)、
ポリスチレン、ポリ(スチレン−ビニルトルエン)、水
素化ポリ(スチレン−ブタジエン)等の炭化水素系高分
子を挙げることができるが、本発明の均一な形状のポリ
アミド粉体粒子を製造するという目的から、平均分子量
100000〜300000のポリスチレンが好ましく
用いられる。
Examples of the polymer used in the polymer solution used as the polymerization medium in the present invention include polyethylene, polypropylene, poly (ethylene-propylene),
Although hydrocarbon-based polymers such as polystyrene, poly (styrene-vinyltoluene), hydrogenated poly (styrene-butadiene) and the like can be mentioned, for the purpose of producing uniform-shaped polyamide powder particles of the present invention, Polystyrene having an average molecular weight of 100,000 to 300,000 is preferably used.

【0010】重合媒体として用いる高分子溶液中の高分
子の濃度は、通常1〜20重量%の範囲であり、好まし
くは5〜15重量%の範囲である。高分子の濃度が1重
量%を下回ると均一な形状のポリアミド粒子が得られな
いか重合時に析出してくるポリアミドが凝集して塊状と
なり、また20重量%を越えると重合時の粘度が増大し
て撹拌困難となるほか、生成したポリマーの重合媒体か
らの分離が困難になるので好ましくない。
The concentration of the polymer in the polymer solution used as the polymerization medium is usually in the range of 1 to 20% by weight, preferably 5 to 15% by weight. If the concentration of the polymer is less than 1% by weight, polyamide particles having a uniform shape cannot be obtained or the polyamide precipitated during the polymerization aggregates into a lump, and if it exceeds 20% by weight, the viscosity during the polymerization increases. Therefore, it becomes difficult to stir the solution and it becomes difficult to separate the produced polymer from the polymerization medium.

【0011】ラクタムのアルカリ触媒重合の触媒、助触
媒としてはすでに多くの物質が見いだされ、これらの触
媒、助触媒は本発明の方法で有効であり使用することが
できるので、本発明ではアルカリ触媒、助触媒を特に規
定するものではなく、それ自体公知の物質を使用するこ
とができる。例えば、触媒としてリチウム、ナトリウ
ム、カリウム等のアルカリ金属、またはそれらの水酸化
物、ホウ水素化物および酸化物等がり、さらにブチルリ
チウム、ジフェニルマグネシウム、ジイソブチルアルミ
ニウム、ナトリウムアミド、グリニア試薬等の有機金属
化合物を使用することができる。また、助触媒としては
N−アセチル−ε−カプロラクタム、N−アセチル−α
−ピロリドンのようなN−アシル化ラクタム、有機イソ
シアネート、酸塩化物、酸無水物、エステル、尿素誘導
体、カルボジイミド、三塩化リンのようなリン系化合物
等の公知のものを使用することができる。
Many substances have already been found as catalysts and cocatalysts for the alkali-catalyzed polymerization of lactams, and these catalysts and cocatalysts are effective and can be used in the method of the present invention. The cocatalyst is not particularly limited, and a substance known per se can be used. For example, as a catalyst, alkali metals such as lithium, sodium and potassium, or their hydroxides, borohydrides and oxides, and further, butyllithium, diphenylmagnesium, diisobutylaluminum, sodium amide, organometallic compounds such as Grineer's reagent, etc. Can be used. Further, as a co-catalyst, N-acetyl-ε-caprolactam, N-acetyl-α
Known compounds such as N-acylated lactams such as -pyrrolidone, organic isocyanates, acid chlorides, acid anhydrides, esters, urea derivatives, carbodiimides and phosphorus compounds such as phosphorus trichloride can be used.

【0012】アルカリ重合触媒、助触媒の使用量は原料
ラクタムの種類と触媒、助触媒の種類によって異なる
が、通常ラクタム100モルに対して0.01〜10モ
ル程度、好ましくは0.1〜5モル程度である。
The amounts of the alkali polymerization catalyst and the cocatalyst used vary depending on the type of the starting lactam and the type of the catalyst and the cocatalyst. It is about molar.

【0013】[0013]

【実施例】以下、実施例により本発明を詳述するが、本
発明方法は実施例のみに限定されるものではない。
The present invention will be described in detail below with reference to examples, but the method of the present invention is not limited to the examples.

【0014】実施例1 窒素導入管、還流管と塩化カルシウム管を備えた200
ml二ツ口フラスコに窒素気流下に、平均分子量280
000のポリスチレン6.68g、ε−カプロラクタム
6.00g、NaH0.16gを入れ、エチルベンゼン
60gに溶解した。120℃に昇温した後、N−アセチ
ル−ε−カプロラクタム72μlを滴下し、そのまま1
20℃で3時間反応させた後、室温に冷却した。次いで
エチルベンゼンで洗浄と遠心分離、デカンテーションを
繰り返した後、0.2μmのメンブランフィルターを用
いて濾別し、室温で12時間乾燥した後、60℃で2日
間減圧乾燥してナイロン6のポリアミド粉末2.5gを
得た。走査型電子顕微鏡でこの粉末の形状を観察したと
ころ、均一性の良い球状であり、レーザ回折法で粒径測
定したところ平均粒径は6.0μm、最小粒径は0.1
μm、最大粒径は15.0μmであった。
Example 1 200 equipped with nitrogen introducing tube, reflux tube and calcium chloride tube
In a ml two-necked flask under a nitrogen stream, an average molecular weight of 280
6.68 g of 000 polystyrene, 6.00 g of ε-caprolactam and 0.16 g of NaH were added and dissolved in 60 g of ethylbenzene. After the temperature was raised to 120 ° C., 72 μl of N-acetyl-ε-caprolactam was added dropwise, and 1 as it was.
After reacting at 20 ° C. for 3 hours, it was cooled to room temperature. Then, after repeating washing with ethylbenzene, centrifugation, and decantation, it was filtered using a 0.2 μm membrane filter, dried at room temperature for 12 hours, and then dried under reduced pressure at 60 ° C. for 2 days to obtain nylon 6 polyamide powder. 2.5 g was obtained. The shape of this powder was observed with a scanning electron microscope, and it was found to be spherical with good uniformity. The particle diameter was measured by a laser diffraction method to find that the average particle diameter was 6.0 μm and the minimum particle diameter was 0.1.
The maximum particle size was 15.0 μm.

【0015】実施例2 溶媒のエチルベンゼンをクロルベンゼンに変えた以外
は、実施例1と同じ方法で、ε−カプロラクタムの重合
を実施し、ナイロン6のポリアミド粉末2.1gを得
た。走査型電子顕微鏡でこの粉末の形状を観察したとこ
ろ、均一性の良い球状であり、レーザ回折法で粒径測定
したところ平均粒径は4.7μm、最小粒径は0.1μ
m、最大粒径は9.3μmであった。
Example 2 Polymerization of ε-caprolactam was carried out in the same manner as in Example 1 except that ethylbenzene as a solvent was changed to chlorobenzene to obtain 2.1 g of polyamide powder of nylon 6. The shape of this powder was observed with a scanning electron microscope, and it was found to be spherical with good uniformity. The particle size was measured by a laser diffraction method to find that the average particle size was 4.7 μm and the minimum particle size was 0.1 μm.
m, and the maximum particle size was 9.3 μm.

【0016】実施例3 溶媒のエチルベンゼンをクロルトルエンに変えた以外
は、実施例1と同じ方法で、ε−カプロラクタムの重合
を実施し、ナイロン6のポリアミド粉末2.3gを得
た。走査型電子顕微鏡でこの粉末の形状を観察したとこ
ろ、均一性の良い球状であり、レーザ回折法で粒径測定
したところ平均粒径は5.3μm、最小粒径は0.1μ
m、最大粒径は10.1μmであった。
Example 3 Polymerization of ε-caprolactam was carried out in the same manner as in Example 1 except that ethylbenzene as a solvent was changed to chlorotoluene to obtain 2.3 g of nylon 6 polyamide powder. The shape of this powder was observed with a scanning electron microscope, and it was found to be spherical with good uniformity. The particle diameter was measured by a laser diffraction method to find that the average particle diameter was 5.3 μm and the minimum particle diameter was 0.1 μm.
m, and the maximum particle size was 10.1 μm.

【0017】実施例4 窒素導入管、還流管と塩化カルシウム管を備えた200
ml二ツ口フラスコに窒素気流下に、平均分子量280
000のポリスチレン6.68g、ω−ラウロラクタム
6.00g、NaH0.23gを入れ、クロルベンゼン
60gに溶解した。120℃に昇温した後、N−アセチ
ル−ε−カプロラクタム72μlを滴下し、そのまま1
20℃で3時間反応させた後、室温に冷却した。次いで
クロルベンゼンで洗浄と遠心分離、デカンテーションを
繰り返した後、0.2μmのメンブランフィルターを用
いて濾別し、室温で12時間乾燥した後、60℃で2日
間減圧乾燥してナイロン12のポリアミド粉末1.3g
を得た。走査型電子顕微鏡でこの粉末の形状を観察した
ところ、均一性の良い球状であり、レーザ回折法で粒径
測定したところ平均粒径は7.2μm、最小粒径は0.
1μm、最大粒径は14.3μmであった。
Example 4 200 equipped with a nitrogen introducing tube, a reflux tube and a calcium chloride tube
In a ml two-necked flask under a nitrogen stream, an average molecular weight of 280
6.68 g of 000 polystyrene, 6.00 g of ω-laurolactam and 0.23 g of NaH were added and dissolved in 60 g of chlorobenzene. After the temperature was raised to 120 ° C., 72 μl of N-acetyl-ε-caprolactam was added dropwise, and 1 as it was.
After reacting at 20 ° C. for 3 hours, it was cooled to room temperature. Then, after repeating washing with chlorobenzene, centrifugation, and decantation, it was filtered using a 0.2 μm membrane filter, dried at room temperature for 12 hours, and then dried under reduced pressure at 60 ° C. for 2 days to obtain nylon 12 polyamide. Powder 1.3g
I got The shape of this powder was observed with a scanning electron microscope, and it was found to be a spherical shape with good uniformity. When the particle size was measured by a laser diffraction method, the average particle size was 7.2 μm and the minimum particle size was 0.
The particle size was 1 μm and the maximum particle size was 14.3 μm.

【0018】比較例1 窒素導入管、還流管と塩化カルシウム管を備えた200
ml二ツ口フラスコに窒素気流下に、ε−カプロラクタ
ム6.00g、NaH0.16gを入れ、エチルベンゼ
ン60gに溶解した。120℃に昇温した後、N−アセ
チル−ε−カプロラクタム72μlを滴下し、そのまま
120℃で3時間反応させた後、室温に冷却した。次い
でエチルベンゼンで洗浄と遠心分離、デカンテーション
を繰り返した後、0.2μmのメンブランフィルターを
用いて濾別し、室温で12時間乾燥した後、60℃で2
日間減圧乾燥してナイロン6のポリアミド2.3gを得
た。走査型電子顕微鏡で観察したところ、このポリアミ
ドは不定型の凝集物であった。
Comparative Example 1 200 equipped with a nitrogen introducing tube, a reflux tube and a calcium chloride tube
Under a nitrogen stream, 6.00 g of ε-caprolactam and 0.16 g of NaH were placed in a ml two-necked flask and dissolved in 60 g of ethylbenzene. After the temperature was raised to 120 ° C., 72 μl of N-acetyl-ε-caprolactam was added dropwise, and the reaction was continued at 120 ° C. for 3 hours and then cooled to room temperature. Then, after repeating washing with ethylbenzene, centrifugation, and decantation, the mixture was filtered using a 0.2 μm membrane filter, dried at room temperature for 12 hours, and then at 60 ° C. for 2 hours.
After drying under reduced pressure for a day, 2.3 g of polyamide of nylon 6 was obtained. When observed by a scanning electron microscope, this polyamide was an atypical aggregate.

【0019】[0019]

【発明の効果】本発明の方法で得られたポリアミド粉体
は、粉体塗料、吸着剤、化粧品基剤、医療分野、生化学
をはじめとして情報材料、接着剤など様々な用途に供す
る事ができる。
INDUSTRIAL APPLICABILITY The polyamide powder obtained by the method of the present invention can be used for various applications such as powder coatings, adsorbents, cosmetic bases, medical fields, biochemistry, and other information materials and adhesives. it can.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素数6〜12の脂環式ラクタムをアル
カリ触媒重合するに際し、該ラクタムを溶解し且つ生成
するポリアミドに対して不溶性の高分子溶液を重合媒体
として重合することを特徴とするポリアミド粉体の製造
方法。
1. An alkali-catalyzed polymerization of an alicyclic lactam having 6 to 12 carbon atoms, which is characterized in that the lactam is dissolved and a polymer solution insoluble to the polyamide produced is used as a polymerization medium. Method for producing polyamide powder.
【請求項2】 該高分子溶液として平均分子量1000
00〜300000のポリスチレンの1〜20重量%溶
液を用いる請求項1記載のポリアミド粉体の製造方法。
2. The polymer solution has an average molecular weight of 1,000.
The method for producing a polyamide powder according to claim 1, wherein a 1 to 20% by weight solution of polystyrene of 0 to 300,000 is used.
【請求項3】 該高分子溶液の溶媒として、少なくとも
エチルベンゼン、クロロベンゼン、クロロトルエンの群
から選ばれた溶媒の1種または2種以上を使用する請求
項1記載のポリアミド粉体の製造方法。
3. The method for producing a polyamide powder according to claim 1, wherein at least one solvent selected from the group consisting of ethylbenzene, chlorobenzene and chlorotoluene is used as a solvent for the polymer solution.
JP24198094A 1994-09-09 1994-09-09 Production of polyamide powder Pending JPH0873602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24198094A JPH0873602A (en) 1994-09-09 1994-09-09 Production of polyamide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24198094A JPH0873602A (en) 1994-09-09 1994-09-09 Production of polyamide powder

Publications (1)

Publication Number Publication Date
JPH0873602A true JPH0873602A (en) 1996-03-19

Family

ID=17082458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24198094A Pending JPH0873602A (en) 1994-09-09 1994-09-09 Production of polyamide powder

Country Status (1)

Country Link
JP (1) JPH0873602A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106895A (en) * 2005-10-14 2007-04-26 Sumika Enviro-Science Co Ltd Method for producing spherical polyamide particle
WO2007134550A1 (en) * 2006-05-23 2007-11-29 Shanghai Genius Advanced Material Co., Ltd. A method for preparing nylon microsphere and the same
CN100374103C (en) * 2001-12-12 2008-03-12 德古萨公司 PH-adjusted polyamide powder suitable for cosmetic use
KR20160007672A (en) * 2008-02-15 2016-01-20 아르끄마 프랑스 Fine powder of polyamide from renewable materials and method for making such powder
WO2018207728A1 (en) 2017-05-12 2018-11-15 東レ株式会社 Method for producing polyamide fine particles, and polyamide fine particles
NL2034355B1 (en) * 2022-07-22 2023-10-25 Guizhou Inst Of Metallurgy&Chemical Engineering Method for preparing uniform spheroidized polyamide powder for selective laser printing

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100374103C (en) * 2001-12-12 2008-03-12 德古萨公司 PH-adjusted polyamide powder suitable for cosmetic use
JP2007106895A (en) * 2005-10-14 2007-04-26 Sumika Enviro-Science Co Ltd Method for producing spherical polyamide particle
WO2007134550A1 (en) * 2006-05-23 2007-11-29 Shanghai Genius Advanced Material Co., Ltd. A method for preparing nylon microsphere and the same
JP2009537672A (en) * 2006-05-23 2009-10-29 上海▲傑▼事▲傑▼新材料股▲分▼有限公司 Nylon microball manufacturing method and microball
US8048967B2 (en) 2006-05-23 2011-11-01 Shanghai Genius Advanced Material (Group) Company, Ltd. Method for preparing nylon microspheres and nylon microspheres prepared thereby
KR101408574B1 (en) * 2006-05-23 2014-07-02 상하이 지니어스 어드밴스트 머티리얼 코퍼레이션, 리미티드. Method for preparing nylon microspheres and nylon microspheres prepared thereby
KR20160007672A (en) * 2008-02-15 2016-01-20 아르끄마 프랑스 Fine powder of polyamide from renewable materials and method for making such powder
KR20190090080A (en) * 2008-02-15 2019-07-31 아르끄마 프랑스 Fine powder of polyamide from renewable materials and method for making such powder
JPWO2018207728A1 (en) * 2017-05-12 2019-06-27 東レ株式会社 Method for producing polyamide fine particles and polyamide fine particles
WO2018207728A1 (en) 2017-05-12 2018-11-15 東レ株式会社 Method for producing polyamide fine particles, and polyamide fine particles
JP2019167545A (en) * 2017-05-12 2019-10-03 東レ株式会社 Polyamide fine particle
CN110612320A (en) * 2017-05-12 2019-12-24 东丽株式会社 Method for producing polyamide microparticles and polyamide microparticles
KR20190141664A (en) 2017-05-12 2019-12-24 도레이 카부시키가이샤 Method for producing polyamide fine particles and polyamide fine particles
EP3623411A4 (en) * 2017-05-12 2021-01-20 Toray Industries, Inc. Method for producing polyamide fine particles, and polyamide fine particles
CN110612320B (en) * 2017-05-12 2022-04-15 东丽株式会社 Method for producing polyamide microparticles and polyamide microparticles
US11485822B2 (en) 2017-05-12 2022-11-01 Toray Industries, Inc. Method of producing polyamide fine particles, and polyamide fine particles
US11807717B2 (en) 2017-05-12 2023-11-07 Toray Industries, Inc. Method of producing polyamide fine particles, and polyamide fine particles
NL2034355B1 (en) * 2022-07-22 2023-10-25 Guizhou Inst Of Metallurgy&Chemical Engineering Method for preparing uniform spheroidized polyamide powder for selective laser printing

Similar Documents

Publication Publication Date Title
KR100849875B1 (en) Method for production of particles made from thermoplastic polymers and powder obtained thus
EP0866088B1 (en) Spherical polyamide particles and process for preparing the same
US6174982B1 (en) Process for the preparation of polysilanes
JPH0535168B2 (en)
JPS5896613A (en) Solid catalyst complex
JPH0149732B2 (en)
JP3776929B2 (en) Process for producing homopolymer and copolymer of alk-1-ene
JPH02228305A (en) Preparation of one component of zieglar-natta catalyst and polymerization of ethylene using it
JPH0873602A (en) Production of polyamide powder
US4384090A (en) Process for producing polyacetylene
KR102292169B1 (en) Method for producing polyamide 4 particles
JPH0372952A (en) Catalyst carrier
JPH0472329A (en) Production of polyamide resin powder
JP2002293947A (en) Method for producing polyimide powder
JPS61233019A (en) Fine polyamide particle
JPS59155409A (en) Production of polymer
US4845181A (en) Organic condensation polymers and method of making same
JP2003526695A (en) Polymerization using an auxiliary catalyst
JP3992365B2 (en) Method for producing chloroprene polymer and polymerization catalyst thereof
KR100939748B1 (en) Manufacturing method of polyamide microparticles having improved monodispersity
JPH0531564B2 (en)
JPS5922922A (en) Manufacture of monomer-cast nylon containing filler
JPS61138604A (en) Production of carrier for olefin polymerization catalyst
JPH02180923A (en) Fine polyester particle and composition containing same
JPH0436320A (en) Preparation of biodegradable copolymer