JPH0873299A - Continuous raw material supply type apparatus for producing ferrite single crystal - Google Patents

Continuous raw material supply type apparatus for producing ferrite single crystal

Info

Publication number
JPH0873299A
JPH0873299A JP6238408A JP23840894A JPH0873299A JP H0873299 A JPH0873299 A JP H0873299A JP 6238408 A JP6238408 A JP 6238408A JP 23840894 A JP23840894 A JP 23840894A JP H0873299 A JPH0873299 A JP H0873299A
Authority
JP
Japan
Prior art keywords
heating
single crystal
raw material
ferrite single
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP6238408A
Other languages
Japanese (ja)
Inventor
Hirohito Goto
博仁 後藤
Hiroshi Yoshioka
浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATERUZU KK
Original Assignee
MATERUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATERUZU KK filed Critical MATERUZU KK
Priority to JP6238408A priority Critical patent/JPH0873299A/en
Publication of JPH0873299A publication Critical patent/JPH0873299A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To make mass production of large-sized and long-sized ferrite single crystals having high quality by a pulling down method of a continuous raw material supply system by using an MoSi based heating element for a heating section, dividing this section to multiple zones and inserting cooling elements therebetween. CONSTITUTION: A platinum crucible 46 for growth is supported on a supporting base 50 by a supporting pipe 45 and is vertically movable. An electric furnace A consists of the divided heating parts 31, 32 33 capable of executing heating >=180 deg.C by using the MoSi based heating element. The cooling elements 34 are disposed between the high-temp. heating parts 32 and 33 and are set at an optimum temp. gradient. The crystal after growth is kept at >=1100 deg.C at 500mm by crystal heat retaining cylinders 35, 36 in a manner as not to generate crack. A device for continuously supplying the raw materials exists in the upper part of the furnace to automatically supply the raw materials meeting the amt. of growth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原料連続供給式フェラ
イト単結晶製造装置の改良に関する発明である。特に、
大型で長尺な単結晶を引下げ法(ブリッジマン法とも言
う)で育成する分野に於いて、供給原料を連続的に育成
るつぼ内へ供給する装置を持つ単結晶育成装置に利用で
きるものである。良質で生産原価の廉価な単結晶を製造
する場合は、大型で長尺な単結晶を得ることが重要課題
になっている。特に、大型で長尺な単結晶をブリッジマ
ン法で育成する為に発明された装置で、育成されたフェ
ライト単結晶の内部の組成(MnO,ZnO,Fe ,
O )を均一にし、更に亀裂のない、サブグレ−ンの少
ない結晶を得る為のものである。利用される分野は、磁
気ヘッド用MnZnフェライト単結晶である。その他に
は、表面弾性波用のゲルマニウム酸ビスマス、ホウ酸リ
チウム、タンタル酸リチウム及びニオブ酸リチウム等の
分野である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a continuous feed type ferrite single crystal production apparatus for raw materials. In particular,
In the field of growing large and long single crystals by the pull-down method (also called Bridgman method), it can be used as a single-crystal growing device having a device for continuously feeding a feed material into a crucible. . When manufacturing a single crystal of good quality and low production cost, obtaining a large and long single crystal is an important issue. In particular, in the device invented for growing a large and long single crystal by the Bridgman method, the internal composition (MnO, ZnO, Fe 3,
O 2) is made uniform, and a crystal free from cracks and having a small number of subgrains is obtained. The field of use is MnZn ferrite single crystal for magnetic heads. Other fields include bismuth germanate for surface acoustic waves, lithium borate, lithium tantalate, and lithium niobate.

【0002】[0002]

【従来の技術】従来の技術は、特に大型で長尺な単結晶
をブリッジマン法で育成するには、発熱体部を長くする
ために垂直に配置された炉芯管と直角方向にケラマック
ス(LaCrO系)の発熱体を両側に平行あるいは四角
い井桁構造に配置されていた。また、各加熱部を3ゾ−
ンに分割し、独立に温度制御することにより、均一温度
部分を長くする方法が採られてきた。元来結晶育成は、
原料をいったん溶融し、溶液及び融液から固体への相転
移である為に、固体と液体の遷移層は薄い程、良質な結
晶が得られるとされている。このことは、結晶が固化す
る部分での、温度勾配中が、育成後の結晶に亀裂が入ら
ない程度に大きいほど良いことを意味しているが、この
点従来のLaCrO電気炉は何も考慮されずにいた。
2. Description of the Related Art In the prior art, in particular, in order to grow a large and long single crystal by the Bridgman method, a Keramax is arranged in a direction perpendicular to a furnace core tube vertically arranged to elongate a heating element. The (LaCrO-based) heating elements were arranged on both sides in parallel or in a square girder structure. In addition, each heating unit is
A method has been adopted in which the uniform temperature portion is lengthened by dividing the temperature into independent parts and controlling the temperature independently. Originally, crystal growth was
It is said that the thinner the transition layer between the solid and the liquid, the better the quality of the crystal, because the raw material is once melted and the phase transition from the solution or the melt to the solid is performed. This means that it is better that the temperature gradient in the portion where the crystal is solidified is large enough so that cracks do not occur in the crystal after the growth, but in this respect, the conventional LaCrO electric furnace has no consideration. I was left without it.

【0003】しかし、ケラマックス発熱体は、その特性
から加熱時にはCrが常に蒸発し、炉芯管や炉材等周囲
のものを汚染していた。このCrが結晶内に入る懸念が
あり、磁気特性への影響が心配されていたとの欠点があ
った。また、従来の大型育成装置では、結晶育成部の温
度勾配が8〜18℃/cm程度であり、これでは、サブ
グレ−ンが入り、更にPtの混入があり、結晶の歩留ま
りが悪かったとの欠点があった。
However, in the Keramax heating element, Cr is always evaporated during heating due to its characteristic, and the surroundings such as the furnace core tube and the furnace material are contaminated. There is a concern that this Cr may enter the crystal and there is a concern that it may affect the magnetic properties. Further, in the conventional large-sized growing apparatus, the temperature gradient of the crystal growing portion is about 8 to 18 ° C./cm, and this has a disadvantage that the yield of the crystals is poor due to the inclusion of subgrains and the inclusion of Pt. was there.

【0004】[0004]

【発明が解決しようとする課題】本装置は、高品質で大
型で長尺なフェライト単結晶を連続供給式の引下げ法で
大量に製造する為に発明された装置である。ブリッジマ
ン法によってフェライト単結晶を製造する為には、製造
コストの観点から、大型で長尺な単結晶で、かつ酸化
鉄、酸化マンガン、酸化亜鉛の組成が一定であり、方位
のずれであるサブグレ−ンが少なく、白金の混入がない
こと、亀裂がないこと、更にCr等の磁気特性に影響す
る磁性不純物がない単結晶を製造することが好ましいこ
とは一般的に理解されている。本発明は、前記の問題点
を解決する為の原料連続供給式フェライト単結晶製造装
置を提供することを目的とするものである。
The present apparatus is an apparatus invented for producing a large quantity of high-quality, large-sized and long ferrite single crystals by a continuous feeding type pulling down method. In order to manufacture a ferrite single crystal by the Bridgman method, from the viewpoint of manufacturing cost, it is a large and long single crystal, and the composition of iron oxide, manganese oxide, and zinc oxide is constant, and the orientation is shifted. It is generally understood that it is preferable to produce a single crystal having a small amount of subgrains, no platinum inclusion, no cracks, and no magnetic impurities such as Cr that affect magnetic properties. An object of the present invention is to provide a raw material continuous supply type ferrite single crystal manufacturing apparatus for solving the above problems.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、発明者は鋭意努力を重ねた結果、フェライト単結晶
に悪影響のないMoSi系発熱体を用いて、更に多ゾ−
ンに分割し、その間に空気等のガスや水で冷却できる冷
却体を挿入したことにより、従来の結晶育成部の温度勾
配を18〜35℃/cmにすることができ、サブグレ−
ンやPtによる悪影響を減らし、結晶の良品歩留まりを
従来の60%から90%に向上させることができるよう
になった。また、結晶の長さに応じて結晶内部に亀裂が
入らないように、高温発熱体部の下側に、温度が110
0℃以上に上げることができる加熱部を少なくとも1ゾ
−ン設けることにより、育成後の結晶内部の温度差を5
00mmで500℃以下に押さえ亀裂を無くすることが
できた。更に、副次効果ではあるが、結晶育成速度を
2.0mm/Hから、2.5mm/Hにでき、生産性も
向上させることができた。そして、このことは従来のケ
ラマックス3ゾ−ン電気炉においても、結晶固化部に関
係するゾ−ンの間に本発明のガス及び水等の冷却体を入
れる構造にすれば、同様の効果をもたらす。
In order to achieve the above object, the inventor has made diligent efforts, and as a result, using a MoSi-based heating element that does not adversely affect the ferrite single crystal, a higher number of zones were obtained.
The temperature gradient of the conventional crystal growth part can be set to 18 to 35 ° C./cm by inserting a cooling body that can be cooled with a gas such as air or water between them.
It has become possible to reduce the adverse effect of boron and Pt and improve the yield of non-defective crystals from 60% to 90%. Further, in order to prevent cracks from being generated inside the crystal depending on the length of the crystal, a temperature of 110
By providing at least one heating zone capable of raising the temperature to 0 ° C. or higher, the temperature difference inside the crystal after the growth is reduced to 5
It was possible to eliminate cracks when pressed to 500 ° C. or less at 00 mm. Further, although it is a side effect, the crystal growth rate could be increased from 2.0 mm / H to 2.5 mm / H, and the productivity could be improved. The same effect can be obtained even in the conventional Keramax 3 zone electric furnace if the cooling body such as the gas and water of the present invention is inserted between the zones related to the crystal solidification section. Bring

【0006】[0006]

【実施例】次に、本発明を図面に基づいて詳細に説明す
る。図1は、本発明である原料連続供給式フェライト単
結晶製造装置の電気炉部の正面概略図である。本原料連
続供給式フェライト単結晶製造装置Aは、炉体ベ−ス板
4上に架台1を組み立て、前記架台1内に各種機器を設
置してある。架台1内の上部には、原料17を入れる原
料容器16が容器支持台21により支持されているとと
もに、雲台21上に放射温度計18が設置されていて、
放射温度計18と原料容器16との間には鏡19が設置
されている。架台1の中央部には、炉支持板2及び炉止
め板3により保持されている電気炉9が設置されてい
て、前記電気炉9内には、駆動機構部5により駆動する
駆動ボ−ルネジ6及びガイド管22により支持されてい
るるつぼ受け台23のるつぼ支持管8に支持されてるつ
ぼ11が設置されている。そして、原料容器16の下部
にはノス゛ル15が取り付けられており、前記ノス゛ル
15はるつぼ11の上部に取り付けられている供給用ガ
イド管14に接続されている。符号13は融液、符号1
2は育成後の結晶を示す。
The present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic front view of an electric furnace section of the apparatus for continuously supplying a raw material ferrite single crystal according to the present invention. In the continuous feed type ferrite single crystal manufacturing apparatus A of the present invention, a gantry 1 is assembled on a furnace base plate 4 and various equipment is installed in the gantry 1. In the upper part of the gantry 1, a raw material container 16 for containing a raw material 17 is supported by a container support 21, and a radiation thermometer 18 is installed on the platform 21.
A mirror 19 is installed between the radiation thermometer 18 and the raw material container 16. An electric furnace 9 held by a furnace support plate 2 and a furnace stop plate 3 is installed in a central portion of the gantry 1, and a drive ball screw driven by a drive mechanism unit 5 is provided in the electric furnace 9. The crucible 11 supported by the crucible support tube 8 of the crucible holder 23 supported by the guide tube 6 and the guide tube 22 is installed. A nozzle 15 is attached to a lower portion of the raw material container 16, and the nozzle 15 is connected to a supply guide tube 14 attached to an upper portion of the crucible 11. Reference numeral 13 is a melt, reference numeral 1
2 indicates a crystal after being grown.

【0007】図2は、本発明に関わる原料連続供給式フ
ェライト単結晶製造装置の横断面図である。本実施例
は、図2に示すように、白金育成るつぼ46は、アルミ
ナ支持管45に支えられ、この支持管45は支持台50
に置かれ、この支持台50は駆動部48により上下に移
動することができる。電気炉Aは、分割された高温加熱
部31・32・33(図面では発熱体はMoSi系)に
なり、高温加熱部32と高温加熱部33の間には冷却体
34があり、この部分で最適な温度勾配が設定される。
符号35及び符号36は結晶の保温筒を示し、育成後の
結晶は結晶保温筒35と結晶保温筒36の位置に置か
れ、亀裂が入らないように500mmで1100℃以上
に保たれている部分である。符号40・符号41・符号
42・符号43及び符号44は、各加熱部31・32・
33の温度制御用の熱電対であり、符号39は結晶から
蒸発するZnO成分や発熱体からでる不純物が結晶部に
入らないようにする分離するアルミナ管である。符号3
7は電気炉の炉のケ−スであり、符号49は炉対部であ
る。
FIG. 2 is a cross sectional view of a continuous feed type ferrite single crystal manufacturing apparatus according to the present invention. In this embodiment, as shown in FIG. 2, the platinum growth crucible 46 is supported by an alumina support tube 45, and the support tube 45 supports the support base 50.
The support base 50 can be moved up and down by the drive unit 48. The electric furnace A is divided into high-temperature heating parts 31, 32, 33 (in the drawing, the heating element is a MoSi system), and a cooling body 34 is provided between the high-temperature heating part 32 and the high-temperature heating part 33. The optimum temperature gradient is set.
Reference numerals 35 and 36 denote crystal heat-retaining cylinders, and the grown crystal is placed at the positions of the crystal heat-retaining cylinders 35 and 36 and kept at 1100 ° C. or higher at 500 mm to prevent cracking. Is. Reference numeral 40, reference numeral 41, reference numeral 42, reference numeral 43, and reference numeral 44 indicate heating portions 31, 32,
Reference numeral 39 is a thermocouple for temperature control of 33, and reference numeral 39 is an alumina tube for separating ZnO components evaporated from the crystal and impurities generated from the heating element so as not to enter the crystal part. Code 3
Reference numeral 7 is a case of an electric furnace, and reference numeral 49 is a furnace pair.

【0008】図1及び図2には明示されていないが、炉
の上部には原料の連続供給装置があり、育成量に見合う
原料が自動的に供給される。結晶を更に長尺にするため
には、2ゾ−ンの発熱対部を長くし、保温筒35及び保
温筒36の保温筒の長さを結晶の長さに見合うようにす
れば長尺の結晶を形成することができる。そして、本装
置の高温加熱部31・32・33の発熱体は1800℃
以上に加熱することができるものである。
Although not clearly shown in FIGS. 1 and 2, there is a continuous feed device for the raw material in the upper part of the furnace, and the raw material corresponding to the growing amount is automatically fed. In order to make the crystal longer, the length of the heating zone of the two zones is made longer and the length of the heat retaining tubes of the heat retaining tubes 35 and 36 is adjusted to the length of the crystal. Crystals can be formed. And the heating element of the high temperature heating part 31, 32, 33 of this device is 1800 ° C.
The above can be heated.

【0009】次に結晶を形成するための実施条件につい
て述べる。 育成結晶: マンガン亜鉛フェライト MnO,ZnO,Fe23 育成法方: ブリッジマン法 育成るつぼ:白金製、φ70 500 以上 育成温度: 1660 (従来方法では1670 ) 炉 芯 管: 100/ 90 1000 育成速度: 2.5 /h(従来は、2.0 /H) 温度勾配: 30 / 雰 囲 気: 空気中 原料連続 供給方法: ペレット粉体原料供給方法 充填原料 形状: 粉体(約0.1gr) 連続充填量:0.801gr/min. 加熱ゾ−ン 数: 高温部3ゾ−ン 保温部2ゾ−ン 冷却体: 空気ガス冷却方法 温度制御: デジタルプログラム制御 熱電対帰還制御 育成駆動部:低速でスム−ズに駆動する精密駆動部
Next, the operating conditions for forming crystals will be described. Growth crystal: Manganese zinc ferrite MnO, ZnO, Fe 2 O 3 Growth method: Bridgman method Growth crucible: Platinum, φ70 500 or more Growth temperature: 1660 (1670 in conventional method) Core tube: 100/90 1000 Growth rate : 2.5 / h (previously 2.0 / H) Temperature gradient: 30 / Atmosphere: In air Raw material continuous feeding method: Pellet powder raw material feeding method Filling raw material shape: Powder (about 0.1 gr) Continuous filling amount: 0.801 gr / min. Number of heating zones: 3 zones of high temperature section 2 zones of heat retaining section Coolant: Air gas cooling method Temperature control: Digital program control Thermocouple feedback control Growth drive section: Precision drive section that drives smoothly at low speed

【0010】図3は、Mnznフェライト単結晶の結晶
長と組成分布図である。図3が示すのは以下の内容であ
る。即ち、本来、原料連続供給法の特徴は、融液である
液体量を常に一定に保持するために、結晶化する量と同
一成分比を有する原料の供給量を一定にすることによ
り、多成分系の結晶育成に置いて、結晶の夫々の部署で
一定成分にすることができる。つまり、結晶化する量と
原料を連続的に一定量供給させ、同一にすることであ
る。最初は、るつぼ内に一定量の原料をいれ、これを加
熱溶融させて、いくらかを結晶育成した後に、適当な融
液量で原料の連続供給を開始する。実際は、従来法のよ
うに最初は融液量と結晶である固体の量が一定である
が、暫く経って結晶化が進んでくると、結晶である固体
量が増加し、固体の断熱効果により、液体量が増加し一
定成分領域が少なくなる。本装置は、この欠点を解決す
る為に開発されたもので、発熱体にMoSi系の高温発
熱体を炉芯管の周囲に配置し、更に、3ゾ−ン に分割
制御し、温度勾配を大きくすることにより、結晶化後の
固体の断熱効果を最初から一定にし、結晶量が大きくな
っても、その効果が変らないようにすることにより、一
定成分領域を拡大することができた。
FIG. 3 is a crystal length and composition distribution chart of the Mnnz ferrite single crystal. FIG. 3 shows the following contents. That is, originally, the feature of the continuous feed method for raw materials is that, in order to always keep the amount of liquid, which is a melt, constant, the feed amount of raw materials having the same composition ratio as the amount of crystallization is made constant, so that multi-component In the crystal growth of the system, it is possible to make a constant component in each department of the crystal. That is, the amount of crystallization and the amount of raw material are continuously supplied in a constant amount so that they are the same. First, a certain amount of raw material is put into the crucible, and this is heated and melted to grow some crystals, and then continuous supply of the raw material is started with an appropriate amount of melt. Actually, the amount of melt and the amount of solids that are crystals are constant at first as in the conventional method, but when crystallization progresses for a while, the amount of solids that are crystals increases, and due to the adiabatic effect of the solids. , The amount of liquid increases and the constant component area decreases. This device was developed to solve this drawback. A MoSi-based high-temperature heating element is placed around the furnace core tube as a heating element, and the temperature gradient is controlled by dividing it into three zones. By increasing the amount, the adiabatic effect of the solid after crystallization was made constant from the beginning, and even if the amount of crystals was increased, the effect was not changed, so that the constant component region could be expanded.

【0011】[0011]

【発明の効果】本発明は、以上説明したような構成であ
るから以下の効果が得られる。第1に、大型で長尺な単
結晶で、かつ酸化鉄、酸化マンガン、酸化亜鉛の組成が
一定であり、方位のずれであるサブグレ−ンが少なく、
白金の混入がなく、亀裂がないこと、更にCr等の磁気
特性に影響する磁性不純物がない単結晶を製造できると
の効果が得られる。第2に、良質で生産原価の廉価な単
結晶を製造できるとの効果が得られる。
Since the present invention has the above-described structure, the following effects can be obtained. First, it is a large and long single crystal, and the composition of iron oxide, manganese oxide, and zinc oxide is constant, and there are few subgrains that are misalignment of orientation.
It is possible to obtain an effect that a single crystal can be produced in which platinum is not mixed, cracks are not generated, and magnetic impurities such as Cr that influence magnetic properties are not produced. Secondly, it is possible to obtain the effect that a single crystal of high quality and low production cost can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明である原料連続供給式フェライト単結晶
製造装置の電気炉部の正面概略図。
FIG. 1 is a schematic front view of an electric furnace section of a continuous raw material supply type ferrite single crystal production apparatus according to the present invention.

【図2】本発明に関わる原料連続供給式フェライト単結
晶製造装置の横断面図。
FIG. 2 is a cross-sectional view of a continuous feed type ferrite single crystal manufacturing apparatus according to the present invention.

【図3】Mnznフェライト単結晶の結晶長と組成分布
図。
FIG. 3 is a crystal length and composition distribution chart of a Mnnz ferrite single crystal.

【符号の説明】[Explanation of symbols]

1 架台 2 炉支持板 3 炉止め板 4 炉体ベ−ス板 5 駆動機構部 6 駆動ボ−ルネジ 7 雰囲気フランジ 8 ルツボ支持管 9 電気炉 10 発熱体 11 るつぼ 12 育成後の結晶 13 融液 14 供給用ガイド管 15 ノス゛ル 16 原料容器 17 原料 18 放射温度計 19 鏡 20 雲台 21 容器支持台 22 ガイド管 23 るつぼ受台 31 高温加熱部 32 高温加熱部 33 高温加熱部 34 冷却体 35 結晶保温筒 36 結晶保温筒 37 ケ−ス 38 断熱材 39 アルミナ管 40 温度制御用熱電対 41 温度制御用熱電対 42 温度制御用熱電対 43 温度制御用熱電対 44 温度制御用熱電対 45 アルミナ支持管 46 白金育成るつぼ 47 対熱製蛇腹 48 駆動部 49 炉体部 50 支持台 1 Platform 2 Furnace Support Plate 3 Furnace Stop Plate 4 Furnace Base Plate 5 Drive Mechanism Section 6 Drive Ball Screw 7 Atmosphere Flange 8 Crucible Support Tube 9 Electric Furnace 10 Heating Element 11 Crucible 12 Crystals 13 After Growth 13 Melt 14 Supply guide tube 15 Nozzle 16 Raw material container 17 Raw material 18 Radiation thermometer 19 Mirror 20 Pan head 21 Container support stand 22 Guide tube 23 Crucible receiving stand 31 High temperature heating section 32 High temperature heating section 33 High temperature heating section 34 Cooling body 35 Crystal warming tube 36 Crystal Insulation Cylinder 37 Case 38 Insulation Material 39 Alumina Tube 40 Temperature Control Thermocouple 41 Temperature Control Thermocouple 42 Temperature Control Thermocouple 43 Temperature Control Thermocouple 44 Temperature Control Thermocouple 45 Alumina Support Tube 46 Platinum Raising crucible 47 Anti-heat bellows 48 Drive section 49 Furnace body section 50 Supporting stand

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉とその内側に配置される白金育成
るつぼと、この白金育成るつぼ内に電気炉上部から連続
的に粒状のフェライト粉体原料を供給する装置を有する
連続供給式フェライト単結晶育成装置において、発熱部
にMoSi系の発熱体を用い、少なくとも3ゾ−ンに独
立した発熱部に分割され、その間を空気等の冷却ガスで
熱を奪う機構を有することを特徴とする原料連続供給式
フェライト単結晶製造装置。
1. A continuous feed type ferrite single crystal having a heating furnace, a platinum growing crucible arranged inside thereof, and a device for continuously supplying granular ferrite powder raw material into the platinum growing crucible from the upper part of the electric furnace. In the growing apparatus, a MoSi-based heating element is used for the heating section, the heating section is divided into at least three independent heating sections, and there is a mechanism for removing heat between them by a cooling gas such as air. Supply type ferrite single crystal manufacturing equipment.
【請求項2】 分割された発熱部の間を水等の液体で冷
却する構造を有することを特徴とする原料連続供給式フ
ェライト単結晶製造装置。
2. A continuous raw material supply type ferrite single crystal manufacturing apparatus having a structure in which a space between the divided heat generating portions is cooled by a liquid such as water.
【請求項3】 加熱温度を1800℃以上にできる高温
発熱体を用いたことを特徴とする請求項1記載の原料連
続供給式フェライト単結晶製造装置。 【請求項3】 加熱温度を1800℃以上にできる高温
発熱体を用いたことを特徴とする請求項2記載の原料連
続供給式フェライト単結晶製造装置。
3. The continuous raw material supply type ferrite single crystal manufacturing apparatus according to claim 1, wherein a high temperature heating element capable of heating at a temperature of 1800 ° C. or higher is used. 3. The continuous feed type ferrite single crystal production apparatus according to claim 2, wherein a high temperature heating element capable of heating at a temperature of 1800 ° C. or higher is used.
JP6238408A 1994-09-06 1994-09-06 Continuous raw material supply type apparatus for producing ferrite single crystal Ceased JPH0873299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6238408A JPH0873299A (en) 1994-09-06 1994-09-06 Continuous raw material supply type apparatus for producing ferrite single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6238408A JPH0873299A (en) 1994-09-06 1994-09-06 Continuous raw material supply type apparatus for producing ferrite single crystal

Publications (1)

Publication Number Publication Date
JPH0873299A true JPH0873299A (en) 1996-03-19

Family

ID=17029770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6238408A Ceased JPH0873299A (en) 1994-09-06 1994-09-06 Continuous raw material supply type apparatus for producing ferrite single crystal

Country Status (1)

Country Link
JP (1) JPH0873299A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150223A (en) * 2006-12-14 2008-07-03 Tdk Corp Raw material supply device in pulling down system
CN106544722A (en) * 2016-11-04 2017-03-29 曲靖师范学院 A kind of vertical automatization's grower of crystal
JP2018048043A (en) * 2016-09-21 2018-03-29 国立大学法人信州大学 Manufacturing apparatus for lithium tantalate crystal, and manufacturing method for lithium tantalate crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150223A (en) * 2006-12-14 2008-07-03 Tdk Corp Raw material supply device in pulling down system
JP2018048043A (en) * 2016-09-21 2018-03-29 国立大学法人信州大学 Manufacturing apparatus for lithium tantalate crystal, and manufacturing method for lithium tantalate crystal
CN106544722A (en) * 2016-11-04 2017-03-29 曲靖师范学院 A kind of vertical automatization's grower of crystal

Similar Documents

Publication Publication Date Title
WO2021008159A1 (en) Coil-movable temperature field structure suitable for czochralski method, and single crystal growth method
Chani et al. Growth of Y3Al5O12: Nd fiber crystals by micro-pulling-down technique
KR100850786B1 (en) Apparatus for producing crystals
CN107881550B (en) Melt method crystal growth method of large-size crystal
JPH01119598A (en) Method and apparatus for producing monocrystal
US4303465A (en) Method of growing monocrystals of corundum from a melt
JPH0640799A (en) Method and equipment for manufacturing manganese-zinc ferrite single crystal
JPH0873299A (en) Continuous raw material supply type apparatus for producing ferrite single crystal
CN103266346B (en) The growth apparatus of a kind of crystal Pulling YVO4 crystal and growing method based on this growth apparatus
JP2636929B2 (en) Method for producing bismuth germanate single crystal
JP3659693B2 (en) Method for producing lithium borate single crystal
CN116604001A (en) Device and method for preparing silicon-molybdenum alloy for sputtering target material by directional solidification
JPH06206788A (en) Crucible for producing single crystal and production of single crystal
JPH03115184A (en) Apparatus for producing ferrite single crystal
JP2717568B2 (en) Single crystal growing equipment
JPH0341432B2 (en)
Noda et al. The crystal growth of synthetic fluor-phlogopite by the moving crucible technique
JP2997761B2 (en) Method for producing rhenium diboride single crystal
JP3647964B2 (en) Single crystal substrate manufacturing method and apparatus
JPS59141488A (en) Device for growing single crystal
JPS63185883A (en) Preparation of single crystal of solid phase reaction
JPH05294791A (en) Method and device for producing polycrystal substrate
JPH04167421A (en) Apparatus for manufacturing semiconductor single crystal
JPH03279291A (en) Crystal growth device
JPS6291487A (en) Production of dielectric single crystal

Legal Events

Date Code Title Description
A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20060818