JPH0873232A - Production of fine hollow glass spherical body - Google Patents

Production of fine hollow glass spherical body

Info

Publication number
JPH0873232A
JPH0873232A JP21307594A JP21307594A JPH0873232A JP H0873232 A JPH0873232 A JP H0873232A JP 21307594 A JP21307594 A JP 21307594A JP 21307594 A JP21307594 A JP 21307594A JP H0873232 A JPH0873232 A JP H0873232A
Authority
JP
Japan
Prior art keywords
hollow glass
foaming
fine hollow
powder
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21307594A
Other languages
Japanese (ja)
Other versions
JP2607050B2 (en
Inventor
Kunio Kimura
邦夫 木村
Hidekazu Abe
英一 安部
Kenichiro Matsuda
健一郎 松田
Junichi Kimoto
潤一 木本
Hiromi Okada
博美 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KARUSHIIDE KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
KARUSHIIDE KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KARUSHIIDE KK, Agency of Industrial Science and Technology filed Critical KARUSHIIDE KK
Priority to JP6213075A priority Critical patent/JP2607050B2/en
Publication of JPH0873232A publication Critical patent/JPH0873232A/en
Application granted granted Critical
Publication of JP2607050B2 publication Critical patent/JP2607050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/108Forming porous, sintered or foamed beads
    • C03B19/1085Forming porous, sintered or foamed beads by blowing, pressing, centrifuging, rolling or dripping

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE: To efficiently produce a fine hollow glass spherical body high in strength and excellent in whiteness. CONSTITUTION: A volcanic vitreous deposite powder having <=20μm grain size is supplied to a dispersion part filled with a glass solid sphere and silica sand, and a pulsating air having positive pressure is supplied to disperse the powder from its under part so that an upflow flow rate at the dispersion part may be 10-100cm/sec, and transported to a vertical foaming area maintained at 900-1100 deg.C to be foamed hollow body is recovered from a foamed product by gravity classification.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火山ガラス質堆積物を
原料として、微細中空ガラス球状体を製造する方法の改
良に関するものである。さらに詳しくいえば、本発明
は、高強度で、かつ白色度の優れた微細中空ガラス球状
体を効率よく製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing fine hollow glass spheres using a volcanic glassy deposit as a raw material. More specifically, the present invention relates to a method for efficiently producing a fine hollow glass sphere having high strength and excellent whiteness.

【0002】[0002]

【従来の技術】微細中空ガラス球状体は、比重が小さ
く、かつ耐熱性に優れていることから、各種金属、セラ
ミックス、コンクリート、プラスチックスなどの軽量化
充てん材として注目され、最近その需要が著しく増加し
ている。
2. Description of the Related Art Fine hollow glass spheres have a small specific gravity and are excellent in heat resistance, and have attracted attention as lightweight fillers for various metals, ceramics, concrete, plastics, etc. It has increased.

【0003】これまで、火山ガラス質堆積物を原料とし
て、微細中空ガラス球状体を製造する方法としては、シ
ラスの微粒体を800〜1200℃の温度で10秒ない
し10分間焼成したのち、水中における比重分離又は空
気分級して微細中空ガラス球状体を製造する方法が知ら
れている(特公昭48−17645号公報)。しかしな
がら、この方法では、粒径が20μm以下の火山ガラス
質堆積物を処理しても、所望の微細中空ガラス球状体を
得ることは困難である。
Heretofore, as a method for producing fine hollow glass spheres using a volcanic glassy deposit as a raw material, fine particles of Shirasu are fired at a temperature of 800 to 1200 ° C. for 10 seconds to 10 minutes and then in water. A method for producing a fine hollow glass sphere by separating specific gravity or air classification is known (Japanese Patent Publication No. 48-17645). However, in this method, it is difficult to obtain a desired fine hollow glass sphere even if a volcanic glassy deposit having a particle size of 20 μm or less is treated.

【0004】一方、原料の前処理として、酸溶液を用い
て加温処理を行うことにより、超微細中空ガラス球状体
を製造する方法が開示されている(特公平4−2967
50号公報)。しかしながら、この方法においては、原
料が微粒状であるため、従来の加熱発泡装置では粒子が
凝集し、均一な加熱発泡が困難で効率よく中空ガラス球
状体を得ることができない。
On the other hand, as a pretreatment of raw materials, a method for producing ultrafine hollow glass spheres by heating with an acid solution is disclosed (Japanese Patent Publication No. 2967/1992).
No. 50). However, in this method, since the raw material is in the form of fine particles, the particles agglomerate in the conventional heat-foaming device, and uniform heat-foaming is difficult and the hollow glass spheres cannot be obtained efficiently.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、火山ガラス質堆積物を原料とし、高強度
で白色度に優れる微細中空ガラス球状体を、加熱発泡時
に粒子の凝集が生じることなく、効率よく製造する方法
を提供することを目的としてなされたものである。
Under these circumstances, the present invention uses a volcanic vitreous deposit as a raw material to produce a fine hollow glass sphere having high strength and excellent whiteness, which is formed into particles when heated and foamed. The purpose of the present invention is to provide a method for producing efficiently without causing aggregation.

【0006】[0006]

【課題を解決するための手段】本発明者らは、火山ガラ
ス質堆積物を原料として微細中空ガラス球を製造する方
法について鋭意研究を重ねた結果、粒径20μm以下の
火山ガラス質堆積物粉体を特定の構造の分散部に供給
し、その下部より空気脈動を与えて該粉体を分散させ、
空気の流れとともに特定の温度を保持する発泡域に搬送
することにより、均質な発泡が行われ、効率よく微細中
空ガラス球を得られることを見出し、この知見に基づい
て本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies on the method for producing fine hollow glass spheres using a volcanic glassy deposit as a raw material, the present inventors have found that the volcanic glassy deposit powder having a particle size of 20 μm or less. The body is supplied to the dispersion part of a specific structure, and air pulsation is given from the lower part to disperse the powder,
By transporting to a foaming region that maintains a specific temperature with the flow of air, it was found that homogeneous foaming is performed, and it is possible to efficiently obtain fine hollow glass spheres, and the present invention was completed based on this finding. It was

【0007】すなわち、本発明は、粒径20μm以下の
火山ガラス質堆積物粉体を、多孔板の上部にガラス中実
球とケイ砂とを充てんして成る分散部に供給し、分散部
下部より、分散部下部の圧力が正で、かつ脈動している
空気を分散部における上昇流速度が10〜100cm/
秒となるように供給することにより、該粉体を分散さ
せ、900〜1100℃の温度を保持する垂直な発泡域
に搬送して発泡させたのち、この発泡生成物から比重差
分別により中空体を回収することを特徴とする微細中空
ガラス球状体の製造方法を提供するものである。
That is, according to the present invention, a volcanic glassy sediment powder having a particle size of 20 μm or less is supplied to a dispersion part formed by filling a glass solid sphere and silica sand on the upper part of a perforated plate. Thus, the pressure at the lower part of the dispersion part is positive, and the pulsating air has a rising flow velocity of 10 to 100 cm /
The powder is dispersed so as to be supplied in seconds, the powder is dispersed, transported to a vertical foaming zone holding a temperature of 900 to 1100 ° C., and foamed. To provide a method for producing a fine hollow glass sphere.

【0008】本発明方法において、原料として用いる火
山ガラス質堆積物は、シラス、黒曜石、真珠岩、松脂岩
などとして天然に産出する鉱物であって、これらは通常
SiO2、Al23、Fe23、CaO、MgO、Na2
O及びK2Oから構成され、水分3〜10重量%を含ん
でいる。
In the method of the present invention, the volcanic glassy deposit used as a raw material is a naturally occurring mineral such as shirasu, obsidian, pearlite and pinelite, and these are usually SiO 2 , Al 2 O 3 and Fe. 2 O 3 , CaO, MgO, Na 2
It is composed of O and K 2 O and contains 3 to 10% by weight of water.

【0009】本発明方法においては、これらの火山ガラ
ス質堆積物を粉砕し、粉砕物を乾式分級や湿式分級など
により、粒径20μm以下の区分を分級して用いる。
In the method of the present invention, these volcanic glassy deposits are pulverized, and the pulverized products are classified by dry classification, wet classification, or the like into particles having a particle size of 20 μm or less.

【0010】本発明方法においては、この粒径20μm
以下の火山ガラス質堆積物粉体をそのまま発泡させても
よいが、より白色度の高い中空ガラス球状体を得るため
には、該粉体に0.3〜3規定程度の塩酸を加え、15
0〜200℃の温度及び0.5〜1.5MPaの水蒸気
圧において水熱処理することにより鉄分の除去を行うの
が好ましい。この際の塩酸水溶液の使用量は、粉体1g
当り1〜1.5mlの範囲が適当である。この水熱処理
は、少なくとも8時間行うことが望ましく、これ以内で
は、十分に鉄分を除去することができない。
In the method of the present invention, this particle size is 20 μm.
The following volcanic glassy deposit powder may be foamed as it is, but in order to obtain hollow glass spheres with higher whiteness, hydrochloric acid of about 0.3 to 3 N is added to the powder, and
It is preferable to remove iron by hydrothermal treatment at a temperature of 0 to 200 ° C and a steam pressure of 0.5 to 1.5 MPa. In this case, the amount of the hydrochloric acid aqueous solution used was 1 g of powder.
A range of 1 to 1.5 ml is suitable. This hydrothermal treatment is desirably performed for at least 8 hours, and within this time, the iron content cannot be sufficiently removed.

【0011】次に、このようにして水熱処理された粒径
20μm以下の火山ガラス質堆積物粉体を、多孔板の上
部にガラス中実球とケイ砂とを充てんして成る分散部に
供給する。該ガラス中実球としては、通常直系1〜3m
m程度のものが用いられ、またケイ砂としては、通常粒
径100〜300μm程度のものが用いられる。ガラス
中実球とケイ砂の使用割合は、通常重量比1:10ない
し1:1の範囲で選ばれる。
Next, the hydrothermally treated powder of the volcanic vitreous deposit having a particle size of 20 μm or less is supplied to a dispersion portion formed by filling the upper part of the perforated plate with glass solid spheres and silica sand. To do. As the solid glass sphere, usually 1 to 3 m
The particle size is about m, and the particle size of silica sand is usually about 100 to 300 μm. The use ratio of the glass solid sphere and silica sand is usually selected in the range of 1:10 to 1: 1 by weight.

【0012】この分散部下部より、分散部下部の圧力が
正で、かつ脈動している空気を供給することにより、火
山ガラス質堆積物粉体を分散させる。この際、空気の脈
動数は10〜50回/秒の範囲が好ましい。また、空気
の供給量は、分散部における空気の上昇流速度が10〜
100cm/秒になるように調整する。
By supplying pulsating air having a positive pressure in the lower part of the dispersion part from the lower part of the dispersion part, the volcanic glassy sediment powder is dispersed. At this time, the pulsation rate of air is preferably in the range of 10 to 50 times / second. In addition, the amount of air supplied is such that the upflow velocity of the air in the dispersion section is 10 to 10.
Adjust to 100 cm / sec.

【0013】このようにして分散された火山ガラス質堆
積物粉体は空気の流れによって、900〜1100℃の
温度を保持する垂直な発泡域に搬送され、加熱発泡され
る。発泡域の構造は、断面積100cm2当り3本以上
の垂直な筒の束とするのが好ましく、これにより均一な
加熱発泡が行われる。
The thus dispersed volcanic glassy sediment powder is conveyed by a flow of air to a vertical foaming zone which maintains a temperature of 900 to 1100 ° C., and is foamed by heating. The structure of the foaming zone is preferably a bundle of three or more vertical cylinders per 100 cm 2 in cross-sectional area, whereby uniform heating and foaming is performed.

【0014】また、発泡域上部から、発泡域断面100
cm2当り10リットル/分以上の空気を導入するのが
好ましく、これにより加熱空気及び発泡体が冷却される
とともに、発泡体回収部内の水分の凝縮を抑えることが
できる。
Further, from the upper part of the foamed region, the foamed region cross section 100
It is preferable to introduce 10 liters / minute or more of air per cm 2 , whereby the heated air and the foam can be cooled, and the condensation of water in the foam recovery section can be suppressed.

【0015】本発明においては、このようにして加熱発
泡したものを、比重差分別、例えば水中における浮沈分
離又は空気分級することにより、中空体を回収する。
In the present invention, the hollow body is recovered by subjecting the heat-foamed material to a specific gravity difference, for example, by separating it into water by floating sedimentation or air classification.

【0016】このような方法によると、粒径が30μm
以下程度の微細中空ガラス球状体を、原料の重量に基づ
き50%以上という高い回収率で得ることができる。こ
のようにして得られた微細中空ガラス球状体は、従来装
置により得られるものに比べ、高強度であり、しかも白
色度も優れている。
According to such a method, the particle size is 30 μm.
The following fine hollow glass spheres can be obtained at a high recovery rate of 50% or more based on the weight of the raw material. The fine hollow glass spheres thus obtained have a higher strength and an excellent whiteness as compared with those obtained by the conventional apparatus.

【0017】[0017]

【発明の効果】本発明によると、従来装置では均質な加
熱発泡ができず、品質の良い中空体を得ることができな
かった火山ガラス質堆積物微粉体を用い、高強度で白色
度の優れた微細中空ガラス球状体を効率よく製造するこ
とができる。
EFFECTS OF THE INVENTION According to the present invention, the volcanic glassy deposit fine powder, which cannot be obtained by the conventional apparatus for homogeneous foaming by heating and cannot obtain a high-quality hollow body, has high strength and excellent whiteness. It is possible to efficiently produce fine hollow glass spheres.

【0018】本発明方法で得られた微細中空ガラス球状
体は、各種金属、セラミックス、コンクリート、プラス
チックスなどの軽量化充てん材として有用である。
The fine hollow glass spheres obtained by the method of the present invention are useful as a lightweight filler for various metals, ceramics, concrete, plastics and the like.

【0019】[0019]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0020】実施例1 表1に示す組成をもつ火山ガラス質堆積物(福島県福島
市飯坂町産出、通称福島白土)を解砕し、粉末原料を調
製した。
Example 1 A volcanic glassy deposit having a composition shown in Table 1 (produced in Iizaka-machi, Fukushima City, Fukushima Prefecture, commonly known as Fukushima Shirato) was crushed to prepare a powder raw material.

【0021】[0021]

【表1】 [Table 1]

【0022】液体媒質として、水ガラス(JIS 3
号)0.2重量%水溶液を用い、前記の粉末原料を投入
し、粒子の水中沈降速度の差を利用する水簸により、分
離粒度5μm及び10μmで分級した。分級粒子中に含
まれる粒径10μmを超える粒子の割合は、いずれの場
合も10重量%以下であり、また粒径5μm未満の粒子
の割合は、いずれの場合も10重量%以下であった。
As the liquid medium, water glass (JIS 3
No.) Using a 0.2% by weight aqueous solution, the above-mentioned powdery raw material was charged, and classified by elutriation using a difference in the sedimentation speed of particles in water at separation particle sizes of 5 μm and 10 μm. The proportion of particles having a particle diameter of more than 10 μm contained in the classified particles was 10% by weight or less in any case, and the proportion of particles having a particle diameter of less than 5 μm was 10% by weight or less in any case.

【0023】次いで、この分級した粉体と、この粉体の
重量と同容量の1.5規定濃度の塩酸水溶液とを混合し
たのち、テフロン製加圧容器中に入れ、密閉し、180
℃、水蒸気圧約1MPaで48時間水熱処理したのち、
冷却、ろ過、水洗、乾燥した。この処理粉体の灼熱減量
は9.50重量%に増加した。
Next, the classified powder is mixed with a 1.5 N hydrochloric acid aqueous solution having the same volume as the weight of the powder, and the mixture is placed in a Teflon pressurized container, sealed, and sealed.
After hydrothermal treatment at ℃ and steam pressure of about 1 MPa for 48 hours,
It was cooled, filtered, washed with water and dried. The loss on ignition of this treated powder increased to 9.50% by weight.

【0024】次に、水熱処理した粉体を加熱発泡装置に
供給した。図1に加熱発泡装置の全体概略図を示す。ま
ず、水熱処理した粉体を、図1に示す供給部のホッパー
1に入れ、スクリューフィーダー2により、図2に示す
多孔板6の上部に、分散部断面1cm2当り0.3gの
直径1.68〜2.38mmのガラス中実球7と、分散
部断面1cm 2当り1gの粒径150〜210μmのケ
イ砂8とを充てんした分散部に供給し、分散部下部よ
り、分散部下部の圧力が図3に示すような圧力の脈動数
が30回/秒の空気脈動を与えることにより、該粉体を
分散させ、同時に空気の上昇流速度が16cm/秒とな
るように調整した空気脈動に随伴させた空気の流れによ
って、分散粒子を発泡域断面積100cm2当り20本
の垂直な円筒を束にし、炉4により1040℃に保持し
た発泡域に搬送した。
Next, the hydrothermally treated powder is placed in a heating and foaming device.
Supplied. FIG. 1 shows an overall schematic view of the heating and foaming apparatus. Well
The hopper of the supply unit shown in FIG.
1 shown in FIG. 2 by the screw feeder 2.
Dispersion part cross section 1 cm on top of perforated plate 620.3g per
Glass solid sphere 7 with a diameter of 1.68 to 2.38 mm and dispersion
1cm section 21g per particle size 150-210μm
A) Sand 8 is supplied to the dispersion section and the lower part of the dispersion section is supplied.
Therefore, the pressure in the lower part of the dispersion part is the pulsation number of the pressure as shown in Fig. 3.
Gives an air pulsation of 30 times / second,
At the same time, the upflow velocity of air is 16 cm / sec.
Is adjusted by the flow of air that accompanies the pulsation of air.
The dispersed particles have a foaming area cross-sectional area of 100 cm.220 per
The vertical cylinders of are bundled and held at 1040 ° C. by the furnace 4.
Conveyed to the foaming zone.

【0025】加熱空気並びに発泡体の冷却と、発泡体回
収部内の水分の凝縮を抑えるために、図1の発泡域上部
の空気導入口3から、発泡域断面100cm2当り60
リットル/分の空気を導入した。導入量の調整は、バッ
グフィルター5を有する発泡体回収部に直結した吸引ポ
ンプの流量の調整により行った。
The cooling of the heated air and foam, in order to suppress condensation of moisture in the foam recovery unit, foam zone top of the air inlet 3 of Figure 1, foam zone section 100 cm 2 per 60
Liters per minute of air were introduced. The amount of introduction was adjusted by adjusting the flow rate of a suction pump directly connected to the foam recovery section having the bag filter 5.

【0026】発泡体は、発泡体回収部で回収したのち、
水中における浮沈分離を行い、浮揚物として微細中空ガ
ラス球状体を回収した。ここで得られた微細中空ガラス
球状体の回収率、白色度及び強度を測定した。結果を表
2に示す。
After the foam is recovered in the foam recovery section,
Floating and sedimentation was performed in water, and fine hollow glass spheres were collected as a float. The recovery rate, whiteness, and strength of the obtained fine hollow glass spheres were measured. Table 2 shows the results.

【0027】一方、発泡域の構造として、発泡域断面積
100cm2当り3本の垂直な円筒とした装置を用いた
以外は、前記と同様にして実施した。ここで得られた微
細中空ガラス球状体の回収率、白色度及び強度を求め
た。その結果を表2に示す。
On the other hand, as the structure of the foaming zone, the same procedure as above was carried out except that three vertical cylinders were used per 100 cm 2 of the cross-sectional area of the foaming zone. The recovery rate, whiteness and strength of the fine hollow glass spheres obtained here were determined. The results are shown in Table 2.

【0028】なお、白色度はLab法により測定した色
差により算出し、強度は8MPaの静水圧下に1分間保
持した後の非破壊粒子の含有割合で表わした。
The whiteness was calculated from the color difference measured by the Lab method, and the strength was expressed by the content ratio of non-destructive particles after holding for 1 minute under hydrostatic pressure of 8 MPa.

【0029】[0029]

【表2】 [Table 2]

【0030】表2から分かるように、発泡域において、
断面積100cm2当りの円筒の本数を多くすることに
より、回収率が増加する。しかし、断面積100cm2
当りの円筒の本数を20本以上とすると、筒内部が閉塞
し始め、本数が20本より多いほど閉塞する筒が多くな
った。また、本発明方法で得られた中空ガラス球状体は
微細で白色度が高く、かつ強度の大きいものである。
As can be seen from Table 2, in the foaming zone,
Increasing the number of cylinders per 100 cm 2 of cross-sectional area increases the recovery rate. However, the cross-sectional area is 100 cm 2.
Assuming that the number of cylinders per hit is 20 or more, the inside of the cylinder started to close, and the more the number of cylinders, the more the number of closed cylinders. The hollow glass sphere obtained by the method of the present invention is fine, has high whiteness, and has high strength.

【0031】さらに、発泡域の空気の上昇流速度を10
0cm/秒以上としても、表2に示した中空ガラス球状
体の回収率は変わらなかった。また、炉内最高温度を1
100℃まで高めていくと、微細中空ガラス球状体の回
収率は増加した。しかし、1100℃以上では炉内融着
が発生し、熱処理物の回収が困難になった。一方、炉内
最高温度が1040℃より低温になるに伴い、中空ガラ
ス球状体の回収率は徐々に低くなり、900℃では回収
できなかった。
Further, the upward flow velocity of the air in the foaming zone is set to 10
Even at 0 cm / sec or more, the recovery rate of the hollow glass spheres shown in Table 2 did not change. Also, set the maximum temperature in the furnace to 1
When the temperature was raised to 100 ° C, the recovery rate of the fine hollow glass spheres increased. However, at a temperature of 1100 ° C. or higher, fusion occurred in the furnace, and it was difficult to recover the heat-treated product. On the other hand, as the maximum temperature in the furnace became lower than 1040 ° C., the recovery rate of the hollow glass spheres gradually decreased and could not be recovered at 900 ° C.

【0032】発泡域上部の空気導入口からの空気導入量
を減少させるに伴い、バッグフィルターの目詰まりが起
きやすくなり、加熱発泡体の回収が困難となった。発泡
域断面100cm2当り10リットル/分以上の空気の
導入を行うことにより、効率よく回収できた。
As the amount of air introduced from the air inlet in the upper part of the foaming area was reduced, the bag filter was likely to be clogged, and recovery of the heated foam became difficult. By introducing air at a rate of 10 liters / min or more per 100 cm 2 of the foaming area cross section, collection was efficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例で用いた加熱発泡装置の全体概略図。FIG. 1 is an overall schematic diagram of a heating and foaming apparatus used in Examples.

【図2】 実施例で用いた加熱発泡装置における分散部
概略図。
FIG. 2 is a schematic view of a dispersion unit in the heat-foaming device used in the examples.

【図3】 正の圧力の空気脈動の説明図。FIG. 3 is an explanatory diagram of air pulsation at a positive pressure.

【符号の説明】[Explanation of symbols]

1 ホッパー 2 スクリューフィーダー 3 空気導入口 4 炉 5 バッグフィルター 6 多孔板 7 ガラス中実球 8 ケイ砂 9 粉体 1 Hopper 2 Screw feeder 3 Air inlet 4 Furnace 5 Bag filter 6 Perforated plate 7 Glass solid sphere 8 Quartz sand 9 Powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安部 英一 佐賀県鳥栖市宿町字野々下807番地1 九 州工業技術研究所内 (72)発明者 松田 健一郎 千葉県市原市五井南海岸8番の2 株式会 社カルシード内 (72)発明者 木本 潤一 山口県美祢市伊佐町伊佐4611番地の1 株 式会社カルシード内 (72)発明者 岡田 博美 山口県美祢市伊佐町伊佐4611番地の1 株 式会社カルシード内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiichi Abe 807 Nonoshita, Tojuku-cho, Tosu City, Saga Prefecture 1 Kyushu Institute of Industrial Technology (72) Inventor Kenichiro Matsuda 8-2 Goi Minami Kaigan, Ichihara, Chiba Prefecture In stock company Calceed (72) Inventor Junichi Kimoto One share company at 4611 Isa-cho, Mine-shi, Yamaguchi Prefecture Within Calceed (72) Inventor Hiromi Okada One share company at 4611 Isa-cho, Isa-cho, Yamaguchi Prefecture Within Calceed

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒径20μm以下の火山ガラス質堆積物
粉体を、多孔板の上部にガラス中実球とケイ砂とを充て
んして成る分散部に供給し、分散部下部より、分散部下
部の圧力が正で、かつ脈動している空気を分散部におけ
る上昇流速度が10〜100cm/秒となるように供給
することにより、該粉体を分散させ、900〜1100
℃の温度を保持する垂直な発泡域に搬送して発泡させた
のち、この発泡生成物から比重差分別により中空体を回
収することを特徴とする微細中空ガラス球状体の製造方
法。
1. A dispersion part comprising a perforated plate filled with solid glass spheres and quartz sand, and a volcanic glassy sediment powder having a particle size of 20 μm or less is supplied from a dispersion part lower part to a dispersion part. The powder is dispersed by supplying positive pulsating air having a lower pressure and pulsating air at an ascending flow velocity of 10 to 100 cm / sec in the dispersing section, and 900 to 1100.
A method for producing fine hollow glass spheres, comprising carrying out foaming by transporting to a vertical foaming zone that maintains a temperature of ℃, and then recovering hollow bodies from this foamed product by difference in specific gravity.
【請求項2】 発泡域が、断面積100cm2当り、3
本以上の垂直な筒の束を有する構造のものである請求項
1記載の微細中空ガラス球状体の製造方法。
2. The foaming area is 3 cm / 100 cm 2 in cross-sectional area.
2. The method for producing a fine hollow glass sphere according to claim 1, wherein the method has a structure having a bundle of at least vertical tubes.
【請求項3】 発泡域上部から、発泡域断面100cm
2当り、10リットル/分以上の空気を導入する請求項
1又は2記載の微細中空ガラス球状体の製造方法。
3. A foaming area having a cross section of 100 cm from the foaming area.
The method for producing fine hollow glass spheres according to claim 1 or 2, wherein 10 liters / minute or more of air is introduced per 2 .
JP6213075A 1994-09-06 1994-09-06 Method for producing fine hollow glass sphere Expired - Lifetime JP2607050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6213075A JP2607050B2 (en) 1994-09-06 1994-09-06 Method for producing fine hollow glass sphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6213075A JP2607050B2 (en) 1994-09-06 1994-09-06 Method for producing fine hollow glass sphere

Publications (2)

Publication Number Publication Date
JPH0873232A true JPH0873232A (en) 1996-03-19
JP2607050B2 JP2607050B2 (en) 1997-05-07

Family

ID=16633135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6213075A Expired - Lifetime JP2607050B2 (en) 1994-09-06 1994-09-06 Method for producing fine hollow glass sphere

Country Status (1)

Country Link
JP (1) JP2607050B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018507A (en) * 2008-07-14 2010-01-28 Principle:Kk Method for producing high-strength vitreous balloon
CN102701573A (en) * 2012-01-01 2012-10-03 洛阳北苑特种陶瓷有限公司 Preparation method of fused quartz hollow spheres
JP2021532048A (en) * 2018-07-26 2021-11-25 オムヤ インターナショナル アクチェンゲゼルシャフト Hollow spherical glass particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018507A (en) * 2008-07-14 2010-01-28 Principle:Kk Method for producing high-strength vitreous balloon
CN102701573A (en) * 2012-01-01 2012-10-03 洛阳北苑特种陶瓷有限公司 Preparation method of fused quartz hollow spheres
JP2021532048A (en) * 2018-07-26 2021-11-25 オムヤ インターナショナル アクチェンゲゼルシャフト Hollow spherical glass particles

Also Published As

Publication number Publication date
JP2607050B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
Rao et al. Selective flocculation applied to Barsuan iron ore tailings
CN102758089B (en) Recovering and regenerating method of cemented carbide scrap material
US5017523A (en) Method for the preparation of ultra-fine hollow glass spheres
JP5077848B2 (en) High-strength glassy lightweight filler material
JP2648116B2 (en) Method for producing fine hollow glass sphere
US2853241A (en) Apparatus for production of finely divided materials
JP2607050B2 (en) Method for producing fine hollow glass sphere
CN101559402B (en) Method for purifying high-ash coke powder
CN108394903B (en) Preparation method of nano-scale silicon carbide micro powder
JPH04219310A (en) Production of non-sintered cristobalite particle
JP3234893B2 (en) Method for producing fine hollow glass spheres coated with titanium oxide
JP2534831B2 (en) Method for producing fine hollow glass sphere
CA1276428C (en) Vibratory grinding of silicon carbide
JP2857365B2 (en) Method for producing fine hollow glass sphere
EP3746202B1 (en) Reactor for separation of sodium chloride and potassium chloride from polymineral sources and method thereof
US4256571A (en) Recovery of silicon carbide whiskers from coked, converted rice hulls by selective flocculation-liquid extraction
JP5194202B2 (en) Manufacturing method of high-strength glassy balloon
US3914385A (en) Benefication of siderite contaminated sand
CN111453741B (en) Method for extracting and recovering silicon dioxide in fluorine-containing silicon-containing waste slag by wet method
CN113333136A (en) Temperature compensation cooling system based on quartz sand production
US4249700A (en) Recovery of silicon carbide whiskers from coked, converted rice hulls by liquid-liquid separation
JP2010064933A (en) Method of producing high strength glassy hollow sphere
US3533610A (en) Apparatus for the heat treatment of comminuted material
US3282416A (en) Method of treating quartz sands
CN109847925A (en) A method of potassium feldspar is purified using heating activation reverse flotation technology

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term