JPH087142B2 - Frameless atomic absorption spectrometric method for trace metal analysis - Google Patents

Frameless atomic absorption spectrometric method for trace metal analysis

Info

Publication number
JPH087142B2
JPH087142B2 JP17079887A JP17079887A JPH087142B2 JP H087142 B2 JPH087142 B2 JP H087142B2 JP 17079887 A JP17079887 A JP 17079887A JP 17079887 A JP17079887 A JP 17079887A JP H087142 B2 JPH087142 B2 JP H087142B2
Authority
JP
Japan
Prior art keywords
sample
atomic absorption
succinic acid
trace metal
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17079887A
Other languages
Japanese (ja)
Other versions
JPS6413437A (en
Inventor
好人 船渡
尚美 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17079887A priority Critical patent/JPH087142B2/en
Publication of JPS6413437A publication Critical patent/JPS6413437A/en
Publication of JPH087142B2 publication Critical patent/JPH087142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Description

【発明の詳細な説明】 (技術分野) 本発明は、フレームレス原子吸光法により微少量の金
属を分析する方法に関する。
TECHNICAL FIELD The present invention relates to a method for analyzing a trace amount of metal by a flameless atomic absorption method.

(従来技術) 微小量金属の分析にはフレームレス原子吸光法が適用
されているが、試料中のマトリックスやグラファイトチ
ューブの形状等の影響を受けやすく、検出感度の低下を
来たすという問題がある。
(Prior Art) Although a flameless atomic absorption method is applied to the analysis of a minute amount of metal, there is a problem that it is easily affected by the shape of a matrix or a graphite tube in a sample and the detection sensitivity is lowered.

このため、例えば、微小量のカドミウムを分析する場
合には、ジチゾン−クロロホルムにより抽出を行ない、
これを塩酸により逆抽出して濃縮する、いわゆる抽出法
によりサンプルを作成してから原子化させることが行な
われているが、サンプル作成に手間と時間を要するとい
う問題がある。
Therefore, for example, when analyzing a small amount of cadmium, extraction with dithizone-chloroform is performed,
A sample is prepared and atomized by a so-called extraction method in which this is back-extracted with hydrochloric acid to be concentrated, but there is a problem that it takes time and time to prepare the sample.

(目的) 本発明はこのような問題に鑑みてなされたものであっ
て、その目的とするところは、抽出作業を不要として、
高い検出感度と再現性でもって微小量の金属を分析する
ことができる方法を提案することにある。
(Purpose) The present invention has been made in view of such a problem, and an object of the present invention is to eliminate extraction work,
It is to propose a method capable of analyzing a minute amount of metal with high detection sensitivity and reproducibility.

(発明の概要) すなわち、本発明が特徴とするところは、試料にコハ
ク酸化合物を添加して灰化工程において比較的熱に安定
なコハク酸と金属との化合物を形成させ、もって灰化時
における金属の揮散を防止するようにした点にある。
(Summary of the Invention) That is, the feature of the present invention is that a succinic acid compound is added to a sample to form a relatively heat-stable compound of succinic acid and a metal in the ashing step, and thus, during ashing. The point is to prevent the volatilization of the metal.

(実施例) そこで以下に本発明の詳細を実施例に基づいて説明す
る。
(Examples) Therefore, details of the present invention will be described below based on Examples.

第1図は本発明に使用するフレームレス原子吸光分析
装置の一例を示すものであって、図中符号1は、原子化
炉を構成するグラファイトチューブで、グラファイト製
柱体に軸方向の通孔1aを穿設し、試料収容部の外壁に通
孔を穿設して試料注入口1bを設けるとともに、両端の電
極2、3からの通電により発熱させて、通孔12から透過
して来る光ビームを測定するように構成されている。
FIG. 1 shows an example of a flameless atomic absorption spectroscope used in the present invention. In the figure, reference numeral 1 is a graphite tube constituting an atomization furnace, and an axial through hole is formed in a graphite column. 1a is provided, a through hole is provided in the outer wall of the sample storage portion to provide a sample injection port 1b, and heat is generated by energization from the electrodes 2 and 3 at both ends, and the light is transmitted through the through hole 12. It is configured to measure the beam.

このように構成された装置において、液状に調製した
サンプルを試料注入口1bからグラファイトチューブ1内
に注入し、ついで無水コハク酸、コハク酸アミド、コハ
ク酸アンモニューム等の溶液を添加すると、これら2種
類の液体は、試料収容部内に溜まることになる。このよ
うな状態においてグラファイトチューブ1を、150℃に
昇温させて、試料やコハク酸溶液の水分を乾燥させたの
ち500℃まで昇温させて灰化を行なうと、試料中の金属
はコハク酸化合物と結合して熱的に安定な物質を形成す
る。このようにして灰化が終了した段階で、グラファイ
トチューブを分析対象金属に適してた温度に昇温させる
と、この昇温過程において分析対象金属とコハク酸との
化合物は、比較的熱的に安定であるため、チューブ1か
ら揮散する量が抑えられて原子化工程に入り初期の濃度
を可及的に維持して吸光度が検出されることになる。
In the apparatus configured as described above, a sample prepared in a liquid state is injected into the graphite tube 1 through the sample injection port 1b, and then a solution of succinic anhydride, succinic acid amide, ammonium succinate or the like is added to The liquid of the type will collect in the sample container. In such a state, the temperature of the graphite tube 1 is raised to 150 ° C., the water content of the sample and the succinic acid solution is dried, and then the temperature is raised to 500 ° C. to incinerate, and the metal in the sample is succinic acid. Combines with compounds to form thermally stable materials. When the graphite tube is heated to a temperature suitable for the metal to be analyzed at the stage where the ashing is completed in this way, the compound of the metal to be analyzed and succinic acid in the temperature rising process becomes relatively thermally. Since it is stable, the amount of volatilization from the tube 1 is suppressed and the atomization step is started to maintain the initial concentration as much as possible and the absorbance is detected.

[実施例] 鉛、カドミウムを各10ppb、また鉄を50ppb、さらに銅
を20ppbの濃度で含む水溶液を試料に、またコハク酸、
無水コハク酸、コハク酸アミド、コハク酸アンモニウム
をそれぞれ5%含む水溶液を増感溶液に用意し、乾燥温
度150℃、灰化温度500℃とする一方、原子化温度をカド
ミウムについては1600℃、鉛については1800℃、及び
鉄、銅については2300℃に設定して分析したところ、表
1に示したような結果を得た。
[Example] An aqueous solution containing 10 ppb each of lead and cadmium, 50 ppb iron, and 20 ppb copper was used as a sample, and succinic acid,
Prepare an aqueous solution containing 5% each of succinic anhydride, succinamide, and ammonium succinate as a sensitizing solution and set the drying temperature to 150 ° C and the ashing temperature to 500 ° C, while the atomization temperature is 1600 ° C for cadmium and lead. The results were as shown in Table 1 when the analysis was carried out by setting the temperature to 1800 ° C and the temperature to 2300 ° C for iron and copper.

すなわち、鉛に対しては、無水コハク酸を添加すると
検出感度が1.5倍となり、カドミウムに対してはコハク
酸アミドを添加すると感度が5.8倍にも増大し、また鉄
に対しては、コハク酸と無水コハク酸が1.7〜1.8倍とな
り、さらに銅に対しては無水コハク酸とコハク酸アミド
を添加すると測定感度が1.5〜1.6倍となることが解っ
た。
That is, for lead, the detection sensitivity was increased 1.5 times when succinic anhydride was added, and when succinic acid amide was added for cadmium, the sensitivity was increased 5.8 times, and for iron, succinic acid was added. It was found that succinic anhydride increased 1.7 to 1.8 times, and that the addition of succinic anhydride and succinamide to copper increased the measurement sensitivity to 1.5 to 1.6 times.

また、カドミウムを含む同一試料を用いて、無水コハ
ク酸とコハク酸アミドを添加して分析したところ、表2
に示したような結果を得た。
In addition, the same sample containing cadmium was used and analyzed by adding succinic anhydride and succinic acid amide.
The result is shown in.

すなわち、無水コハク酸を添加して分析すると、前述
の抽出法によりサンプルを調製した場合に比較して高い
感度と再現性を得ることができ、またコハク酸アミドを
使用したものにあっても、略々抽出法と同様の再現性を
得ることができた。このことから、コハク酸化合物溶液
を添加するという簡単な操作により、濃縮操作を用いる
ことなく水溶液中のカドミウムを高い再現性で高感度で
分析できることが判明した。
That is, when succinic anhydride is added and analyzed, higher sensitivity and reproducibility can be obtained compared to the case where a sample is prepared by the above-mentioned extraction method, and even in the case of using succinic acid amide, Almost the same reproducibility as the extraction method could be obtained. From this, it was revealed that by a simple operation of adding a succinic acid compound solution, cadmium in an aqueous solution can be analyzed with high reproducibility and high sensitivity without using a concentration operation.

さらに、検量性を調査すべく、濃度が異なるカドミウ
ム溶液を用意するとともに、これに無水コハク酸溶液と
コハク酸アミド溶液を添加して分析したところ、第2図
に示すように無水コハク酸溶液を添加したもの(図中
A)とコハク酸アミド溶液を添加したもの(B)は、抽
出法Cに劣ることのない高い直線性を示した。
Furthermore, in order to investigate the calibratability, cadmium solutions with different concentrations were prepared, and a succinic anhydride solution and a succinic acid amide solution were added to this and analyzed. As shown in FIG. The added one (A in the figure) and the one to which the succinamide solution was added (B) showed high linearity comparable to that of the extraction method C.

また、検出限界点を調査したとこと、本発明法では0.
2pgとなり、従来行なわれていた抽出法の1.0pgに比較し
て1/5程度の低濃度のものまで検出可能であることが解
った。
Further, that the detection limit point was investigated, the method of the present invention is 0.
It became 2 pg, and it was found that even a low concentration of about 1/5 can be detected compared to 1.0 pg of the conventional extraction method.

なお、上述の実施例においては、コハク酸化合物を別
に添加するようにしているが、コハク酸の添加によって
沈澱を生じない試料にあっては両者を混合した状態でグ
ラファイトチューブに注入しても同様の作用を奏するこ
とは云うまでもない。
In the above-mentioned examples, the succinic acid compound is added separately, but in the case of a sample in which precipitation does not occur due to the addition of succinic acid, the same can be obtained by injecting both into a graphite tube. It goes without saying that the effect of is exerted.

(効果) 以上説明したように本発明によれば、試料にコハク酸
化合物を添加して灰化するようにしたので、灰化工程中
における目的金属の揮散を可及的に少なくして鉄、銅、
鉛、カドミウムを高い感度と、再現性でもって検出で
き、特にカドミウムに対しては、極めて高い増感効果を
示すため、排水中のカドミウムを抽出等の前処理を必要
とすることなく分析することが可能をなる。
(Effect) As described above, according to the present invention, the succinic acid compound is added to the sample for ashing, so that volatilization of the target metal during the ashing step is reduced as much as possible, iron, copper,
Lead and cadmium can be detected with high sensitivity and reproducibility, and especially for cadmium, it shows an extremely high sensitizing effect, so analyze cadmium in wastewater without requiring pretreatment such as extraction. Will be possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に使用する装置の一例を示す断面図、第
2図は分析結果の一例を示す線図である。 1……グラファイトチューブ 1a……通孔、1b……試料注入口 2、3……電極
FIG. 1 is a sectional view showing an example of an apparatus used in the present invention, and FIG. 2 is a diagram showing an example of analysis results. 1 ... Graphite tube 1a ... Through hole, 1b ... Sample inlet 2, 3 ... Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料にコハク酸化合物を添加して灰化後、
原子化させることを特徴とするフレームレス原子吸光法
による微量金属の分析方法。
1. A succinic acid compound is added to a sample to be incinerated,
A method for analyzing trace metals by flameless atomic absorption spectrometry, which is characterized by atomization.
JP17079887A 1987-07-07 1987-07-07 Frameless atomic absorption spectrometric method for trace metal analysis Expired - Fee Related JPH087142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17079887A JPH087142B2 (en) 1987-07-07 1987-07-07 Frameless atomic absorption spectrometric method for trace metal analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17079887A JPH087142B2 (en) 1987-07-07 1987-07-07 Frameless atomic absorption spectrometric method for trace metal analysis

Publications (2)

Publication Number Publication Date
JPS6413437A JPS6413437A (en) 1989-01-18
JPH087142B2 true JPH087142B2 (en) 1996-01-29

Family

ID=15911548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17079887A Expired - Fee Related JPH087142B2 (en) 1987-07-07 1987-07-07 Frameless atomic absorption spectrometric method for trace metal analysis

Country Status (1)

Country Link
JP (1) JPH087142B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510339B2 (en) * 1990-07-19 1996-06-26 株式会社日立製作所 Sample sampling method and apparatus for flameless atomic absorption spectrometry
CN102175630A (en) * 2010-12-14 2011-09-07 北京市理化分析测试中心 Method for measuring trace cadmium in vinegar
CN105057572A (en) * 2015-07-27 2015-11-18 明光市留香泵业有限公司 Mesoporous-silica-contained high-adsorbability water-based paint for evaporative pattern casting and preparation method for mesoporous-silica-contained high-adsorbability water-based paint

Also Published As

Publication number Publication date
JPS6413437A (en) 1989-01-18

Similar Documents

Publication Publication Date Title
Gregoire Sample introduction techniques for the determination of osmium isotope ratios by inductively coupled plasma mass spectrometry
Kaykhaii et al. Rapid and sensitive determination of fluoride in toothpaste and water samples using headspace single drop microextraction-gas chromatography
Jagner et al. Simultaneous determination of cadmium and lead in urine by means of computerized potentiometric stripping analysis
JPH087142B2 (en) Frameless atomic absorption spectrometric method for trace metal analysis
LuisaáCervera et al. Determination of chromium by electrothermal atomic absorption spectrometry after rapid microwave-assisted digestion of sediment and botanical samples
Langmyhr et al. Atomic absorption spectrometric determination of cadmium and lead in dental material by atomization directly from the solid state
Yamada Infrared-enhanced multiphoton ionization detection of aromatic molecules in solution
Knowles Fast determination of elements in water, urine and serum by graphite furnace atomic absorption spectrometry
Pergantis et al. Simplex optimization of conditions for the determination of arsenic in environmental samples by using electrothermal atomic absorption spectrometry
Rettberg et al. Vaporization kinetics for solids analysis with electrothermal atomic absorption spectrometry: determination of lead in metal samples
JPH01302141A (en) Analysis of very small amount of gallium by flameless atomic absorptiometry
JP2517949B2 (en) Frameless atomic absorption spectrometric method for the analysis of trace amounts of tin
JPS63175746A (en) Analysis of trace tin by flameless atomic absorption method
Apostoli et al. Determination of vanadium in urine by electrothermal atomisation atomic absorption spectrometry with graphite tube pre-heating
JPH02163632A (en) Analysis of trace tellurium by flameless atomic absorption method
JPH02179447A (en) Analysis of trace indium by flameless atomic absorption method
Liu et al. Quantitative analysis of finasteride tablets dissolution content with non‐isotopically labeled internal standard by paper spray ionization mass spectrometry
Tseng et al. Open focused microwave-assisted sample preparation for rapid total and mercury species determination in environmental solid samples
JPH05149872A (en) Analysis of infinitesimal amount of aluminum by flameless atomic absorption
JPH0261539A (en) Analysis on trace gallium by frameless atomic absorption spectrophotometry
PitaáCalvo Comparative study of chemical modifiers for the determination of molybdenum in milk by electrothermal atomisation atomic absorption spectrometry
JPH03238343A (en) Analyzing method for minute amount of tallium by flameless atomic absorption method
Fulton et al. Photometric determination of copper in aluminum and lead-tin solder with neocuproine
Christian et al. Cathode-ray polarographic determination of molybdenum in serum, plasma and urine
Vandecasteele et al. Use of a personal computer for signal treatment in atomic absorption spectrometry with electrothermal atomisation using deuterium arc background correction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees