JPH0871415A - Production of ziroconium carried ion exchange resin - Google Patents

Production of ziroconium carried ion exchange resin

Info

Publication number
JPH0871415A
JPH0871415A JP20664394A JP20664394A JPH0871415A JP H0871415 A JPH0871415 A JP H0871415A JP 20664394 A JP20664394 A JP 20664394A JP 20664394 A JP20664394 A JP 20664394A JP H0871415 A JPH0871415 A JP H0871415A
Authority
JP
Japan
Prior art keywords
zirconium
exchange resin
resin
ion
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20664394A
Other languages
Japanese (ja)
Other versions
JP2635014B2 (en
Inventor
Toshishige Suzuki
敏重 鈴木
Masahiro Otsuka
将碩 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURITA TECHNICAL SERVICE KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
KURITA TECHNICAL SERVICE KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURITA TECHNICAL SERVICE KK, Agency of Industrial Science and Technology filed Critical KURITA TECHNICAL SERVICE KK
Priority to JP20664394A priority Critical patent/JP2635014B2/en
Publication of JPH0871415A publication Critical patent/JPH0871415A/en
Application granted granted Critical
Publication of JP2635014B2 publication Critical patent/JP2635014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To produce a Zr carried ion exchange resin having high fluoride ion adsorption capacity and less liable to the release of Zr by a simple method without using an org. solvent. CONSTITUTION: An aq. soln. of a compd. such as ZrOCl2 is brought into contact with a cation exchange resin and the resin is allowed to capture Zr and heated to produce the objective Zr carried ion exchange resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はジルコニウム担持イオン
交換樹脂の製造方法に関し、さらに詳しくはフッ化物イ
オンを吸着させることができるジルコニウム担持イオン
交換樹脂の製造方法に関するものである。
The present invention relates to a method for producing a zirconium-supported ion-exchange resin, and more particularly to a method for producing a zirconium-supported ion-exchange resin capable of adsorbing fluoride ions.

【0002】[0002]

【従来の技術】多価金属、特にジルコニウム(Zr)、
セリウム(Ce)およびチタン(Ti)はフッ化物イオ
ンを選択的に吸着することが知られており、すでにフッ
化物イオン選択吸着樹脂としてセリウム担持樹脂が市販
されている。しかし、セリウムは+3、+4価の遷移性
があるため、酸化還元剤の影響を受けて劣化しやすいと
いう問題点がある。またジルコニウム化合物を用いたフ
ッ化物イオン吸着材も報告されている。
2. Description of the Related Art Polyvalent metals, particularly zirconium (Zr),
Cerium (Ce) and titanium (Ti) are known to selectively adsorb fluoride ions, and cerium-supporting resins have already been marketed as fluoride ion selective adsorption resins. However, since cerium has a +3 and +4 valence transition, there is a problem that the cerium is easily deteriorated under the influence of the redox agent. Also, a fluoride ion adsorbent using a zirconium compound has been reported.

【0003】例えば、分析化学(Vol.29,198
0,106〜109頁)には、水素形イオン交換樹脂を
充填したカラムに、酸化硝化ジルコニウム(IV)二水
和物を1M硝酸に約1%(w/v)溶解した水溶液を通
液し、樹脂をジルコニウム形に変えたジルコニウム形陽
イオン交換樹脂が記載されている。ジルコニウム化合物
は+4価の場合が最も安定しているので、このジルコニ
ウム形陽イオン交換樹脂はセリウム化合物を用いた場合
に比べて安定しているが、酸化硝化ジルコニウム水溶液
を単にイオン交換樹脂に通液して捕捉させただけでは、
樹脂からジルコニウムが脱離しやすく、特に樹脂の再生
処理においてジルコニウムが脱離しやすいという問題点
がある。
For example, analytical chemistry (Vol. 29, 198)
0, 106-109), a column filled with a hydrogen ion exchange resin was passed through an aqueous solution of zirconium (IV) oxide nitric oxide dihydrate dissolved in 1M nitric acid at about 1% (w / v). , A zirconium type cation exchange resin in which the resin is changed to a zirconium type. Since the zirconium compound is the most stable in the case of +4 valence, this zirconium type cation exchange resin is more stable than the case of using the cerium compound, but the zirconium oxide aqueous solution is simply passed through the ion exchange resin. And then just capture it,
There is a problem that zirconium is easily desorbed from the resin, and in particular, zirconium is easily desorbed in the resin regeneration treatment.

【0004】また特公平2−17220号には、ジルコ
ニウムゲル状酸化物などのジルコニウム水和酸化物から
なるフッ素錯イオン吸着剤が記載されている。しかし、
ジルコニウム水和酸化物を粉体のまま吸着剤として使用
する場合は、フッ素錯イオン含有水を大量に処理する際
には効率のよい処理は行えない。一方、ジルコニウム水
和酸化物を有機高分子材料に担持させた多孔質な吸着体
を得る方法も記載されており、高分子重合体を溶解した
溶液にジルコニウム水和酸化物粒子を懸濁分散させた
後、成形する方法;ジルコニウム水和酸化物粒子の存在
下に、高分子重合体を乳化または懸濁重合させて粒状に
成形する方法;高分子重合体、ジルコニウム水和酸化物
および抽出剤を混練成形した後、溶媒で抽出剤を抽出す
る方法が開示されている。しかし、これらの方法はいず
れも多孔質構造を形成させる工程を伴うため、操作が複
雑である。また有機溶媒を使用する必要があるため、有
機廃液を処理する必要があるほか、環境汚染や作業環境
に対しても配慮する必要がある。
[0004] Japanese Patent Publication No. 2-17220 describes a fluorine complex ion adsorbent comprising a zirconium hydrated oxide such as a zirconium gel oxide. But,
When zirconium hydrated oxide is used as an adsorbent as a powder, efficient treatment cannot be performed when a large amount of fluorine complex ion-containing water is treated. On the other hand, a method for obtaining a porous adsorbent in which zirconium hydrate oxide is supported on an organic polymer material is also described, and zirconium hydrate oxide particles are suspended and dispersed in a solution in which a polymer is dissolved. After that, a method of molding; a method of emulsifying or suspension polymerizing a high-molecular polymer in the presence of zirconium hydrate oxide particles to form a granule; a high-molecular polymer, a zirconium hydrate oxide and an extractant A method of extracting an extractant with a solvent after kneading and molding is disclosed. However, each of these methods involves a step of forming a porous structure, and thus the operation is complicated. Further, since it is necessary to use an organic solvent, it is necessary to treat the organic waste liquid, and it is necessary to consider environmental pollution and working environment.

【0005】また特開平5−29494号には、テトラ
アルコキシジルコニウムの有機溶媒溶液を多孔質材料に
含浸させた後、加水分解処理するフッ化物イオン吸着材
の製造方法が記載されている。しかし、この方法では、
有機溶媒を使用しているため、含浸後に有機溶媒を除去
して乾燥する操作が必要であり、操作が複雑であるほ
か、上記と同様の問題点がある。ところで、この公報に
は、加水分解を高温で行うと含水ジルコニウム酸化物と
多孔質材料との密着性が良好になることが記載されてい
るが、この加水分解はアルコキシル基を分解し、テトラ
アルコキシジルコニウムから含水ジルコニウム酸化物を
形成させることを目的とした加水分解であり、テトラア
ルコキシジルコニウム以外のジルコニウム化合物の加熱
処理を示唆するものではない。
Further, Japanese Patent Application Laid-Open No. 5-29494 describes a method for producing a fluoride ion adsorbent in which a porous material is impregnated with an organic solvent solution of tetraalkoxyzirconium and then hydrolyzed. But with this method,
Since an organic solvent is used, the operation of removing the organic solvent after impregnation and drying is necessary, which is complicated and has the same problem as described above. By the way, this publication describes that when the hydrolysis is carried out at a high temperature, the adhesion between the hydrous zirconium oxide and the porous material is improved, but this hydrolysis decomposes the alkoxyl group to give tetraalkoxy. This is hydrolysis for the purpose of forming hydrous zirconium oxide from zirconium, and does not suggest heat treatment of zirconium compounds other than tetraalkoxyzirconium.

【0006】従来の含水酸化ジルコニウムによるフッ化
物吸着材では、フッ化物吸着の際、同時にプロトンの吸
着を伴うために、pHの酸性域では有効に働くが、中性
域になると吸着能力が著しく低下する欠点があった。
[0006] In the conventional fluoride adsorbing material using hydrous zirconium oxide, since it adsorbs protons at the same time as fluoride is adsorbed, it works effectively in the acidic region of pH, but in the neutral region, the adsorbing ability remarkably decreases. There was a drawback to

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、陽イ
オン交換樹脂にジルコニウム塩を担持させることによ
り、フッ化物吸着能力を持たせると同時に、プロトン供
給体としての能力を残存させることにより、pH中性域
でのフッ化物吸着能力を十分に維持したフッ化物吸着材
を提供することである。また製造上の問題点を解決する
ために、有機溶媒を用いることなく、しかも簡単な方法
により、フッ化物イオンの吸着容量が大きく、かつ担持
したジルコニウムが脱離しにくいジルコニウム担持イオ
ン交換樹脂を製造することが可能なジルコニウム担持イ
オン交換樹脂の製造方法を提案することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cation exchange resin having a zirconium salt supported thereon so as to have a fluoride adsorbing ability and, at the same time, to retain the ability as a proton supplier. An object of the present invention is to provide a fluoride adsorbent which sufficiently maintains a fluoride adsorption capacity in a neutral pH range. Further, in order to solve the manufacturing problems, a zirconium-supported ion exchange resin having a large adsorption capacity for fluoride ions and in which supported zirconium is difficult to desorb is manufactured by a simple method without using an organic solvent. It is an object of the present invention to propose a method for producing a zirconium-supported ion-exchange resin.

【0008】[0008]

【課題を解決するための手段】本発明はジルコニウム化
合物の水溶液を陽イオン交換樹脂に接触させて、ジルコ
ニウムを陽イオン交換樹脂に捕捉させた後、加熱処理す
ることを特徴とするジルコニウム担持イオン交換樹脂の
製造方法である。
The present invention is characterized in that an aqueous solution of a zirconium compound is brought into contact with a cation exchange resin so that zirconium is captured by the cation exchange resin, followed by heat treatment. It is a method for producing a resin.

【0009】本発明で使用するジルコニウム化合物とし
ては、酸化塩化ジルコニウム(ZrOCl2)、酸化硝
酸ジルコニウム(ZrO(NO3)2)などの水に可溶なジ
ルコニウム化合物があげられる。これらの化合物は通常
結晶水を持つ固形分の形で入手される。これらの中で
は、水に対する溶解度が最も大きい酸化塩化ジルコニウ
ムが好ましい。
The zirconium compound used in the present invention includes water-soluble zirconium compounds such as zirconium oxide chloride (ZrOCl 2 ) and zirconium oxide nitrate (ZrO (NO 3 ) 2 ). These compounds are usually obtained in the form of a solid having water of crystallization. Of these, zirconium oxide chloride having the highest solubility in water is preferable.

【0010】ジルコニウム化合物の水溶液としては、高
濃度の水溶液を使用するほどフッ化物イオンの吸着量の
大きい目的樹脂が得られるが、一般的にジルコニウム化
合物の水に対する溶解度は比較的小さいので、溶解限度
またはそれに近い濃度の水溶液を使用するのが望まし
い。具体的には、酸化塩化ジルコニウムの場合はジルコ
ニウムとして2〜18重量%、好ましくは2〜10重量
%の水溶液を使用するのが望ましい。ジルコニウム化合
物の溶解度を増加させるため、水溶液中に硝酸などの酸
を添加することもできるが、酸性度が高くなる程ジルコ
ニウムと陽イオン交換樹脂との解離度も増加するので、
ジルコニウムの捕捉量の増大は期待できない。
As the aqueous solution of the zirconium compound, the higher the concentration of the aqueous solution used, the more the amount of the fluoride ions adsorbed will be the target resin. However, the solubility of the zirconium compound in water is relatively small. Alternatively, it is desirable to use an aqueous solution having a concentration close to that. Specifically, in the case of zirconium oxide chloride, it is desirable to use an aqueous solution of 2 to 18% by weight, preferably 2 to 10% by weight as zirconium. In order to increase the solubility of the zirconium compound, an acid such as nitric acid can be added to the aqueous solution, but since the dissociation degree between zirconium and the cation exchange resin increases as the acidity increases,
An increase in the amount of zirconium trapped cannot be expected.

【0011】このようなジルコニウム化合物の水溶液と
接触させる陽イオン交換樹脂としては特に制限はない
が、強酸性陽イオン交換樹脂が好ましく、特にポーラス
型の強酸性陽イオン交換樹脂が好ましい。このような陽
イオン交換樹脂としては、市販品を使用することができ
る。また陽イオン交換樹脂は新品を使用することができ
ることはもちろんであるが、超純水製造装置などから回
収される廃陽イオン交換樹脂を再生して使用することも
できる。陽イオン交換樹脂は水素形で使用するのが好ま
しい。
The cation exchange resin to be brought into contact with such an aqueous solution of a zirconium compound is not particularly limited, but a strongly acidic cation exchange resin is preferred, and a porous strongly acidic cation exchange resin is particularly preferred. A commercial item can be used as such a cation exchange resin. In addition, a new cation exchange resin can be used as a matter of course, but a waste cation exchange resin recovered from an ultrapure water production device or the like can be recycled and used. The cation exchange resin is preferably used in the hydrogen form.

【0012】ジルコニウム化合物の水溶液と陽イオン交
換樹脂とを接触させる方法としては、ジルコニウム化合
物の水溶液中に陽イオン交換樹脂を浸漬する方法;陽イ
オン交換樹脂を充填したカラムにジルコニウム化合物の
水溶液を通液または循環する方法などが採用できる。接
触条件は、水温が10〜30℃、好ましくは20〜30
℃、時間は4時間以上、好ましくは12〜48時間とす
るのが望ましい。このようにして両者を接触させること
により、陽イオン交換樹脂にジルコニウムを捕捉させ
る。
The method for bringing the aqueous solution of the zirconium compound into contact with the cation exchange resin includes immersing the cation exchange resin in the aqueous solution of the zirconium compound; passing the aqueous solution of the zirconium compound through a column packed with the cation exchange resin. A liquid or a circulating method can be adopted. The contact condition is that the water temperature is 10 to 30 ° C., preferably 20 to 30 ° C.
The temperature is preferably 4 hours or more, preferably 12 to 48 hours. By bringing them into contact with each other in this manner, zirconium is captured by the cation exchange resin.

【0013】本発明の方法では、上記のようにしてジル
コニウムを捕捉させたイオン交換樹脂を樹脂内で安定し
て固定化するために加熱処理する。加熱温度は50〜1
00℃、好ましくは70〜90℃が適当である。また加
熱処理の時間は4時間以上間、好ましくは12〜48時
間とするのが望ましい。
In the method of the present invention, the ion-exchange resin having zirconium captured as described above is heat-treated so as to be stably immobilized in the resin. Heating temperature is 50-1
00 ° C, preferably 70-90 ° C, is suitable. The heat treatment time is preferably 4 hours or more, and more preferably 12 to 48 hours.

【0014】加熱処理の方法としては、上記温度の温純
水中にイオン交換樹脂を浸漬する方法;イオン交換樹脂
を充填したカラムに上記温度の温純水を通液または循環
する方法などが採用できる。温水中には水酸化ナトリウ
ム、水酸化カリウムなどのアルカリを100mg/l以
上の量、好ましくは0.4〜4.0重量%添加する。こ
の場合、加熱処理後に1〜4重量%の希塩酸、希硫酸等
の希酸液により中和処理するのが好ましい。また温純水
の代わりに、ジルコニウム化合物の温水溶液を用いるこ
ともできる。このようにして加熱処理することにより、
ジルコニウムはイオン交換樹脂に強固に担持され、脱離
しにくくなる。
As a method of the heat treatment, a method of immersing the ion exchange resin in hot pure water at the above temperature; a method of passing or circulating hot pure water at the above temperature through a column filled with the ion exchange resin can be adopted. In warm water, an alkali such as sodium hydroxide or potassium hydroxide is added in an amount of 100 mg / l or more, preferably 0.4 to 4.0% by weight. In this case, it is preferable to perform a neutralization treatment with a dilute acid solution such as 1 to 4% by weight of diluted hydrochloric acid or diluted sulfuric acid after the heat treatment. Instead of hot pure water, a hot aqueous solution of a zirconium compound can also be used. By heat treatment in this way,
Zirconium is firmly supported on the ion-exchange resin and hardly desorbs.

【0015】このようにして得られた本発明のジルコニ
ウム担持イオン交換樹脂は、フッ化物イオンの吸着剤と
して利用することができる。この場合、吸着剤を充填し
たカラムにフッ化物イオン含有水を通液する方法、また
はフッ化物イオン含有水中に吸着剤を添加する方法など
により、被処理液中のフッ化物イオンを吸着剤に吸着さ
せてフッ化物イオンを除去することができる。フッ化物
イオンの吸着量は大きく、例えばジルコニウム化合物と
して酸化塩化ジルコニウムを用いた場合、F-として少
なくとも20g/l−樹脂以上のフッ化物イオンを吸着
することができる。なお、被処理液中にCl-イオンな
どの他の陰イオンが共存していてもフッ化物イオンの吸
着量にはほとんど影響はない。
The zirconium-supported ion exchange resin of the present invention thus obtained can be used as a fluoride ion adsorbent. In this case, the fluoride ions in the liquid to be treated are adsorbed to the adsorbent by, for example, passing the fluoride ion-containing water through a column filled with the adsorbent, or adding the adsorbent to the fluoride ion-containing water. Thus, fluoride ions can be removed. The amount of fluoride ions adsorbed is large. For example, when zirconium oxide chloride is used as the zirconium compound, it is possible to adsorb at least 20 g / l-resin or more of fluoride ions as F . Even if other anions such as Cl ions coexist in the liquid to be treated, there is almost no effect on the amount of fluoride ions adsorbed.

【0016】フッ化物イオンを吸着したジルコニウム担
持イオン交換樹脂は0.5〜2重量%の水酸化ナトリウ
ム水溶液などにより再生することができる。この場合、
加熱処理によりジルコニウムは樹脂に強固に担持されて
いるので、再生処理により樹脂から脱離することはほと
んどない。
The zirconium-supported ion-exchange resin on which fluoride ions are adsorbed can be regenerated with a 0.5 to 2% by weight aqueous sodium hydroxide solution. in this case,
Since zirconium is firmly supported by the resin by the heat treatment, it is hardly detached from the resin by the regeneration treatment.

【0017】[0017]

【発明の効果】本発明のジルコニウム担持イオン交換樹
脂の製造方法によれば、ジルコニウム化合物の水溶液を
陽イオン交換樹脂に接触させてジルコニウムを捕捉させ
た後、加熱処理するようにしたので、有機溶媒を用いる
ことなく、しかも簡単な方法により、フッ化物イオンの
吸着容量が大きく、かつ担持したジルコニウムが脱離し
にくいジルコニウム担持イオン交換樹脂を製造すること
ができる。
According to the method for producing a zirconium-supported ion exchange resin of the present invention, an aqueous solution of a zirconium compound is brought into contact with a cation exchange resin to capture zirconium, and then heat treatment is carried out. It is possible to produce a zirconium-supported ion exchange resin which has a large adsorption capacity for fluoride ions and is less likely to desorb supported zirconium by a simple method without using.

【0018】[0018]

【実施例】次に本発明の実施例について説明する。 実施例1 陽イオン交換樹脂としては、超純水製造装置から回収さ
れたダイヤイオンPK228L(三菱化成(株)製、商
標、ポーラス型強酸性陽イオン交換樹脂)またはレバチ
ットSP112WS(バイエル社製、商標、ポーラス型
強酸性陽イオン交換樹脂)を用いた。ジルコニウム化合
物の水溶液としては、約80gのZrOCl2・8H2
を300mlの純水中でスターラーにより攪拌しながら
溶解させた酸化塩化ジルコニウム水溶液(Zrとして約
6重量%)を用いた。
EXAMPLES Next, examples of the present invention will be described. Example 1 As the cation exchange resin, Diaion PK228L (manufactured by Mitsubishi Kasei Co., Ltd., trademark, porous strong acid cation exchange resin) or Levacit SP112WS (manufactured by Bayer Co., trademark) recovered from the ultrapure water production system was used. , Porous strongly acidic cation exchange resin) was used. The aqueous solution of the zirconium compound, ZrOCl 2 · 8H 2 O in about 80g
Was dissolved in 300 ml of pure water while stirring with a stirrer, and an aqueous solution of zirconium chloride (about 6% by weight as Zr) was used.

【0019】300mlのフラスコに上記ダイヤイオン
PK228LまたはレバチットSP112WSを各々2
00ml入れ、上記酸化塩化ジルコニウム水溶液を各々
100ml加え、恒温振とう器中で25℃で2昼夜約4
5時間振とうして、ジルコニウムをイオン交換樹脂に捕
捉させた。次に、各々の樹脂を500mlの純水で水洗
した後、50mgの水酸化ナトリウムを1 literの純水
に溶解した微アルカリ水溶液を各々120ml加え、恒
温槽の温度を70℃にセットして1昼夜約25時間加熱
処理し、ジルコニウム担持イオン交換樹脂を得た。
Each of the above-mentioned DIAION PK228L or Levatit SP112WS is placed in a 300 ml flask.
Then, 100 ml of the above-mentioned zirconium oxychloride aqueous solution was added, and the mixture was placed in a constant-temperature shaker at 25 ° C. for about 4
By shaking for 5 hours, zirconium was captured by the ion exchange resin. Next, after washing each resin with 500 ml of pure water, 120 ml of a slightly alkaline aqueous solution in which 50 mg of sodium hydroxide was dissolved in 1 liter of pure water was added, and the temperature of the constant temperature bath was set to 70 ° C. Heat treatment was performed for about 25 hours day and night to obtain a zirconium-supported ion exchange resin.

【0020】次に、Zr担持樹脂をフラスコから取出
し、25mmφのアクリルカラムに各々200ml充填
し、各々1 literの純水で洗浄した。続いて、0.5%
HCl水溶液を各々1 liter通液した後、樹脂の10倍
量(2 liter)の純水で洗浄した。このカラムに、pH
7.4、F-イオンを約40mg/lの濃度で含有する
試験水を、SV≒10の下向流で通液してF-イオンの
吸着試験を行った。
Next, the Zr-supported resin was taken out of the flask, filled with 200 ml of each in a 25 mmφ acrylic column, and washed with 1 liter of pure water. Then 0.5%
After passing 1 liter of each aqueous HCl solution, the resin was washed with 10 times (2 liters) pure water of the resin. PH on this column
7.4, F - the test water at a concentration of about 40 mg / l ion, F and passed through the column at downflow of SV ≒ 10 - were adsorption test ions.

【0021】その結果、F-イオンの吸着量は、ダイヤ
イオンPK228Lの場合21.7g/l−樹脂、レバ
チットSP112WSの場合21.6g/l−樹脂であ
った。吸着試験終了後、2重量%水酸化ナトリウム水溶
液により樹脂の再生を行った。再生廃液中のジルコニウ
ムを定量したところ、いずれの樹脂の場合も10mg/
l以下であり、ほとんど脱離しないことが確認された。
As a result, the amount of F ions adsorbed was 21.7 g / l-resin for Diaion PK228L and 21.6 g / l-resin for Levatit SP112WS. After completion of the adsorption test, the resin was regenerated with a 2% by weight aqueous sodium hydroxide solution. When the amount of zirconium in the reclaimed waste liquid was determined, in each case 10 mg /
1 or less, and it was confirmed that almost no desorption occurred.

【0022】再生後、1重量%塩酸水溶液を1 liter通
液して酸性化を行い、各2 literの純水で洗浄した後、
再度吸着試験を行った結果、F-イオンの吸着量はダイ
ヤイオンPK228Lの場合21.2g/l−樹脂、レ
バチットSP112WSの場合21.3g/l−樹脂で
あり、ほとんど第1回目と同様の吸着能力があった。
After regeneration, acidification was performed by passing 1 liter of a 1% by weight aqueous solution of hydrochloric acid and washing with 2 liters of pure water.
As a result of performing the adsorption test again, the adsorption amount of F 2 - ion was 21.2 g / l-resin in the case of Diaion PK228L and 21.3 g / l-resin in the case of Levatit SP112WS, and was almost the same as the first adsorption. There was ability.

【0023】実施例2 25mmφのアクリルカラムに実施例1と同様の回収ダ
イヤイオンPK228LまたはレバチットSP112W
Sを各々180ml充填した後、ローラーポンプを用い
て実施例1と同様の酸化塩化ジルコニウム水溶液をSV
≒8の上向流で1昼夜約25時間循環通液し、ジルコニ
ウムをイオン交換樹脂に捕捉させた。次に、液抜きした
後、各々1literの純水で逆洗洗浄した。このカラム
に、55〜60℃の微アルカリ水溶液を12時間循環通
液して加熱処理し、ジルコニウム担持イオン交換樹脂を
得た。微アルカリ水溶液としては、50mgの水酸化ナ
トリウムを1 literの純水に溶解したものを使用し、ウ
ォーターバスで上記温度に加温した。
Example 2 The same recovery diamond ion PK228L or Levatit SP112W as in Example 1 was applied to a 25 mmφ acrylic column.
After filling 180 ml each of S, the same zirconium oxychloride aqueous solution as in Example 1 was applied using a roller pump to the SV.
The liquid was circulated through the upward flow of # 8 for about 25 hours a day and night, and zirconium was captured by the ion exchange resin. Next, after draining the liquid, back washing was performed with 1 liter of pure water. A slight alkaline aqueous solution at 55 to 60 ° C. was circulated through this column for 12 hours for heat treatment to obtain a zirconium-supported ion exchange resin. As a slightly alkaline aqueous solution, a solution prepared by dissolving 50 mg of sodium hydroxide in 1 liter of pure water was used, and heated to the above temperature in a water bath.

【0024】加熱処理後、純水で洗浄し、実施例1と同
様にして、ただしF-イオンを約25mg/lの濃度で
含有する試験水を用いて吸着試験を行った。その結果、
-イオンの吸着量は、ダイヤイオンPK228Lの場
合20.8g/l−樹脂、レバチットSP112WSの
場合20.5g/l−樹脂であった。吸着試験終了後、
実施例1と同様にして樹脂の再生を行い、再生廃液中の
ジルコニウムを定量したが、いずれの樹脂の場合もジル
コニウムのリークはほとんど認められなかった。
After the heat treatment, the sample was washed with pure water, and an adsorption test was carried out in the same manner as in Example 1, except that test water containing F - ion at a concentration of about 25 mg / l was used. as a result,
The adsorption amount of F - ion was 20.8 g / l-resin in the case of Diaion PK228L, and 20.5 g / l-resin in the case of Levatit SP112WS. After the adsorption test,
The resin was regenerated in the same manner as in Example 1 and the amount of zirconium in the regenerated waste liquid was quantified, but almost no leakage of zirconium was observed in any of the resins.

【0025】実施例1と同様に酸性化および純水洗浄を
行った後、再度吸着試験を行った結果、F-イオンの吸
着量は、ダイヤイオンPK228Lの場合20.5g/
l−樹脂、レバチットSP112WSの場合20.4g
/l−樹脂でありほとんど吸着量の低下はなかった。
After acidification and pure water washing were performed in the same manner as in Example 1, the adsorption test was performed again. As a result, the adsorption amount of F - ion was 20.5 g / Diamond PK228L.
20.4 g for l-resin, Levatit SP112WS
/ L-resin and there was almost no decrease in the adsorption amount.

【0026】実施例3 ジルコニウム化合物の水溶液として、酸化硝酸ジルコニ
ウム(ZrO(NO32)75gを6410mlの0.
9N硝酸水溶液に溶解した酸化硝酸ジルコニウムの硝酸
水溶液(Zrとして約0.43重量%)を用いて、Zr
担持イオン交換樹脂を得た。すなわち、25mmφのア
クリルカラムに実施例1と同様の回収ダイヤイオンPK
228LまたはレバチットSP112WPを各々200
ml充填した後、上記酸化硝酸ジルコニウムの硝酸水溶
液をSV≒10の下向流で20時間通液し、ジルコニウ
ムをイオン交換樹脂に捕捉させた。次に、液抜きした
後、各々1 literの純水で洗浄し、実施例2と同様に5
5〜60℃の微アルカリ水溶液を12時間循環通液して
加熱処理し、ジルコニウム担持イオン交換樹脂を得た。
Example 3 As an aqueous solution of a zirconium compound, 75 g of zirconium oxide nitrate (ZrO (NO 3 ) 2 ) was added to 6410 ml of 0.
Using a nitric acid aqueous solution of zirconium oxide nitrate dissolved in 9N nitric acid aqueous solution (about 0.43 wt% as Zr), Zr
A supported ion exchange resin was obtained. That is, the same collection diamond ion PK as in Example 1 was applied to a 25 mmφ acrylic column.
228L or Levatit SP112WP each for 200
After being filled with ml, the nitric acid aqueous solution of zirconium oxide nitrate was passed in a downward flow of SV≈10 for 20 hours to capture zirconium on the ion exchange resin. Next, after draining, each was washed with 1 liter of pure water.
A slightly alkaline aqueous solution at 5 to 60 ° C. was circulated for 12 hours for heat treatment to obtain a zirconium-supported ion exchange resin.

【0027】次に、純水で洗浄した後、pH7.2、F
-イオンを約200mg/lの濃度で含有する試験水
を、SV≒10の下向流で通液してF-イオンの吸着試
験を行った。その結果、F-イオンの吸着量は、ダイヤ
イオンPK228Lの場合10.2g/l−樹脂、レバ
チットSP112WSの場合11.6g/l−樹脂であ
った。吸着試験終了後、実施例1と同様にして樹脂の再
生を行い、再生廃液中のジルコニウムを定量したが、実
施例1と同様に、いずれの樹脂の場合もジルコニウムの
リークはほとんど認められなかった。
Next, after washing with pure water, pH 7.2, F
An adsorption test of F ions was conducted by passing test water containing ions at a concentration of about 200 mg / l in a downward flow of SV≈10. As a result, the amount of F ions adsorbed was 10.2 g / l-resin for Diaion PK228L and 11.6 g / l-resin for Levatit SP112WS. After completion of the adsorption test, the resin was regenerated in the same manner as in Example 1, and the amount of zirconium in the regenerated waste liquid was quantified. As in Example 1, no leak of zirconium was observed in any of the resins. .

【0028】比較例1 実施例1において、加熱処理を行う前のZr捕捉イオン
交換樹脂を用いて、実施例1と同様にして吸着試験を行
った。その結果、F-イオンの吸着量は、ダイヤイオン
PK228Lの場合20.4g/l−樹脂、レバチット
SP112WSの場合20.8g/l−樹脂であった。
吸着試験終了後、実施例1と同様にして樹脂の再生を行
い、再生廃液中のジルコニウムを定量したところ、ダイ
ヤイオンPK228Lの場合89mg/l、レバチット
SP112WSの場合93mg/lであった。
Comparative Example 1 An adsorption test was performed in the same manner as in Example 1 except that the Zr-trapped ion exchange resin before the heat treatment was used. As a result, the adsorption amount of F 2 - ions was 20.4 g / l-resin in the case of Diaion PK228L, and 20.8 g / l-resin in the case of Levatit SP112WS.
After completion of the adsorption test, the resin was regenerated in the same manner as in Example 1, and the amount of zirconium in the regenerated waste liquid was determined to be 89 mg / l for Diaion PK228L and 93 mg / l for Levatit SP112WS.

【0029】再生後、0.5重量%塩酸水溶液を各1 l
iter用いて酸性化を行い、各2 literの純水で洗浄した
後、再度吸着試験を行った結果、F-イオンの吸着量
は、ダイヤイオンPK228Lの場合16.4g/l−
樹脂、レバチットSP112WSの場合16.6g/l
−樹脂と約20%減少していた。
After regeneration, 1 liter of a 0.5% by weight aqueous hydrochloric acid solution was added.
After acidification using an iter and washing with 2 liters of pure water each time, an adsorption test was performed again. As a result, the adsorption amount of F - ion was 16.4 g / l- in the case of Diaion PK228L.
16.6 g / l for resin and Levatit SP112WS
-Reduced by about 20% with resin.

【0030】比較例2 実施例3において、加熱処理を行う前のZr捕捉イオン
交換樹脂を用いて、実施例3と同様にして吸着試験を行
った。その結果、F-イオンの吸着量は、ダイヤイオン
PK228Lの場合5.9g/l−樹脂、レバチットP
S112WSの場合7.4g/l−樹脂であった。吸着
試験終了後、実施例1と同様にして樹脂の再生を行い、
再生廃液中のジルコニウムを定量したところ、ダイヤイ
オンPK228Lの場合68mg/l、レバチットSP
112WSの場合65mg/lであった。
Comparative Example 2 An adsorption test was carried out in the same manner as in Example 3 except that the Zr-trapped ion exchange resin before the heat treatment was used. As a result, the adsorption amount of F - ion was 5.9 g / l-resin in the case of Diaion PK228L, and Levatit P
In the case of S112WS, it was 7.4 g / l-resin. After completion of the adsorption test, the resin was regenerated in the same manner as in Example 1,
When the amount of zirconium in the reclaimed waste liquid was determined, in the case of Diaion PK228L, 68 mg / l, Levatit SP
In the case of 112WS, it was 65 mg / l.

【0031】比較例1と同様に酸性化および純水洗浄を
行った後、再度吸着試験を行った結果、F-イオンの吸
着量は、ダイヤイオンPK228Lの場合5.1g/l
−樹脂、レバチットSP112WSの場合5.6g/l
−樹脂と約25%減少していた。
[0031] After acidification and pure water washing in the same manner as in Comparative Example 1, as a result of the adsorption test again, F - adsorption of ions in the case of Diaion PK228L 5.1g / l
5.6 g / l for resin, Levatit SP112WS
-Reduced by about 25% with resin.

フロントページの続き (72)発明者 大塚 将碩 大阪府大阪市中央区北浜二丁目2番22号 栗田テクニカルサービス株式会社内Continued Front Page (72) Inventor Masahiro Otsuka 2-22-2 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Kurita Technical Service Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニウム化合物の水溶液を陽イオン
交換樹脂に接触させて、ジルコニウムを陽イオン交換樹
脂に捕捉させた後、加熱処理することを特徴とするジル
コニウム担持イオン交換樹脂の製造方法。
1. A method for producing a zirconium-supported ion-exchange resin, comprising: bringing an aqueous solution of a zirconium compound into contact with a cation-exchange resin to trap zirconium in the cation-exchange resin;
JP20664394A 1994-08-31 1994-08-31 Method for producing zirconium-supported ion exchange resin Expired - Fee Related JP2635014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20664394A JP2635014B2 (en) 1994-08-31 1994-08-31 Method for producing zirconium-supported ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20664394A JP2635014B2 (en) 1994-08-31 1994-08-31 Method for producing zirconium-supported ion exchange resin

Publications (2)

Publication Number Publication Date
JPH0871415A true JPH0871415A (en) 1996-03-19
JP2635014B2 JP2635014B2 (en) 1997-07-30

Family

ID=16526754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20664394A Expired - Fee Related JP2635014B2 (en) 1994-08-31 1994-08-31 Method for producing zirconium-supported ion exchange resin

Country Status (1)

Country Link
JP (1) JP2635014B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077809A (en) * 1997-07-03 2000-06-20 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method for the preparation of a high-porosity adsorbent loaded with crystalline hydrous zirconium oxide
JP2007185604A (en) * 2006-01-13 2007-07-26 Japan Atomic Energy Agency Synthesizing method of anionic adsorbent having zirconium residue and adsorbent obtained thereby
CN111632579A (en) * 2020-05-11 2020-09-08 高陵蓝晓科技新材料有限公司 Defluorination resin and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077809A (en) * 1997-07-03 2000-06-20 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method for the preparation of a high-porosity adsorbent loaded with crystalline hydrous zirconium oxide
JP2007185604A (en) * 2006-01-13 2007-07-26 Japan Atomic Energy Agency Synthesizing method of anionic adsorbent having zirconium residue and adsorbent obtained thereby
CN111632579A (en) * 2020-05-11 2020-09-08 高陵蓝晓科技新材料有限公司 Defluorination resin and preparation method thereof

Also Published As

Publication number Publication date
JP2635014B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
JP3044293B2 (en) Method for producing crystalline hydrous zirconium hydroxide-supported porous adsorbent
CA2926035C (en) Process for regeneration of spent zirconium phosphate for reuse in sorbent treatments
CN108144576A (en) A kind of fluorine adsorbent and the method that fluorine is recycled in removing from fluorinated water
JPH1176807A (en) Manufacture of cesium separation material
CN106853362A (en) A kind of preparation method of the shitosan/aluminium hydroxide compound adsorbent for adsorbing fluorine
CN108993391A (en) A kind of fluorine adsorbent and from fluorinated water removing recycling fluorine method
US2402959A (en) Removal of boron from boron polluted substances
JP2635014B2 (en) Method for producing zirconium-supported ion exchange resin
JPH07215716A (en) Method for removing sulfate ion in salt water
JP2004066161A (en) Water treatment method
JP3957899B2 (en) Regeneration method of arsenic adsorbent
JP4041202B2 (en) Sr ion adsorbent, method for producing the same, and method for treating Sr ion-containing water using the same
JP3831107B2 (en) Radium adsorbent, method for producing the same, and method for treating radium-containing wastewater using the same
CN112844333B (en) Preparation method of organic phosphine doped polyvinyl alcohol chitosan composite sphere
JP3390148B2 (en) Purification treatment method for salt water for electrolysis
JP3832961B2 (en) Regeneration method of radium adsorbent
JPH0724764B2 (en) Composite adsorbent and method for producing the same
JP3981318B2 (en) Treatment method of electroless nickel plating aging solution
JP3563781B2 (en) Dechlorination of organic chlorinated products
JP2001347261A (en) Method for removing fluorine in waste liquid
JPH0889949A (en) Removing device for fluoride ion
JPS6044056A (en) Removal of sulfate ion from brine
JPS6036831B2 (en) Treatment method for water containing arsenic and silica
JPS596197B2 (en) Method for regenerating houfu compound wastewater treatment agent
JPH06144805A (en) Recovery of hydrogen fluoride

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees