JPH0870855A - Method for decomposing organic chlorine compound by microorganism - Google Patents

Method for decomposing organic chlorine compound by microorganism

Info

Publication number
JPH0870855A
JPH0870855A JP20868394A JP20868394A JPH0870855A JP H0870855 A JPH0870855 A JP H0870855A JP 20868394 A JP20868394 A JP 20868394A JP 20868394 A JP20868394 A JP 20868394A JP H0870855 A JPH0870855 A JP H0870855A
Authority
JP
Japan
Prior art keywords
microorganism
organic chlorine
tce
chlorine compound
dichloroacetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20868394A
Other languages
Japanese (ja)
Inventor
Takeshi Imamura
剛士 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20868394A priority Critical patent/JPH0870855A/en
Publication of JPH0870855A publication Critical patent/JPH0870855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To provide a method for decomposing an organic chlorine compound with a microorganism without causing the production of a halo acid. CONSTITUTION: This method for decomposing an organic chlorine compound is to bring the organic chlorine compound into contact with a microorganism having the ability to decompose the organic chlorine compound under alkaline conditions. Either of trichloroethylene or dichloroethylene is used as the organic chlorine compound and the alkaline conditions are within the range of pH 8-11. A bacterium belonging to the genus Pseudomonas, Acinetobacter, Xanthobacter, Corynebacterium, etc., is cited as the microorganism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、環境中に放出された有
機塩素化合物の分解浄化を該有機塩素化合物の分解微生
物によって行うことを特徴とする有機塩素化合物の生物
分解/無毒化法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biodegrading / detoxifying an organochlorine compound, which comprises decomposing and purifying an organochlorine compound released into the environment by a microorganism degrading the organochlorine compound.

【0002】[0002]

【従来の技術】近年、生体に対し有害でありかつ難分解
性である有機塩素化合物による環境汚染が大きな問題と
なってきている。特に、国内外の紙・パルプ工業や精密
機械関連産業地域の土壌中にはテトラクロロエチレン
(PCE)やトリクロロエチレン(TCE)、ジクロロ
エチレン(DCE)等の有機塩素化合物による汚染がか
なりの範囲で拡がっていると考えられており、実際に環
境調査等で検出された事例が多数報告されている。これ
らの有機塩素化合物は土壌中に残留したものが雨水等に
より地下水中に溶解して周辺地域一帯に拡がるとされて
いる。このような化合物は発癌性の疑いがあり、また環
境中で非常に安定であるため、特に飲料水の水源として
利用されている地下水の汚染は大きな社会問題とされて
いる。
2. Description of the Related Art In recent years, environmental pollution caused by organic chlorine compounds, which are harmful to living organisms and hardly decomposed, has become a serious problem. In particular, it is said that contamination by organochlorine compounds such as tetrachloroethylene (PCE), trichlorethylene (TCE) and dichloroethylene (DCE) has spread to a considerable extent in the soil of paper and pulp industry and precision machinery related industrial areas in Japan and overseas. This is considered, and many cases have been reported that were actually detected in environmental surveys. It is said that those organic chlorine compounds that remain in the soil dissolve in groundwater due to rainwater and spread to the entire surrounding area. Since such compounds are suspected to be carcinogenic and are extremely stable in the environment, pollution of groundwater used as a water source for drinking water is a major social problem.

【0003】このようなことから、有機塩素化合物の除
去、分解による地下水等の浄化は、環境保全の視点から
重要な課題であり、浄化に必要な技術の開発が行われて
きている。
From the above, purification of groundwater and the like by removing and decomposing organic chlorine compounds is an important issue from the viewpoint of environmental protection, and techniques necessary for purification have been developed.

【0004】例えば、活性炭による吸着処理、光や熱に
よる分解処理等が検討されてきたが、コストや操作性も
面からかならずしも実用的であるとはいえない。
For example, adsorption treatment with activated carbon and decomposition treatment with light and heat have been studied, but it is not always practical in terms of cost and operability.

【0005】一方、環境中では安定であるTCE等の揮
発性有機塩素化合物に対して近年微生物による分解が報
告され、その実用化に向けた研究がなされ初めている。
即ち、微生物を用いた生物分解処理では用いる微生物を
選択することで無害な物質までに有機塩素化合物を分解
できること、基本的に特別な薬品が不要であること、メ
ンテナンスにかかる労力やコストを軽減できること等の
利点がある。
On the other hand, a microbial organic chlorine compound such as TCE, which is stable in the environment, has recently been reported to be decomposed by microorganisms, and studies for its practical use have begun.
That is, in the biodegradation treatment using microorganisms, it is possible to decompose organic chlorine compounds into harmless substances by selecting the microorganisms to be used, basically no special chemicals are required, and maintenance labor and cost can be reduced. And so on.

【0006】例えば、TCE分解菌としてはこれまで十
数種が発見、単離されている。このうち代表的なものは
基質の種類によってメタン資化性菌と芳香族資化性菌の
二つに大きく分けることができる。前者のメタン資化性
菌の代表的なものとしてはメタンモノオキシゲナーゼを
有するMethylocystis sp.strai
n M(Agric.Biol.Chem.,53,2
903(1989)、Biosci.Biotech.
Biochem.,56,486(1992)、同5
6,736(1992))、Methylosinus
trichosporium OB3b(Am.Ch
em.Soc.Natl.Meet.Dev.Envi
ron.Microbiol.,29,365(198
9)、Appl.Environ.Microbio
l.,55,3155(1989)、Appl.Bio
chem.Biotechnol.,28,877(1
991))等がある。また、後者の芳香族化合物資化性
菌としてはフェノールハイドロキシラーゼを有するPs
eudomonas Putida BH(下水道協会
誌,24,27(1987))、トルエンモノオキシゲ
ナーゼを有するAcinetobactor sp.
trainG4(Appl.Environ.Micr
obiol.,52,383(1986)、同53,9
49(1987)、同54,951(1989)、同5
6,279(1990)、同57,193(199
1))、Pseudomonas mendocina
KR−1(Bio/Technol.,7,282
(1989))、トルエンジオキシゲナーゼを有する
seudomonas putida F1(App
l.Environ.MIcrobiol.,54,1
703(1988)、同54,2587(1988))
を挙げることができる。またさらに、Nitrosom
onas europaeaの様なアンモニア資化性菌
も、アンモニアモノオキシゲナーゼによってTCEを分
解すると報告されている(Appl.Environ.
Microbiol.,56,1169(199
0))。
For example, more than ten species of TCE-degrading bacteria have been discovered and isolated so far. Among them, the representative ones can be roughly divided into two types, methane-utilizing bacteria and aromatic-utilizing bacteria, depending on the type of substrate. A typical example of the former methanotrophs is Methylocystis sp., Which has methane monooxygenase . strai
n M (Agric. Biol. Chem., 53, 2)
903 (1989), Biosci. Biotech.
Biochem. , 56, 486 (1992), 5
6,736 (1992)), Methylosinus
trichosporium OB3b (Am. Ch
em. Soc. Natl. Meet. Dev. Envi
ron. Microbiol. , 29, 365 (198
9), Appl. Environ. Microbio
l. 55, 3155 (1989), Appl. Bio
chem. Biotechnol. , 28,877 (1
991)) and so on. Further, as the latter aromatic compound-assimilating bacterium, Ps having phenol hydroxylase
eudomonas Putida BH (Sewer Association, 24, 27 (1987)), Acinetobacter sp. having toluene monooxygenase . s
trainG4 (Appl. Environ. Micr
obiol. , 52, 383 (1986), ibid. 53, 9
49 (1987), ibid 54, 951 (1989), ibid 5
6,279 (1990), 57,193 (199)
1)), Pseudomonas mendocina
KR-1 (Bio / Technol., 7, 282)
(1989)), P having toluene dioxygenase
seudomonas putida F1 (App
l. Environ. MIcrobiol. , 54, 1
703 (1988), ibid. 54,2587 (1988)).
Can be mentioned. In addition, Nitrosom
Ammonia-utilizing bacteria such as onas europaea have also been reported to degrade TCE by ammonia monooxygenase (Appl. Environ.
Microbiol. , 56, 1169 (199
0)).

【0007】[0007]

【発明が解決しようとする課題】上述のように、TCE
分解菌として種々の菌株が単離、同定されているが、こ
れらの菌はすべて、オキシゲナーゼ系の酵素によってT
CEをエポキシ化し、その後は生物的に或いは非生物的
に分解されていくとされている。このような段階で、T
CEエポキシドのプロトン化が起こると、その結果とし
てグリオキシル酸と並んでジクロロ酢酸が生成する。
As described above, the TCE
Various strains have been isolated and identified as degrading bacteria, but all of these strains are isolated by T
It is said that CE is epoxidized and then biodegraded or biodegraded. At this stage, T
Protonation of the CE epoxide results in dichloroacetic acid alongside glyoxylic acid.

【0008】ジクロロ酢酸は、飲料水の塩素消毒副生成
物として問題となっている物質の一つであり、神経毒性
を持ち、眼障害を引き起こす疑いのある物質として環境
監視物質に指定されている(指針値0.04mg/
l)。なお、これらのことは第23回日本水環境学会セ
ミナー/水質環境基準改訂に伴う分析法((社)日本水
環境学会)講演資料集p55−p64(平成5年11
月)に詳細に記載されている。
[0008] Dichloroacetic acid is one of the substances that have been problematic as a chlorine disinfection by-product of drinking water and is designated as an environmental monitoring substance as a substance that has neurotoxicity and is suspected of causing eye damage. (Guideline value 0.04 mg /
l). In addition, these are the 23rd Japan Society for Water Environment Seminar / Analytical method with revision of water quality standards (Japan Society for Water Environment) Proceedings p55-p64 (1993)
Month).

【0009】本発明の目的は、このような有機塩素化合
物のオキシゲナーゼ系による分解において普遍的に生成
する有害物質であるジクロロ酢酸が生成しないかあるい
は基準値を大幅に下回るような条件で有機塩素化合物の
生物的な分解、浄化を行うような有機塩素化合物の分解
/無毒化法を提供することにある。
The object of the present invention is to produce an organochlorine compound under such a condition that dichloroacetic acid, which is a harmful substance that is universally produced in the decomposition of such an organochlorine compound by an oxygenase system, is not produced or is significantly lower than the standard value. An object of the present invention is to provide a method for decomposing / detoxifying an organic chlorine compound, which carries out biological decomposition and purification of

【0010】[0010]

【課題を解決するための手段】本発明の方法としては、
有機塩素化合物のオキシゲナーゼ系による微生物分解を
行う際の培地条件を、ジクロロ酢酸の生成につながる、
TCEエポキシドのプロトン化が起こらないように設定
して有機塩素化合物の微生物分解、浄化を行うことを目
的とする。そのためにはアルカリ性、具体的には特定の
pH領域で微生物分解を行うことであり、そのpHは8
から11の範囲が望ましいが、分解菌自体の増殖や分解
活性等を考慮すると、さらに望ましくは8.5から9.
5の範囲に限定して有機塩素化合物の微生物分解、浄化
を行うものである。このような条件下ではTCEエポキ
シドのプロトン化は起こらず、水(ヒドロキシルイオ
ン)が付加して一酸化炭素およびギ酸が生成し、最終的
に無害な二酸化炭素にまで変換される。
As the method of the present invention,
Media conditions for microbial degradation of organochlorine compounds by the oxygenase system lead to the production of dichloroacetic acid,
The purpose is to carry out microbial decomposition and purification of organic chlorine compounds by setting so that TCE epoxide is not protonated. For that purpose, microbial decomposition is performed in an alkaline, specifically, specific pH range, and the pH is 8
The range of from 11 to 11 is desirable, but more preferably from 8.5 to 9.
The microbial decomposition and purification of the organic chlorine compound is limited to the range of 5. Under such conditions, protonation of the TCE epoxide does not occur, water (hydroxyl ion) is added to form carbon monoxide and formic acid, and finally converted into harmless carbon dioxide.

【0011】本発明の方法に用いる微生物としては、有
機塩素化合物の分解が有機塩素化合物のエポキシドを経
由する分解経路でありかつ、副生成物であるジクロロ酢
酸等のハロ酸を分解しない微生物であれば制限なく利用
でき、前記の従来の技術に挙げたTCE分解菌はすべて
用いることができる。従って、このような微生物で、上
記のような性質を有するものであれば未同定の微生物で
も利用できることが予想できる。故に単離されていない
微生物、共生系の微生物群、単離・同定された微生物も
利用できることになる。同定されている微生物として
は、シュードモナス属、アシネトバクター属、キサント
バクター属、コリネバクテリウム属等に属する細菌で上
記の性質を有するのもが利用でき、特にシュードモナス
セパシア、シュードモナスプチダ、シュードモナスフル
オレセンス、シュードモナスアルギノーザ等の細菌が有
効であり、例えばタカサゴシロアリの腸内より単離され
たシュードモナスセパシアKK01株(FERMBP−
4235;以後KK01株と記載する)、或いはコリネ
バクテリウムsp.J1株(FERMBP−14332
号;以後J1株と記載する)等を示すことができる。
The microorganism used in the method of the present invention may be a microorganism which decomposes an organic chlorine compound through an epoxide of the organic chlorine compound and does not decompose a halo acid such as dichloroacetic acid which is a by-product. The TCE-degrading bacteria listed in the above-mentioned conventional techniques can be used without limitation. Therefore, it can be expected that even such unidentified microorganisms can be used as long as they have the above-mentioned properties. Therefore, non-isolated microorganisms, symbiotic microbial groups, and isolated / identified microorganisms can also be used. As the microorganisms that have been identified, Pseudomonas spp, Acinetobacter spp, Xanthobacter spp, Corynebacterium spp., And the like having the above-mentioned properties can also be used, and in particular Pseudomonas cepacia, Pseudomonas putida, Pseudomonas fluorescens. , Pseudomonas arginosa and the like are effective, and for example, Pseudomonas cepacia strain KK01 (FERMBP-
4235; hereinafter referred to as KK01 strain), or Corynebacterium sp. J1 strain (FERMBP-14332
No .; hereinafter referred to as J1 strain) and the like.

【0012】分解処理される有機塩素化合物としては、
TCEやDCE等の塩素化エチレン等を挙げることがで
きる。
Organochlorine compounds to be decomposed include
Examples thereof include chlorinated ethylene such as TCE and DCE.

【0013】本発明の方法は、廃水処理や土壌処理等、
閉鎖系及び開放系のいずれの場合にも適用できる。ま
た、微生物を担体等に固定して用いたり、生育を促進す
る各種の方法を併用してもよい。
The method of the present invention is applied to wastewater treatment, soil treatment, etc.
It can be applied to both closed and open systems. Further, the microorganisms may be immobilized on a carrier or the like, or various methods for promoting growth may be used in combination.

【0014】[0014]

【実施例】以下実施例により本発明をさらに詳細に説明
する。なお、各実施例で用いたM9培地は下記の組成を
有するものである。
The present invention will be described in more detail with reference to the following examples. The M9 medium used in each example has the following composition.

【0015】M9培地組成(1リットル中); Na2HPO4 6.2g KH2PO4 3.0g NaCl 0.5g NH4Cl 1.0g 水 残 部 (pH7.0) すべてのTCE濃度の測定は、ヘッドスペース−ガスク
ロマトグラフィー法で行った即ち、50ml容バイアル
瓶に後に記す方法で所定のTCE濃度になるように調製
したM9培地を15ml加え、100μlの菌液を加え
た後、ゴム栓、アルミキャップで密閉し、30℃で一定
時間振盪培養した後に気相0.1mlを採取し、ガスク
ロマトグラフィー分析を行なった。また、ジクロロ酢酸
の測定はTCE分解培養液を希硫酸でpH2に調整し、
遠心分離した上澄液をジエチルエーテルおよび酢酸エチ
ルで抽出し、ロータリーエバポレーターで乾固させた後
脱イオン水に再溶解させて95%0.01N硫酸水溶液
/アセトニトリル=95/5(v/v)を溶媒として高
速液体クロマトグラフィーで行なった。なお、ジクロロ
酢酸標品と同時間のリテンションタイムに溶出するピー
クが確かにジクロロ酢酸であることはGC/MS法によ
って確認した。
M9 medium composition (in 1 liter); Na 2 HPO 4 6.2 g KH 2 PO 4 3.0 g NaCl 0.5 g NH 4 Cl 1.0 g Water balance (pH 7.0) Measurement of all TCE concentrations Was carried out by the headspace-gas chromatography method, that is, 15 ml of M9 medium prepared to a predetermined TCE concentration by the method described later was added to a 50 ml vial bottle, 100 μl of the bacterial solution was added, and a rubber stopper was added. After sealing with an aluminum cap and shaking culture at 30 ° C. for a certain period of time, 0.1 ml of the gas phase was sampled and analyzed by gas chromatography. In addition, for the measurement of dichloroacetic acid, the TCE-decomposed culture solution was adjusted to pH 2 with diluted sulfuric acid,
The centrifuged supernatant was extracted with diethyl ether and ethyl acetate, dried on a rotary evaporator and then redissolved in deionized water to obtain 95% 0.01N sulfuric acid aqueous solution / acetonitrile = 95/5 (v / v). Was used as a solvent to perform high performance liquid chromatography. It was confirmed by the GC / MS method that the peak eluting at the same retention time as that of the dichloroacetic acid sample was indeed dichloroacetic acid.

【0016】実施例1 KK01株およびJ1株の各pHにおけるTCEの分解 pHを4、5、6(稀硫酸にて調整)、7(調整な
し)、8、9、10(稀水酸化ナトリウムにて調整)に
調整したM9培地にTCEを10ppmになるように加
え、予めフェノール100ppmおよび酵母エキス0.
05%を含むM9培地中で分解活性をTCE高めたKK
01株およびJ1株を集菌して菌濃度が6〜8x108
cells/mlになるように加えて、30℃、120
rpmで振盪培養し、24時間後に実施例の前段で示し
たような方法でTCE濃度を測定した。
Example 1 Degradation of TCE in strains KK01 and J1 at various pHs pH was adjusted to 4, 5, 6 (adjusted with diluted sulfuric acid), 7 (not adjusted), 8, 9, 10 (diluted sodium hydroxide). TCE was added to M9 medium adjusted to 10 ppm so as to be 10 ppm, and phenol 100 ppm and yeast extract 0.
KK with enhanced TCE in degradation activity in M9 medium containing 05%
The 01 strain and the J1 strain were collected and the bacterial concentration was 6 to 8 × 10 8.
cells / ml at 30 ° C, 120
The cells were cultivated with shaking at rpm, and after 24 hours, the TCE concentration was measured by the method as shown in the preceding stage of the example.

【0017】その結果、KK01株、J1株とも、pH
4から9までは10ppmのTCEを検出限界以下にま
で分解したのに対しpH10では両菌株ともTCEは全
く分解されなかった。以上の結果を踏まえ、ジクロロ酢
酸生成量制御実験はpH4から9までの範囲で行なうこ
ととした。
As a result, the pH of both KK01 strain and J1 strain was
From 4 to 9, 10 ppm of TCE was decomposed to below the detection limit, while at pH 10, neither strain of TCE was decomposed at all. Based on the above results, it was decided to carry out the dichloroacetic acid production amount control experiment in the range of pH 4 to 9.

【0018】実施例2 KK01株およびJ1株によるTCE分解におけるジク
ロロ酢酸生成量のpHによる制御 実施例1と同様にpHを4、5、6、7、8、9に調整
したM9培地1リットルにTCEを10ppmになるよ
うに加え、予めフェノール100ppmおよび酵母エキ
ス0.05%を含むM9培地中で分解活性をTCEで高
めたKK01株およびJ1株を集菌して菌濃度が6〜8
x108cells/mlになるように加えて、30
℃、120rpmで振盪培養し、24時間後に実施例の
前段で示したような方法でジクロロ酢酸濃度を測定し
た。
Example 2 Control of pH of Dichloroacetic Acid Production in TCE Degradation by KK01 and J1 Strains In the same manner as in Example 1, 1 liter of M9 medium adjusted to pH 4, 5, 6, 7, 8, 9 was used. TCE was added to 10 ppm, and the KK01 strain and J1 strain whose decomposition activity was enhanced by TCE were collected in advance in M9 medium containing 100 ppm of phenol and 0.05% of yeast extract, and the bacterial concentration was 6-8.
x10 8 cells / ml, add 30
The cells were cultivated with shaking at 120 ° C. at 24 ° C., and after 24 hours, the dichloroacetic acid concentration was measured by the method as described in the previous section of the examples.

【0019】結果を表1に示す。ジクロロ酢酸濃度の値
は元の培養液に対する換算濃度で示した。このように、
KK01株、J1株ともpH9において飲料水の環境指
針値である0.04mg/lを下回る量のジクロロ酢酸
が検出され、培養液のアルカリ側への制御によるジクロ
ロ酢酸の生成抑制効果が示された。なお、pH9での生
成ジクロロ酢酸の測定は、厚生省および環境庁により定
められたハロ酢酸の分析法(tert−ブチルメチルエ
ーテル抽出→ジアゾメタンによるメチル化→ECD−G
C分析)においても環境指針値以下であることが示され
た。 (単位はmg/l) 実施例3 土着フェノール資化性TCE分解菌群の各pHにおける
TCEの分解 通常一般的な土壌中には潜在的にフェノール等の芳香族
化合物を分解しうる微生物が幾種類か存在するとされ、
さらにその内の何割かは共酸化作用によってTCEの様
な塩素化エチレンを分解する能力を有しているとされて
いる。
The results are shown in Table 1. The value of the dichloroacetic acid concentration is shown as the concentration converted to the original culture solution. in this way,
Dichloroacetic acid was detected in both the KK01 strain and the J1 strain at pH 9 below the environmental guideline value of drinking water of 0.04 mg / l, and the effect of suppressing the production of dichloroacetic acid by controlling the culture medium to the alkaline side was shown. . The measurement of dichloroacetic acid produced at pH 9 was carried out by the analysis method of haloacetic acid (tert-butyl methyl ether extraction → methylation with diazomethane → ECD-G, which was determined by the Ministry of Health and Welfare.
C analysis) also showed that the value was less than the environmental guideline value. (Unit: mg / l) Example 3 Degradation of TCE at each pH of the indigenous phenol-utilizing TCE-degrading bacteria group Usually, in general soil, there are some microorganisms potentially capable of decomposing aromatic compounds such as phenol. Kind or exist
Furthermore, some of them are said to have the ability to decompose chlorinated ethylene such as TCE by cooxidation.

【0020】神奈川県厚木市にて採取した褐色森林土1
gを50mlのM9培(フェノール100ppmを含
む)に入れて30℃、120rpmで1週間振盪培養し
てその内の1%を同様の培地に植え継いでさらに1週間
培養した。この操作を3回繰り返し、酵母エキス(0.
05%)、フェーノール(100ppm)を含むM9寒
天培地で培養したところ少なくとも4種類のコロニーが
確認された。そこで、これらの菌を混合系で培養し、実
施例1と同様にpHを4、5、6、7、8、9に調整し
たM9培地でのTCE分解実験をおこなった。なお、T
CE濃度は2ppmとした。
Brown forest soil 1 collected in Atsugi City, Kanagawa Prefecture
Into 50 ml of M9 medium (containing 100 ppm of phenol), the culture was shaken at 30 ° C. and 120 rpm for 1 week, and 1% of the medium was subcultured in the same medium and further cultured for 1 week. This operation was repeated 3 times, and yeast extract (0.
(5%) and phenol (100 ppm) in M9 agar medium, at least 4 kinds of colonies were confirmed. Therefore, these bacteria were cultivated in a mixed system, and TCE decomposition experiments were conducted in M9 medium whose pH was adjusted to 4, 5, 6, 7, 8, and 9 as in Example 1. In addition, T
The CE concentration was 2 ppm.

【0021】その結果、pH5から9までは10ppm
のTCEを検出限界以下にまで分解したのに対しpH4
では70%の分解に留まり、pH10ではTCEは全く
分解されなかった。以上の結果を踏まえ、土着フェノー
ル資化性TCE分解菌群のジクロロ酢酸生成量制御実験
はpH5から9までの範囲で行なうことにした。
As a result, 10 ppm at pH 5 to 9
Of TCE was decomposed to below the detection limit, while pH4
No more than 70% was decomposed, and at pH 10, TCE was not decomposed at all. Based on the above results, it was decided that the experiment for controlling the amount of dichloroacetic acid produced by the group of indigenous phenol-assimilating TCE-degrading bacteria would be carried out within the pH range of 5 to 9.

【0022】実施例4 土着フェノール資化性TCE分解菌群によるTCE分解
におけるジクロロ酢酸生成量のpHによる制御 実施例1と同様にpHを5、6、7、8、9に調整した
M9培地1リットルにTCEを2ppmになるように加
え、予めフェノール100ppmおよび酵母エキス0.
05%を含むM9培地中で分解活性をTCEで高めた土
着フェノール資化性TCE分解菌群を集菌してOD=
1.2程度になるように加えて、30℃、120ppm
で振盪培養し、24時間後に実施例の前段で示したよう
な方法でジクロロ酢酸濃度を測定した。
Example 4 Control of pH of production amount of dichloroacetic acid in TCE decomposition by indigenous phenol-utilizing TCE-decomposing bacteria group by pH M9 medium 1 adjusted to pH 5, 6, 7, 8, 9 as in Example 1 TCE was added to 2 liters so as to be 2 ppm, and 100 ppm of phenol and yeast extract were added in advance.
The indigenous phenol-utilizing TCE-degrading bacteria group, whose degradation activity was enhanced by TCE, was collected in M9 medium containing 05% to collect OD =
In addition to 1.2, 30 ℃, 120ppm
The cells were cultivated with shaking at 24 hours, and after 24 hours, the concentration of dichloroacetic acid was measured by the method described in the previous section of the example.

【0023】結果を表2に示す。ジクロロ酢酸濃度の値
は元の培養液に対する換算濃度で示した。このように、
土着フェノール資化性TCE分解菌群においてもpH9
において飲料水の環境指針値である0.04mg/lを
下回る量のジクロロ酢酸が検出され、培養液のアルカリ
側への制御によるジクロロ酢酸の生成抑制効果が示され
た。なお、pH9での生成ジクロロ酢酸の測定は、厚生
省および環境庁により定められたハロ酢酸の分析法(t
ert−ブチルメチルエーテル抽出→ジアゾメタンによ
るメチル化→ECD−GC分析)においても環境指針値
以下であることが示された。 (単位はmg/l)
The results are shown in Table 2. The value of the dichloroacetic acid concentration is shown as the concentration converted to the original culture solution. in this way,
PH 9 even in the indigenous phenol-utilizing TCE-degrading bacteria group
In the experiment, dichloroacetic acid was detected in an amount less than 0.04 mg / l which is the environmental guideline value of drinking water, and the effect of suppressing the production of dichloroacetic acid by controlling the culture solution to the alkaline side was shown. In addition, the measurement of dichloroacetic acid produced at pH 9 was carried out by the analysis method of haloacetic acid (t
ert-butyl methyl ether extraction → methylation with diazomethane → ECD-GC analysis) also showed that it was below the environmental guideline value. (Unit is mg / l)

【0024】[0024]

【発明の効果】本発明の方法により、TCEの様な揮発
性有機塩素化合物によって汚染された地下水や土壌を微
生物によって分解浄化処理を行う際に副生成物として生
じるジクロロ酢酸の様なハロ酸の量を制御し、二次汚染
を発生させないような生物的浄化処理が可能となった。
INDUSTRIAL APPLICABILITY By the method of the present invention, when groundwater or soil polluted by volatile organic chlorine compounds such as TCE is decomposed and purified by microorganisms, halo acids such as dichloroacetic acid produced as a by-product are removed. It has become possible to control the amount and perform biological purification treatment that does not cause secondary pollution.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 1/20 C12R 1:15) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location (C12N 1/20 C12R 1:15)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ性条件下で、有機塩素化合物に
該有機塩素化合物を分解する能力を持つ微生物を接触さ
せることを特徴とする有機塩素化合物の微生物による分
解法。
1. A method for degrading an organic chlorine compound by a microorganism, which comprises contacting the organic chlorine compound with a microorganism capable of degrading the organic chlorine compound under alkaline conditions.
【請求項2】 有機塩素化合物が塩素化エチレンである
請求項1に記載の方法。
2. The method according to claim 1, wherein the organochlorine compound is chlorinated ethylene.
【請求項3】 塩素化エチレンがトリクロロエチレンま
たはジクロロエチレンのいずれかである請求項2に記載
の方法。
3. The method according to claim 2, wherein the chlorinated ethylene is either trichloroethylene or dichloroethylene.
【請求項4】 アルカリ性条件が、pH8からpH11
の範囲である請求項1ないし3のいずれかに記載の方
法。
4. The alkaline condition is pH 8 to pH 11.
The method according to any one of claims 1 to 3, which is in the range of.
【請求項5】 アルカリ性条件が、pH8.5〜9.5
の範囲である請求項4に記載の方法。
5. The alkaline condition has a pH of 8.5 to 9.5.
The method according to claim 4, wherein
【請求項6】 該微生物がシュードモナス属に属する微
生物である請求項1から5のいずれかに記載の方法。
6. The method according to claim 1, wherein the microorganism belongs to the genus Pseudomonas.
【請求項7】 微生物がシュードモナスセパシアKK0
1株である請求項6に記載の方法。
7. The microorganism is Pseudomonas cepacia KK0.
The method according to claim 6, which is one strain.
【請求項8】 該微生物がコリネバクテリウム属に属す
る微生物である請求項1から5のいずれかに記載の方
法。
8. The method according to claim 1, wherein the microorganism is a microorganism belonging to the genus Corynebacterium.
【請求項9】 微生物がコリネバクテリウムsp.J1
株である請求項8に記載の方法。
9. The microorganism is Corynebacterium sp. J1
The method according to claim 8, which is a strain.
JP20868394A 1994-09-01 1994-09-01 Method for decomposing organic chlorine compound by microorganism Pending JPH0870855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20868394A JPH0870855A (en) 1994-09-01 1994-09-01 Method for decomposing organic chlorine compound by microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20868394A JPH0870855A (en) 1994-09-01 1994-09-01 Method for decomposing organic chlorine compound by microorganism

Publications (1)

Publication Number Publication Date
JPH0870855A true JPH0870855A (en) 1996-03-19

Family

ID=16560345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20868394A Pending JPH0870855A (en) 1994-09-01 1994-09-01 Method for decomposing organic chlorine compound by microorganism

Country Status (1)

Country Link
JP (1) JPH0870855A (en)

Similar Documents

Publication Publication Date Title
Bosso et al. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation
Polti et al. Bioremediation of chromium (VI) contaminated soil by Streptomyces sp. MC1
Bryant et al. Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries
Adeola Fate and toxicity of chlorinated phenols of environmental implications: a review
Hadibarata et al. Biodegradation mechanism of chlorpyrifos by halophilic bacterium Hortaea sp. B15
JPH0650980B2 (en) Method for microbial decomposition of aliphatic chlorine compound and its microorganism
JPH06296711A (en) Biological decomposition of trichloroethylene and biological decomposition of organic chlorine compound by microorganism
US5998198A (en) Microorganisms that decompose halogenated hydrocarbons and their use
Szewczyk et al. Pentachlorophenol and spent engine oil degradation by Mucor ramosissimus
JPH09276830A (en) Biological decomposition method of organic compound and environment restoring method
US5516688A (en) Method of biodegrading hydrophobic organic compounds, particularly PCBS, and remediation thereof using a bioemulsifier
Muńoz et al. Growth of moderately halophilic bacteria isolated from sea water using phenol as the sole carbon source
Mandal et al. Biodegradation of benzo [a] pyrene by Rhodotorula sp. NS01 strain isolated from contaminated soil sample
JPH0870855A (en) Method for decomposing organic chlorine compound by microorganism
Lallai et al. Biodegradation of 2‐chlorophenol in forest soil: Effect of inoculation with aerobic sewage sludge
Ehlers et al. An integrated anaerobic/aerobic bioprocess for the remediation of chlorinated phenol‐contaminated soil and groundwater
JP3382393B2 (en) Biodegradation purification method of trichlorethylene
JP3435426B2 (en) Halogenated hydrocarbon-degrading bacteria and use thereof
Monrroy et al. Degradation of tribromophenol by wood-rot fungi and hamilton system
KR100607031B1 (en) -03new microorganism pseudomonas sp. ph-03 capable of degrading dioxins
JP3436654B2 (en) Halogenated hydrocarbon-degrading bacteria and use thereof
JP3461238B2 (en) Organic compound biodegradation method and environmental restoration method
JPH1190411A (en) Method for environmental restoration
Bécaert et al. Development of a microbial consortium from a contaminated soil that degrades pentachlorophenol and wood-preserving oil
KR100607032B1 (en) New microorganism fusarium sp. probio-59 capable of degrading dioxins

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040317