JPH0870587A - Driving apparatus for ultrasonic motor - Google Patents

Driving apparatus for ultrasonic motor

Info

Publication number
JPH0870587A
JPH0870587A JP6228859A JP22885994A JPH0870587A JP H0870587 A JPH0870587 A JP H0870587A JP 6228859 A JP6228859 A JP 6228859A JP 22885994 A JP22885994 A JP 22885994A JP H0870587 A JPH0870587 A JP H0870587A
Authority
JP
Japan
Prior art keywords
phase
voltage
laminated piezoelectric
frequency
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6228859A
Other languages
Japanese (ja)
Inventor
Toshiharu Tsubata
敏晴 津幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP6228859A priority Critical patent/JPH0870587A/en
Publication of JPH0870587A publication Critical patent/JPH0870587A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a driving apparatus for ultrasonic motors wherein driving frequency is capable of being varied so that phase difference between voltage applied to a plurality of laminated piezoelectric elements and current passing through them will fall within a specified range, and being thereby optimized. CONSTITUTION: An ultrasonic motor includes an elastic body and an ultrasonic piezoelectric transducer composed of a plurality of laminated piezoelectric elements secured on the elastic body. A driving apparatus for ultrasonic motors moves a mobile body by applying a.c. voltages, different in phase from each other, to these laminated piezoelectric elements by means of a two-phase oscillator 1 and thereby generating ultrasonic oscillation. In the driving apparatus one of the plurality of the laminated piezoelectric elements 113A, 113B is selected according to the direction of the movement of the mobile body. The driving apparatus is provided with means 4, 5, 6, 7, 8, 9 for so controlling the frequency of a.c. voltage that phase difference between the a.c. voltage applied to a selected laminated piezoelectric element and current passing through the piezoelectric element will be a specified value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気−機械エネルギー
変換素子に交流電圧を印加し、超音波振動を発生させ、
これをエネルギー源とする超音波モータの駆動装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention applies an AC voltage to an electro-mechanical energy conversion element to generate ultrasonic vibration.
The present invention relates to a drive device for an ultrasonic motor using this as an energy source.

【0002】[0002]

【従来の技術】従来、弾性体に固定した複数の電気−機
械エネルギー変換素子に交流電圧を印加し、超音波振動
を発生させ、移動体を移動させる超音波モータについて
は、先に本出願人より出願された特開平6−10557
1号公報所載の技術(従来技術1)が開示されている。
2. Description of the Related Art Conventionally, regarding an ultrasonic motor for moving a moving body by applying an AC voltage to a plurality of electro-mechanical energy conversion elements fixed to an elastic body, an ultrasonic motor for moving a moving body has been previously described by the present applicant. Filed by JP-A-6-10557
The technology (conventional technology 1) described in the publication No. 1 is disclosed.

【0003】図8は従来技術1の超音波モ−タの要部を
なす機械−電気エネルギー変換素子たる超音波振動子の
斜視図である。この超音波振動子110は、基本弾性体
111の上面に3つの保持用弾性体112を固定し、そ
れぞれの保持用弾性体112の間に積層型圧電素子11
3A,113Bを挟持固定したものである。
FIG. 8 is a perspective view of an ultrasonic transducer which is a mechanical-electrical energy conversion element which constitutes an essential part of the ultrasonic motor of the prior art 1. In this ultrasonic transducer 110, three holding elastic bodies 112 are fixed to the upper surface of a basic elastic body 111, and the laminated piezoelectric element 11 is provided between the holding elastic bodies 112.
3A and 113B are sandwiched and fixed.

【0004】基本弾性体111は、黄銅材料を直方体形
状に加工したもので、上面の両端と中央部の3個所(2
次の屈曲振動の節に相当する部分)に保持用弾性体11
2をエポキシ系接着剤で固定した上、さらにネジ114
止めしている。そして、各々の保持用弾性体112の間
に積層型圧電素子113A,113Bをつき当てて保持
している。即ち、積層型圧電素子113A,113Bは
基本弾性体111と接触しないように保持用弾性体11
2に接着固定されている。また、積層型圧電素子113
A,113Bの側面部は樹脂被覆がなされている。ここ
で、図8の左側の積層型圧電素子113Aへの電極を
A、GとしA相と呼ぶことにする。同様に右側の積層型
圧電素子113Bへの電極をB、GとしB相と呼ぶこと
にする。
The basic elastic body 111 is formed by processing a brass material into a rectangular parallelepiped shape, and has three parts (2
The elastic body 11 for holding is provided at the portion corresponding to the node of the next bending vibration).
2 is fixed with epoxy adhesive and screw 114
I have stopped. Then, the laminated piezoelectric elements 113A and 113B are abutted and held between the respective holding elastic bodies 112. That is, the laminated piezoelectric elements 113A and 113B are arranged so that the holding elastic body 11 does not come into contact with the basic elastic body 111.
It is adhesively fixed to 2. In addition, the laminated piezoelectric element 113
The side surfaces of A and 113B are resin-coated. Here, the electrodes to the laminated piezoelectric element 113A on the left side of FIG. 8 are referred to as A and G and are referred to as A phase. Similarly, electrodes to the laminated piezoelectric element 113B on the right side are referred to as B and G and are referred to as B phase.

【0005】基本弾性体111の底面両端部には、摺動
部材115が接着されている。この摺動部材115はポ
リイミドに充填剤としてカーボンファイバー(20重量
%)とマイカ(30重量%)とを混入したもので、厚さ
約0.1mmのものである。
Sliding members 115 are adhered to both ends of the bottom surface of the basic elastic body 111. The sliding member 115 is made of polyimide mixed with carbon fiber (20% by weight) and mica (30% by weight) as a filler, and has a thickness of about 0.1 mm.

【0006】なお、超音波振動子110の諸元を参考に
記すと、基本弾性体111の寸法は幅30mm、高さ8m
m、奥行4mmであり、保持用弾性体112の寸法は幅4m
m、高さ3mm、奥行4mmであり、積層型圧電素子113
はトーキン(株)のNL−2×3×9で、寸法は2mm×
3.1mm×9mmである。
Incidentally, referring to the specifications of the ultrasonic transducer 110, the dimensions of the basic elastic body 111 are 30 mm in width and 8 m in height.
The length of the holding elastic body 112 is 4 m.
m, height 3 mm, depth 4 mm, laminated piezoelectric element 113
Is NL-2 × 3 × 9 from Tokin Co., Ltd., and the size is 2 mm ×
It is 3.1 mm x 9 mm.

【0007】次に、超音波振動子の動作について説明す
る。上記寸法の超音波振動子は、コンピュータシミュレ
ーションによれば、図9に示すような1次の共振縦振
動、及び図10に示すような2次の共振屈曲振動がほぼ
同一周波数で励起できる。その周波数は53.5kHz
である。そこで、A相及びB相に30Vの直流電圧を印
加して積層型圧電素子113A,113Bに圧縮予圧を
加えた上、A相及びB相に周波数53.5kHz振幅1
0Vp−pの交番電圧を印加する。ここで、A相とB相
の位相を同位相にすると、図9に示すような1次の共振
縦振動が励起される。つぎに、A相とB相の位相を逆位
相にすると、図10に示すような2次の共振屈曲振動が
励起される。つぎに、A相とB相の位相を90度ずらす
と、摺動部材115付近に超音波楕円振動を励起するこ
とができる。
Next, the operation of the ultrasonic transducer will be described. According to the computer simulation, the ultrasonic transducer having the above dimensions can excite the primary resonant longitudinal vibration as shown in FIG. 9 and the secondary resonant bending vibration as shown in FIG. 10 at substantially the same frequency. Its frequency is 53.5 kHz
Is. Therefore, a direct current voltage of 30 V is applied to the A phase and the B phase to apply compression preload to the laminated piezoelectric elements 113A and 113B, and the A phase and the B phase have a frequency of 53.5 kHz and an amplitude of 1
An alternating voltage of 0 Vp-p is applied. Here, if the phases of the A phase and the B phase are made to be the same phase, primary resonant longitudinal vibration as shown in FIG. 9 is excited. Next, when the phases of the A phase and the B phase are made opposite to each other, secondary resonant bending vibration as shown in FIG. 10 is excited. Next, by shifting the phases of the A phase and the B phase by 90 degrees, ultrasonic elliptical vibration can be excited near the sliding member 115.

【0008】この摺動部材115に励起した超音波楕円
運動により、これに接する移動体を移動させるものであ
る。またこの移動体の移動方向を変えるのは、積層型圧
電素子113A,113Bの電極A相とB相に印加する
電圧の位相差を+90度または−90度とするものであ
る。
By the ultrasonic elliptical motion excited on the sliding member 115, the moving body in contact therewith is moved. The moving direction of the moving body is changed by setting the phase difference between the voltages applied to the electrodes A phase and B phase of the laminated piezoelectric elements 113A and 113B to +90 degrees or -90 degrees.

【0009】従来技術1によれば、積層型圧電素子を用
いて圧電縦効果を利用したので、電気−機械変換効率が
向上し、低電圧駆動が可能となった。また極めて簡易な
構成でコンパクトでありながら、出力の大きい超音波リ
ニアモータを得ることができるとともに、積層型圧電素
子に予圧をかけながら使用するので、モータの耐久性を
向上させることができる。
According to the prior art 1, since the piezoelectric longitudinal effect is utilized by using the laminated piezoelectric element, the electromechanical conversion efficiency is improved and the low voltage driving becomes possible. Further, it is possible to obtain an ultrasonic linear motor having a large output with a very simple structure and being compact, and since the laminated piezoelectric element is used while being preloaded, the durability of the motor can be improved.

【0010】一方、超音波モータの駆動周波数を最適な
ものとするために、電気−機械エネルギー変換素子に印
加する電圧と、これに流れる電流の位相差を所定範囲内
にするように交流電圧の周波数を制御する超音波モータ
装置として、特公平5−38552号公報所載の技術
(従来技術2)が開示されている。
On the other hand, in order to optimize the driving frequency of the ultrasonic motor, the AC voltage is controlled so that the phase difference between the voltage applied to the electro-mechanical energy conversion element and the current flowing therethrough falls within a predetermined range. A technique (prior art 2) disclosed in Japanese Patent Publication No. 5-38552 is disclosed as an ultrasonic motor device for controlling the frequency.

【0011】図11は従来技術2の超音波モータ装置の
機能ブロック図である。同図において、207は圧電駆
動体203を駆動する交流信号を発生する可変発振器で
あり、可変発振器207の出力は2分割され、一方は9
0°移相器208で90°移相された後、他方は直接
に、それぞれ電力増幅器209,209’に入力され、
所定のレベルにまで増幅されて、圧電駆動体203に印
加される。
FIG. 11 is a functional block diagram of an ultrasonic motor device of the prior art 2. In the figure, 207 is a variable oscillator that generates an AC signal for driving the piezoelectric driver 203. The output of the variable oscillator 207 is divided into two, one of which is 9
After being 90 ° phase-shifted by the 0 ° phase shifter 208, the other is directly input to the power amplifiers 209 and 209 ′,
It is amplified to a predetermined level and applied to the piezoelectric driver 203.

【0012】R1 は電流検出をするための抵抗素子で、
抵抗R1 の両端電圧より電流検出が電流検出器210で
される。同時に電圧検出器211で圧電駆動体203を
構成する圧電セラミックに印加する電圧が検出される。
電流検出器210および電圧検出器211の出力はロジ
ックレベルに波形整形されて出てくる。尚ここでは、電
力増幅器209’の出力の電圧・電流を検知している
が、電力増幅器209の出力でも同様である。
R 1 is a resistance element for detecting current,
Current detection is performed by the current detector 210 based on the voltage across the resistor R 1 . At the same time, the voltage detector 211 detects the voltage applied to the piezoelectric ceramic forming the piezoelectric driver 203.
The outputs of the current detector 210 and the voltage detector 211 are output after being waveform-shaped into a logic level. Although the voltage / current of the output of the power amplifier 209 ′ is detected here, the same applies to the output of the power amplifier 209.

【0013】駆動体203はその共振周波数では、印加
電圧と電流の位相が合うので、位相差の最小の周波数近
傍で駆動すれば効率の良い駆動ができる。この時モータ
の速度は最大である。
At the resonance frequency of the driver 203, the applied voltage and the current are in phase with each other, so that the driver 203 can be driven efficiently if it is driven in the vicinity of the frequency having the minimum phase difference. At this time, the motor speed is maximum.

【0014】212は電流検出器210の出力V1 と電
圧検出器211の出力V2 が入力される排他的OR回路
(Ex−ORと略す)である。図12は出力V1 とV2
の位相差とEx−OR212の出力との関係を示すチャ
ート図である。V3 はEx−OR212の出力波形であ
り、V4 は抵抗素子R2 と容量素子C2 とから成る整流
回路の出力である。図12の(a)は電流波形V1 と電
圧波形V2 の位相が合っている時の各部の波形を示して
おり、整流回路の出力V4 は0になっている。(b)は
位相がずれた時で、出力V4 は0ではなくある値にな
る。つまり、出力V4 のレベルにより圧電駆動体203
の電圧・電流の位相差がわかる。
[0014] 212 is an exclusive OR circuit output V 2 of the output V 1 and the voltage detector 211 of the current detector 210 is inputted (abbreviated as Ex-OR). FIG. 12 shows outputs V 1 and V 2
It is a chart figure which shows the relationship between the phase difference of (4) and the output of Ex-OR212. V 3 is the output waveform of the Ex-OR 212, and V 4 is the output of the rectifying circuit composed of the resistance element R 2 and the capacitance element C 2 . FIG. 12A shows the waveform of each part when the current waveform V 1 and the voltage waveform V 2 are in phase with each other, and the output V 4 of the rectifier circuit is zero. (B) is when the phases are out of phase, and the output V 4 has a certain value instead of 0. That is, depending on the level of the output V 4, the piezoelectric driver 203
You can see the voltage / current phase difference.

【0015】図11の213は電圧比較器であり、出力
4 と設定電圧Vref とを比較する。電圧比較器213
の出力は出力V4 が設定電圧Vref よりも大きい時はロ
ジックレベルのHであり、逆の時はLになる。許容位相
差が決定すれば、それに対応する設定電圧Vref を設定
し、電圧比較器の出力がHになれば制御回路214を動
作させて可変発振器207の出力周波数を変化させ、電
圧比較器13の出力がLになるように、つまり設定電圧
ref に対応する位相差よりも印加電圧と電流の位相差
が小さくなるように制御する。
A voltage comparator 213 in FIG. 11 compares the output V 4 with the set voltage V ref . Voltage comparator 213
When the output V 4 is larger than the set voltage V ref , the output of is at the logic level H, and at the opposite, it becomes L. When the allowable phase difference is determined, the corresponding set voltage V ref is set, and when the output of the voltage comparator becomes H, the control circuit 214 is operated to change the output frequency of the variable oscillator 207 and the voltage comparator 13 Is controlled to be L, that is, the phase difference between the applied voltage and the current is smaller than the phase difference corresponding to the set voltage V ref .

【0016】従来技術2によれば、簡単な構成で、始動
時および動作中においても、温度・負荷の変動に対して
も、常に共振周波数近傍で超音波モータを駆動できるの
で、動作が安定し、効率がよい。
According to the prior art 2, the ultrasonic motor can be always driven in the vicinity of the resonance frequency even at the time of starting and during the operation, and at the time of the fluctuation of the temperature and the load, with the simple structure, so that the operation is stable. , Efficient.

【0017】[0017]

【発明が解決しようとする課題】ところが、実験によれ
ば、従来技術1に記載の超音波振動子の駆動周波数を最
適な値にするために、積層型圧電素子に印加する電圧と
これに流れる電流の位相差が所定の値になるように周波
数を変化させようとすると、2つの積層型圧電素子にお
いては、それぞれの電流と電圧の位相差が全く異なり、
さらに移動体の移動方向を反転することにより、電流と
電圧の位相差が変化するという問題点が発見された。
However, according to the experiment, in order to set the driving frequency of the ultrasonic transducer described in the prior art 1 to the optimum value, the voltage applied to the laminated piezoelectric element and the voltage applied to it are applied. When it is attempted to change the frequency so that the phase difference between the currents becomes a predetermined value, the phase difference between the current and the voltage is completely different between the two laminated piezoelectric elements.
Further, it was discovered that the phase difference between the current and the voltage is changed by reversing the moving direction of the moving body.

【0018】一方、従来技術2に記載の圧電駆動体に印
加する電圧とこれに流れる電流の位相差を検出する回路
は、圧電駆動体の一方のみを検出し、他方も同様である
としているが、上記実験結果により、いずれか一方の圧
電駆動体のみの検出により、最適な駆動周波数を決定す
ることは困難という問題点が明らかである。
On the other hand, the circuit for detecting the phase difference between the voltage applied to the piezoelectric driving body and the current flowing therein according to the prior art 2 detects only one of the piezoelectric driving bodies and the other is the same. From the above experimental results, it is clear that it is difficult to determine the optimum driving frequency by detecting only one of the piezoelectric driving bodies.

【0019】本発明は上記従来の問題点に鑑みてなされ
たもので、請求項1または2に係る発明の目的は、複数
の積層型圧電素子に印加する電圧とこれに流れる電流と
の位相差が所定範囲に入るように、駆動周波数を変化さ
せて、最適な駆動周波数にすることのできる超音波モ−
タの駆動装置を提供することである。
The present invention has been made in view of the above conventional problems, and an object of the invention according to claim 1 or 2 is to provide a phase difference between a voltage applied to a plurality of laminated piezoelectric elements and a current flowing therethrough. So that it falls within a predetermined range, the ultrasonic frequency can be changed by changing the drive frequency.
It is to provide a drive device for a motor.

【0020】[0020]

【課題を解決するための手段】上記課題を解決するため
に、請求項1または2に係る発明は、弾性体と該弾性体
に固定された複数の積層型圧電素子とからなる超音波振
動子を備えた超音波モータの、前記複数の積層型圧電素
子に互いに位相の異なる交流電圧を二相発振器により印
加し、超音波振動を発生させて移動体を移動する超音波
モータの駆動装置において、前記移動体の移動方向に応
じて前記複数の積層型圧電素子から1つを選択し、選択
した積層型圧電素子に印加する交流電圧と流れる電流と
が所定の位相差になるように、印加する交流電圧の周波
数を制御する手段を設けたことを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 or 2 is an ultrasonic transducer comprising an elastic body and a plurality of laminated piezoelectric elements fixed to the elastic body. In the ultrasonic motor provided with, in the driving device of the ultrasonic motor for moving the moving body by applying alternating voltages having different phases to the plurality of laminated piezoelectric elements by a two-phase oscillator, generating ultrasonic vibrations, One is selected from the plurality of laminated piezoelectric elements according to the moving direction of the moving body, and applied so that the alternating voltage applied to the selected laminated piezoelectric element and the flowing current have a predetermined phase difference. It is characterized in that means for controlling the frequency of the AC voltage is provided.

【0021】[0021]

【作用】請求項1または2に係る発明は、移動体の移動
方向に応じて複数の積層型圧電素子から1つを選択し、
選択した積層型圧電素子に印加する交流電圧と流れる電
流が所定の位相差になるように、交流電圧の周波数を制
御することにより、超音波モータの駆動周波数をつねに
最適な周波数範囲にする作用を有する。請求項2に係る
発明の作用は、上記作用に加え、マイクロコンピュータ
のプログラムにより、極短時間で移動体の移動方向が反
転するようなときに、電圧と電流の位相差を検出して周
波数を制御する動作を一時的に中止し、その直前の周波
数に固定することにより動作が安定することである。
In the invention according to claim 1 or 2, one of a plurality of laminated piezoelectric elements is selected according to the moving direction of the moving body,
By controlling the frequency of the alternating voltage so that the alternating voltage applied to the selected laminated piezoelectric element and the flowing current have a predetermined phase difference, it is possible to keep the driving frequency of the ultrasonic motor in the optimum frequency range. Have. In addition to the above-mentioned action, the action of the invention according to claim 2 detects the phase difference between the voltage and the current by detecting the phase difference between the voltage and the current when the moving direction of the moving body is reversed in an extremely short time by the program of the microcomputer. The operation is stabilized by temporarily stopping the controlled operation and fixing the frequency immediately before that.

【0022】[0022]

【実施例1】図1〜図5は第1実施例を示し、図1は超
音波モータの駆動装置のブロック図、図2は超音波モー
タの正面図、図3〜5はA相、B相の電圧と電流の波形
を示す図表である。図2に示す超音波モータの超音波振
動子110は図8において示した従来技術1と同一のも
のであり、同一の部材には同一の符号を付し説明を省略
する。本実施例においては、この超音波振動子110の
摺動部材115に押圧接触した移動体20が図示を省略
した手段で左右方向に移動自在に保持されて、超音波モ
ータを構成している。
Embodiment 1 FIGS. 1 to 5 show a first embodiment, FIG. 1 is a block diagram of a driving device for an ultrasonic motor, FIG. 2 is a front view of the ultrasonic motor, and FIGS. It is a chart which shows the waveform of the voltage and current of a phase. The ultrasonic oscillator 110 of the ultrasonic motor shown in FIG. 2 is the same as that of the conventional technique 1 shown in FIG. 8, and the same members are designated by the same reference numerals and the description thereof will be omitted. In the present embodiment, the moving body 20 that is in pressure contact with the sliding member 115 of the ultrasonic transducer 110 is movably held in the left-right direction by means (not shown) to form an ultrasonic motor.

【0023】図1において、1は90度位相の異なる二
相の交流電圧を発生する二相発振器であり、一方の出力
は電力増幅器2で電力増幅し超音波振動子110の一方
の積層型圧電素子113Aの電極(以下A相とよぶ)に
電力供給する。また、二相発振器1のもう一方の出力は
電力増幅器3で電力増幅し、超音波振動子110のもう
一方の積層型圧電素子113Bの電極(以下B相とよ
ぶ)に電力供給する。A相、B相ともに、その電流を電
圧に変換するための検出抵抗器8、9が接続されてい
る。
In FIG. 1, reference numeral 1 denotes a two-phase oscillator for generating two-phase AC voltages having different phases by 90 degrees, one output of which is power-amplified by a power amplifier 2 and one of the laminated piezoelectric elements of the ultrasonic vibrator 110. Electric power is supplied to the electrode of the element 113A (hereinafter referred to as A phase). Further, the other output of the two-phase oscillator 1 is power-amplified by the power amplifier 3 and is supplied to the electrode (hereinafter referred to as B-phase) of the other laminated piezoelectric element 113B of the ultrasonic transducer 110. Detection resistors 8 and 9 for converting the current into a voltage are connected to both the A phase and the B phase.

【0024】A相またはB相の電圧および電流は、それ
ぞれスイッチ手段(FET、リレー、アナログスイッチ
など)6、7でA相またはB相の一方を選択し、位相検
波器4に入力され、電圧と電流の位相差を二相発振器1
の周波数を制御する電気信号に変換し、この電気信号は
二相発振器1の周波数制御端子に入力される。二相発振
器1の2つの出力の位相差は、スイッチ手段(FET、
リレー、アナログスイッチなど)5により、互いに+9
0度または−90度に切り替わる。3つのスイッチ手段
5、6、7は互いに連動して切り換えられる。
The A-phase or B-phase voltage and current are input to the phase detector 4 by selecting one of the A-phase or B-phase by the switching means (FET, relay, analog switch, etc.) 6 and 7, respectively. Phase difference between current and current
Is converted into an electric signal for controlling the frequency of, and this electric signal is input to the frequency control terminal of the two-phase oscillator 1. The phase difference between the two outputs of the two-phase oscillator 1 is the switching means (FET,
+9 to each other by 5)
Switches to 0 degrees or -90 degrees. The three switch means 5, 6, 7 are switched in conjunction with each other.

【0025】図3〜図5はA相、B相の電圧と電流の波
形の測定結果を示す。図3は超音波モータの最適駆動周
波数より低い周波数での波形、図4は最適駆動周波数で
の波形、図5は最適駆動周波数より高い周波数での波形
を示す。図4の最適駆動周波数の場合には、A相とB相
の電圧の位相差が+90度のとき、A相の電圧と電流の
位相差は数十度であり、B相の電圧と電流の位相差はほ
ぼ0度となる。しかし、A相とB相の電圧の位相差を−
90度にして、移動方向を反転させると、A相の電圧と
電流の位相差がほぼ0度に対し、B相の電圧と電流の位
相差は数十度になっている。また、図3および図5で
は、電圧と電流の位相差は図4と比較してずれているこ
とがわかる。
3 to 5 show the measurement results of the voltage and current waveforms of the A and B phases. 3 shows a waveform at a frequency lower than the optimum drive frequency of the ultrasonic motor, FIG. 4 shows a waveform at the optimum drive frequency, and FIG. 5 shows a waveform at a frequency higher than the optimum drive frequency. In the case of the optimum drive frequency of FIG. 4, when the phase difference between the A phase voltage and the B phase voltage is +90 degrees, the phase difference between the A phase voltage and the current is several tens degrees, and the phase difference between the B phase voltage and the current is The phase difference is almost 0 degree. However, the phase difference between the A phase voltage and the B phase voltage is-
When the movement direction is reversed at 90 degrees, the phase difference between the A-phase voltage and current is approximately 0 degrees, while the phase difference between the B-phase voltage and current is several tens degrees. Further, in FIGS. 3 and 5, it can be seen that the phase difference between the voltage and the current is different from that in FIG.

【0026】上記測定結果から、A相、B相いづれかの
電圧と電流の位相差がほぼ0度に合うように、周波数を
制御すれば最適な駆動周波数が得られることがわかる。
またこのとき移動体20の移動方向が変わるときに、電
圧と電流の位相差がほぼ0度になる相がA相とB相とで
反転するので、電圧と電流の位相差を検出する相を換え
ることが必要になる。実験によると、図2に示す移動体
20が向かって右に移動するときは積層型圧電素子11
3A、移動体20が向かって左に動くときは積層型圧電
素子113Bを選択するとよいことがわかっている。
From the above measurement results, it is understood that the optimum drive frequency can be obtained by controlling the frequency so that the phase difference between the voltage and the current of either the A phase or the B phase is approximately 0 degrees.
Further, at this time, when the moving direction of the moving body 20 changes, the phase in which the phase difference between the voltage and the current is substantially 0 degree is inverted between the A phase and the B phase, so that the phase for detecting the phase difference between the voltage and the current is changed. It will be necessary to change. According to the experiment, when the moving body 20 shown in FIG.
3A, it is known that the laminated piezoelectric element 113B should be selected when the moving body 20 moves to the left.

【0027】以上の説明から明らかなように、図1に示
す超音波モータの駆動装置で、移動方向の切り換えと同
時に、電圧と電流の位相差を検出する相を切り換えて、
その位相差が所定の値になるように周波数を制御する
と、図2に示す超音波モータは最適な駆動周波数によ
り、駆動される。
As is apparent from the above description, in the ultrasonic motor driving device shown in FIG. 1, the phase for detecting the phase difference between the voltage and the current is switched at the same time when the moving direction is switched,
When the frequency is controlled so that the phase difference becomes a predetermined value, the ultrasonic motor shown in FIG. 2 is driven at the optimum driving frequency.

【0028】本実施例の効果について説明する。移動体
の移動方向によって、超音波モータの2つの積層型圧電
素子のいづれか一方を選択し、この積層型圧電素子に印
加する電圧と流れる電流の位相差が所定の範囲になるよ
うに周波数を制御することにより、超音波モータに供給
する交流電圧を最適な周波数に自動設定できる。
The effects of this embodiment will be described. Depending on the moving direction of the moving body, either one of the two laminated piezoelectric elements of the ultrasonic motor is selected, and the frequency is controlled so that the phase difference between the voltage applied to this laminated piezoelectric element and the flowing current is within a predetermined range. By doing so, the AC voltage supplied to the ultrasonic motor can be automatically set to the optimum frequency.

【0029】なお、本実施例中の測定結果では、電圧と
電流の位相差がほぼ0度の場合が最適であるが、最適な
位相差はモータの構成により必ずしも0度ではなく、た
とえば、製造誤差により2つの積層型圧電素子の電気的
性能に差が生じた場合には、多少の位相差があるときが
最適の場合がある。従って、所定の位相差は0度に限定
するものではなく、位相差を調整自在に構成しておくの
が望ましい。
In the measurement results of this embodiment, the optimum phase difference between the voltage and the current is approximately 0 degrees, but the optimum phase difference is not necessarily 0 degrees depending on the configuration of the motor. When there is a difference in electrical performance between the two laminated piezoelectric elements due to an error, it may be optimal to have a slight phase difference. Therefore, the predetermined phase difference is not limited to 0 degree, and it is desirable that the predetermined phase difference be adjustable.

【0030】[0030]

【実施例2】図6〜図7は第2実施例を示し、図6は超
音波モータの駆動装置のブロック図、図7は目標とする
位置と時間との関係を示す図表である。本実施例におい
ても、駆動される超音波モータは、既に説明した第1実
施例の図2および従来技術1の図8で示すものと同一の
ためその説明は省略する。
Second Embodiment FIGS. 6 to 7 show a second embodiment, FIG. 6 is a block diagram of an ultrasonic motor driving device, and FIG. 7 is a table showing a relationship between a target position and time. Also in this embodiment, the ultrasonic motor to be driven is the same as that shown in FIG. 2 of the first embodiment and shown in FIG.

【0031】図6において、21は90度位相の異なる
二相の交流電圧を発生する二相発振器であり、一方の出
力は電力増幅器22で電力増幅し超音波振動子110の
一方の積層型圧電素子113Aの電極(以下A相とよ
ぶ)に電力供給する。また、二相発振器21のもう一方
の出力は電力増幅器23で電力増幅し、超音波振動子1
10のもう一方の積層型圧電素子113Bの電極(以下
B相とよぶ)に電力供給する。A相、B相ともに、その
電流を電圧に変換するための検出抵抗器28、29が接
続されている。
In FIG. 6, reference numeral 21 is a two-phase oscillator for generating two-phase AC voltages having different phases by 90 degrees, one output of which is power-amplified by a power amplifier 22 and one of the laminated piezoelectric elements of the ultrasonic transducer 110. Electric power is supplied to the electrode of the element 113A (hereinafter referred to as A phase). The other output of the two-phase oscillator 21 is power-amplified by the power amplifier 23, and the ultrasonic transducer 1
Electric power is supplied to the electrode (hereinafter referred to as B phase) of the other laminated piezoelectric element 113B of 10. Detection resistors 28 and 29 for converting the current into a voltage are connected to both the A phase and the B phase.

【0032】A相またはB相の電圧および電流は、それ
ぞれスイッチ手段(FET、リレー、アナログスイッチ
など)26、27でA相またはB相の一方を選択し、位
相検波器4に入力され、電圧と電流の位相差を電気信号
に変換する。この位相差信号はマイクロコンピュータ2
5に入力され、マイクロコンピュータ25は、そのプロ
グラムにより、位相差信号をもとに、二相発振器21の
2つの出力の位相差を+90度または−90度に制御で
き、この位相差を変化させるときに、2つのスイッチ手
段26、27も切り換える。
The A-phase or B-phase voltage and current are input to the phase detector 4 by selecting one of the A-phase or B-phase by the switching means (FET, relay, analog switch, etc.) 26 and 27, respectively. And the phase difference of the current is converted into an electric signal. This phase difference signal is sent to the microcomputer 2
5, the microcomputer 25 can control the phase difference between the two outputs of the two-phase oscillator 21 to +90 degrees or −90 degrees based on the phase difference signal by the program, and change the phase difference. Sometimes, the two switch means 26, 27 are also switched.

【0033】一般に、モータを制御する際には、エンコ
ーダなどの移動量検出センサを用いて、閉ループ制御す
ることが頻繁に行われる。そして、図7に示すように目
標とする位置に対して、移動量が不足しているときには
移動量が増すように、逆に大きすぎるときには減るよう
に駆動方向(移動方向)を制御する。このため、図7に
示すように目標とする位置の近くでは、頻繁にモータの
駆動方向(移動方向)が反転する現象が起き得る。
Generally, when controlling a motor, closed-loop control is frequently performed using a movement amount detection sensor such as an encoder. Then, as shown in FIG. 7, the driving direction (moving direction) is controlled so that the moving amount increases with respect to the target position when the moving amount is insufficient and decreases when the moving amount is too large. Therefore, as shown in FIG. 7, a phenomenon in which the driving direction (moving direction) of the motor is frequently reversed can occur near the target position.

【0034】ところで、この現象は第1実施例の場合に
も発生し、電圧と電流の位相差を検出する積層型圧電素
子の相を切り換えると、その切り換えた瞬間に周波数が
安定するまで、所定の時間を要する。さらに、本実施例
においても、比較的短時間で頻繁に移動方向が変化する
ような場合、積層型圧電素子の相を切り換えて、電圧−
電流の位相差が所定量になるよう周波数を制御している
と周波数が安定するまで時間がかかり、短時間で最適駆
動周波数を決定できない。
By the way, this phenomenon also occurs in the case of the first embodiment, and when the phase of the laminated piezoelectric element for detecting the phase difference between the voltage and the current is switched, a predetermined frequency is maintained until the frequency becomes stable at the switching moment. Takes time. Further, also in the present embodiment, when the moving direction is frequently changed in a relatively short time, the phase of the laminated piezoelectric element is switched to change the voltage-
If the frequency is controlled so that the current phase difference becomes a predetermined amount, it takes time until the frequency stabilizes, and the optimum drive frequency cannot be determined in a short time.

【0035】そこで、本実施例では、ごく短時間で移動
方向が反転するようなときには、マイクロコンピュータ
25のプログラムにより、電圧と電流の位相差を検出し
て周波数を制御する動作を一時的に中止し、その直前の
周波数に固定することにした。これにより、超音波モー
タの動作は安定する。実験によると、数秒程度の短時間
においては、超音波モータの発熱による共振周波数の変
化はあまり問題にならず、駆動周波数を固定しても最適
な周波数から大きくずれることはないことが確認され
た。
Therefore, in this embodiment, when the movement direction is reversed in a very short time, the program of the microcomputer 25 temporarily stops the operation of detecting the phase difference between the voltage and the current and controlling the frequency. Then, I decided to fix the frequency just before that. This stabilizes the operation of the ultrasonic motor. According to the experiment, it was confirmed that the change of the resonance frequency due to the heat generation of the ultrasonic motor does not pose a problem in a short time of about several seconds, and even if the drive frequency is fixed, it does not largely deviate from the optimum frequency. .

【0036】本実施例においては、マイクロコンピュー
タにより周波数制御をプログラムでき、第1実施例に比
較して、移動体の移動方向が比較的短時間で反転すると
きに、必ずしも積層型圧電素子の電圧と電流の位相差だ
けで周波数を決定しなくてもよく、図7で示した移動体
の位置決めのように、頻繁に移動方向が切り換わる用途
でも、安定して最適な駆動周波数で超音波モータを駆動
することができる。
In this embodiment, frequency control can be programmed by a microcomputer, and when the moving direction of the moving body is reversed in a relatively short time as compared with the first embodiment, the voltage of the laminated piezoelectric element is not always required. It is not necessary to determine the frequency only by the phase difference between the current and the current, and even in the application where the moving direction is frequently changed like the positioning of the moving body shown in FIG. 7, the ultrasonic motor can be stably driven with the optimum driving frequency. Can be driven.

【0037】[0037]

【発明の効果】請求項1〜2に係る発明によれば、複数
の積層型圧電素子に印加する電圧とこれに流れる電流と
の位相差が所定範囲に入るように、駆動周波数を変化さ
せて、最適な駆動周波数の超音波モ−タの駆動装置を提
供することができる。請求項2に係る発明によれば、上
記効果に加え、頻繁に移動方向が切り換わる用途でも、
安定して最適な駆動周波数で超音波モータを駆動するこ
とができる。
According to the present invention, the driving frequency is changed so that the phase difference between the voltage applied to the plurality of laminated piezoelectric elements and the current flowing therethrough falls within a predetermined range. It is possible to provide a driving device for an ultrasonic motor having an optimum driving frequency. According to the invention of claim 2, in addition to the above effect, even in a case where the moving direction is frequently switched,
It is possible to stably drive the ultrasonic motor at an optimum drive frequency.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の超音波モータの駆動装置を示すブロ
ック図である。
FIG. 1 is a block diagram showing a drive device for an ultrasonic motor according to a first embodiment.

【図2】実施例1の超音波モータを示す正面図である。FIG. 2 is a front view showing the ultrasonic motor according to the first embodiment.

【図3】実施例1のA相、B相の電圧と電流の波形を示
す図表である。
FIG. 3 is a table showing waveforms of voltage and current of A phase and B phase of the first embodiment.

【図4】実施例1のA相、B相の電圧と電流の波形を示
す図表である。
FIG. 4 is a chart showing voltage and current waveforms of the A phase and B phase of the first embodiment.

【図5】実施例1のA相、B相の電圧と電流の波形を示
す図表である。
FIG. 5 is a chart showing waveforms of voltage and current of A phase and B phase of the first embodiment.

【図6】実施例2の超音波モータの駆動装置を示すブロ
ック図である。
FIG. 6 is a block diagram showing a drive device for an ultrasonic motor according to a second embodiment.

【図7】実施例2の作用を説明するための図表である。FIG. 7 is a table for explaining the operation of the second embodiment.

【図8】従来技術1の超音波振動子を示す斜視図であ
る。
FIG. 8 is a perspective view showing an ultrasonic transducer of prior art 1.

【図9】従来技術1の超音波振動子の作用を示す斜視図
である。
FIG. 9 is a perspective view showing an operation of an ultrasonic transducer of prior art 1.

【図10】従来技術1の超音波振動子の作用を示す斜視
図である。
FIG. 10 is a perspective view showing an operation of the ultrasonic transducer of the related art 1.

【図11】従来技術2の超音波モータ装置を示すブロッ
ク図である。
FIG. 11 is a block diagram showing an ultrasonic motor device of prior art 2.

【図12】従来技術2の電圧・電流の位相比較部の説明
のチャート図である。
FIG. 12 is a chart diagram for explaining a voltage / current phase comparison unit according to Related Art 2;

【符号の説明】[Explanation of symbols]

1 二相発振器 2 電力増幅器 3 電力増幅器 4 位相検波器 5 スイッチ手段 6 スイッチ手段 7 スイッチ手段 8 検出抵抗器 9 検出抵抗器 113A 積層型圧電素子 113B 積層型圧電素子 1 Two-Phase Oscillator 2 Power Amplifier 3 Power Amplifier 4 Phase Detector 5 Switch Means 6 Switch Means 7 Switch Means 8 Detecting Resistor 9 Detecting Resistor 113A Multilayer Piezoelectric Element 113B Multilayer Piezoelectric Element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 弾性体と該弾性体に固定された複数の積
層型圧電素子とからなる超音波振動子を備えた超音波モ
ータの、前記複数の積層型圧電素子に互いに位相の異な
る交流電圧を二相発振器により印加し、超音波振動を発
生させて移動体を移動する超音波モータの駆動装置にお
いて、 前記移動体の移動方向に応じて前記複数の積層型圧電素
子から1つを選択し、選択した積層型圧電素子に印加す
る交流電圧と流れる電流とが所定の位相差になるよう
に、印加する交流電圧の周波数を制御する手段を設けた
ことを特徴とする超音波モータの駆動装置。
1. An ultrasonic motor comprising an ultrasonic vibrator including an elastic body and a plurality of laminated piezoelectric elements fixed to the elastic body, and alternating voltages having different phases to the plurality of laminated piezoelectric elements. Is applied by a two-phase oscillator to generate ultrasonic vibrations to move the moving body. In the driving apparatus of the ultrasonic motor, one is selected from the plurality of laminated piezoelectric elements according to the moving direction of the moving body. A driving device for an ultrasonic motor comprising means for controlling the frequency of the applied AC voltage so that the AC voltage applied to the selected laminated piezoelectric element and the flowing current have a predetermined phase difference. .
【請求項2】 前記印加する交流電圧の周波数を制御す
る手段は、前記複数の積層型圧電素子に流れる電流を電
圧に変換する検出抵抗器と、前記複数の積層型圧電素子
の1つを選択するスイッチ手段と、前記スイッチ手段に
接続した位相検波器と、前記二相発振器、前記スイッチ
手段および前記位相検波器に接続したマイクロコンピュ
ータとからなることを特徴とする請求項1記載の超音波
モータの駆動装置。
2. The means for controlling the frequency of the applied AC voltage selects one of the plurality of laminated piezoelectric elements and a detection resistor for converting a current flowing through the plurality of laminated piezoelectric elements into a voltage. 2. The ultrasonic motor according to claim 1, further comprising: switch means for switching, a phase detector connected to the switch means, a two-phase oscillator, a microcomputer connected to the switch means and the phase detector. Drive.
JP6228859A 1994-08-30 1994-08-30 Driving apparatus for ultrasonic motor Withdrawn JPH0870587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6228859A JPH0870587A (en) 1994-08-30 1994-08-30 Driving apparatus for ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6228859A JPH0870587A (en) 1994-08-30 1994-08-30 Driving apparatus for ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH0870587A true JPH0870587A (en) 1996-03-12

Family

ID=16883008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6228859A Withdrawn JPH0870587A (en) 1994-08-30 1994-08-30 Driving apparatus for ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH0870587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907322B1 (en) * 2014-07-11 2016-04-26 株式会社村田製作所 Suction device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907322B1 (en) * 2014-07-11 2016-04-26 株式会社村田製作所 Suction device

Similar Documents

Publication Publication Date Title
JP5506552B2 (en) Control device for vibration actuator and control method for vibration actuator
JP4261964B2 (en) Vibration type driving device and control system
JP2006217716A (en) Ultrasonic actuator driving unit and ultrasonic actuator driving method
JP5037767B2 (en) Control device for vibration actuator
JP4794901B2 (en) Driving system for vibration type actuator and driving method thereof
US5955819A (en) Standing-wave vibration motor
JP2010183816A (en) Ultrasonic motor
JPH06233560A (en) Ultrasonic actuator
JPH10234191A (en) Drive and drive device of oscillating actuator
JPH0870587A (en) Driving apparatus for ultrasonic motor
JP2010166736A (en) Ultrasonic motor
JP5843911B2 (en) Device and driving method of vibration actuator
JPH02188169A (en) Ultrasonic motor
JP3401092B2 (en) Ultrasonic motor drive
JPH11164574A (en) Oscillatory actuator driver
JPH01122375A (en) Controlling method for piezoelectric motor
JP2005323450A (en) Driving device
JP3068651B2 (en) Motor control device
JP3641902B2 (en) Drive device
JP3308711B2 (en) Ultrasonic motor drive
JP3401096B2 (en) Ultrasonic motor drive
JP3311490B2 (en) Ultrasonic motor drive
JPH03256579A (en) Ultrasonic wave motor
JPH07312881A (en) Driving apparatus for ultrasonic motor
JP2012055111A (en) Control device of vibration type driving device and output characteristic detection method of vibration type driving device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106