JPH0870269A - Method for measuring fault location of instantaneous unbalance occurred in communication balanced line - Google Patents

Method for measuring fault location of instantaneous unbalance occurred in communication balanced line

Info

Publication number
JPH0870269A
JPH0870269A JP20336494A JP20336494A JPH0870269A JP H0870269 A JPH0870269 A JP H0870269A JP 20336494 A JP20336494 A JP 20336494A JP 20336494 A JP20336494 A JP 20336494A JP H0870269 A JPH0870269 A JP H0870269A
Authority
JP
Japan
Prior art keywords
fault
propagation time
pulse
pulses
connection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20336494A
Other languages
Japanese (ja)
Other versions
JP3306734B2 (en
Inventor
Haruo Furusawa
春男 古澤
Juzo Kukida
重蔵 久木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20336494A priority Critical patent/JP3306734B2/en
Publication of JPH0870269A publication Critical patent/JPH0870269A/en
Application granted granted Critical
Publication of JP3306734B2 publication Critical patent/JP3306734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To easily determine a fault location with high accuracy independently of a distance of the fault location by using a propagation time of a reflected pulse whose propagation time is minimum among plural pulses thereby measuring the location where an unbalance fault takes place. CONSTITUTION: A communication line reaches a telephone set terminal 10 from an exchange 2 through an underground cable 3, an overhead cable 7, and a leading line 9, and the underground cable 3 is connected at underground connection point 5, and the overhead cable 7 is connected at overhead connection point 8. When the location at which an instantaneous unbalance fault takes place is measured at an underground connection point 5 or an overhead connection point 8, pulses are sent continuously for a shorter period than the occurrence time length of the unbalance fault caused instantaneously to obtain plural reflected pulses appearing on the line on the occurrence of the instantaneous unbalance fault and a propagation time of the reflection pulse whose propagation time is minimum is measured to surely acquire the reflection pulses by the instantaneous unbalance fault and the occurrence location is measured with high accuracy independently of the fault occurrence timing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通信用平衡回線に瞬間
的な不平衡故障が発生した際に、その故障発生位置を正
確に測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately measuring a fault occurrence position when a momentary unbalanced fault occurs in a balanced communication line.

【0002】[0002]

【従来の技術】図1は通信回線の設備形態を示す図であ
る。1は局舎、2は交換機、3は地下ケーブル、4はマ
ンホール、5は地下接続点、6は電柱、7は架空ケーブ
ル、8は架空接続点、9は引き込み線、10は電話機端末
である。図2は心線接続部の図である。31は導体、32は
絶縁被覆、33は手ひねり部である。
2. Description of the Related Art FIG. 1 is a diagram showing an equipment form of a communication line. 1 is a station building, 2 is a switchboard, 3 is an underground cable, 4 is a manhole, 5 is an underground connection point, 6 is a utility pole, 7 is an overhead cable, 8 is an overhead connection point, 9 is a drop line, and 10 is a telephone terminal. . FIG. 2 is a view of the core wire connecting portion. Reference numeral 31 is a conductor, 32 is an insulating coating, and 33 is a twisted portion.

【0003】図1に示されるように通信回線は地下ケー
ブル3、架空ケーブル7及び引き込み線9を通して、交
換機2から電話機端末10に至るが、この間地下ケーブル
3は地下接続点5、架空ケーブル7は架空接続点8で接
続される。地下接続点5及び架空接続点8において、通
信回線を構成する導体相互の接続は、近年コネクタで接
続されたり、手ひねり後ハンダ上げして接続する方法が
採られているが、古い設備では図2に示すような単なる
手ひねりのみの接続(ハンダ上げ無し)が行われてお
り、このような設備が今なお多量に残っている。この手
ひねりされただけの接続点では、長い間に導体表面が酸
化されて部分的に直流抵抗の大きい酸化被膜が形成され
る。手ひねりの回数が少ないなど手ひねり接続がルーズ
な場合は、車の走行時や地下接続点5の解体作業時の振
動により接続点が瞬間的に酸化被膜を通しての導通とな
り直流抵抗が瞬間的に増加する現象が生じる。瞬間的な
直流抵抗の増加は数Ωから数MΩまで至る場合もあり、
またその継続時間は概ね数10ms以内である。
As shown in FIG. 1, the communication line extends from an exchange 2 to a telephone terminal 10 through an underground cable 3, an aerial cable 7 and a service line 9, while the underground cable 3 is connected to an underground connection point 5 and the aerial cable 7 is They are connected at a virtual connection point 8. At the underground connection point 5 and the aerial connection point 8, the conductors forming the communication line are connected by a connector in recent years, or a method of connecting by soldering after twisting a hand is adopted. The connection shown in Fig. 2 is made only with a simple twist (without soldering), and a large amount of such equipment still remains. At the connection point which is only twisted by hand, the surface of the conductor is oxidized for a long time and an oxide film having a large direct current resistance is partially formed. If the twist connection is loose, such as the number of twists is small, the connection point will momentarily become conductive through the oxide film due to vibrations when the vehicle is running or when the underground connection point 5 is dismantled, and the DC resistance will change instantaneously. An increasing phenomenon occurs. The instantaneous increase in DC resistance may reach from several Ω to several MΩ.
The duration is generally within several tens of ms.

【0004】この瞬間的な直流抵抗の増加は通信回線を
構成する2導体で同時に発生する確率はきわめて少ない
ために、一般的に回線は瞬間的に不平衡となる。このよ
うな直流抵抗増に起因した瞬間的不平衡が、近年増加し
ているディジタル回線で発生するとデータエラーが発生
し、通信品質が低下するという問題がある。上述したよ
うな現象は一般的に特定のルーズな接続点に集中して発
生しているのが殆どであることから、このような接続点
の位置を測定して探索し、ハンダ上げするなど修理する
必要性が高まってきている。
This instantaneous increase in DC resistance is extremely unlikely to occur simultaneously in two conductors forming a communication line, and therefore the line is generally momentarily unbalanced. When the instantaneous imbalance due to such an increase in DC resistance occurs in a digital line which has been increasing in recent years, there is a problem that a data error occurs and the communication quality is deteriorated. Since the above-mentioned phenomena are generally concentrated in a particular loose connection point, the position of such a connection point is measured and searched, and the solder is lifted. The need to do so is increasing.

【0005】瞬間的な不平衡故障の発生位置を測定する
従来技術の一例を図3,図4を用いて説明する。図3は
測定回路構成図を示している。11はL1 心線、12はL2
心線である。導体11と導体12で平衡回線を構成する。13
は測定用の抵抗、14はここで問題としている瞬間的に現
れた直流抵抗である。a,b,c,E点は各々測定端側
の端子を示している。また図4は瞬間的な直流抵抗の変
動波形と測定波形の関係を示している。は瞬間的な直
流抵抗の変動波形、,は端子a,b間に送出するパ
ルス波形、,はc,E間に現れる縦電圧波形を示し
ている。また,は送出パルスが直流抵抗変動時に生
起した場合を、又,は直流抵抗変動が送出パルスの
途中から開始した場合を示している。
An example of a conventional technique for measuring the occurrence position of a momentary unbalanced fault will be described with reference to FIGS. FIG. 3 shows a measurement circuit configuration diagram. 11 is L1 core wire, 12 is L2
The core line. The conductor 11 and the conductor 12 form a balanced line. 13
Is a resistance for measurement, and 14 is a DC resistance that appears instantaneously, which is a problem here. Points a, b, c, and E respectively indicate terminals on the measurement end side. In addition, FIG. 4 shows the relationship between the instantaneous fluctuation waveform of the DC resistance and the measured waveform. Indicates a momentary fluctuation waveform of DC resistance ,, a pulse waveform sent between terminals a and b, and a vertical voltage waveform appearing between c and E. Further, indicates the case where the transmission pulse occurs when the DC resistance changes, and indicates the case where the DC resistance fluctuation starts in the middle of the transmission pulse.

【0006】,に示すように送出パルスが直流抵抗
変動時に生起した場合、縦回線に現れる反射パルスの伝
搬時間tは局舎内のケーブル端から不平衡故障発生位置
までの往復の伝搬時間に対応しているために正確な瞬間
的不平衡故障発生位置を測定できる。しかし,のよ
うに直流抵抗変動が送出パルスの途中から開始した場
合、伝搬時間はt+tg として測定されるために伝搬時
間に誤差tg を含むことになり、正確な瞬間的不平衡故
障発生位置を測定することはできない。このように、従
来の瞬間的な不平衡故障位置測定法は、瞬間的な不平衡
故障の発生タイミングと測定用パルスの送出タイミング
によって、伝搬時間に誤差を持つ場合があり、正確な不
平衡故障位置を測定できないという欠点があった。
When the transmission pulse occurs when the DC resistance changes as shown in (3), the propagation time t of the reflected pulse appearing in the vertical line corresponds to the round-trip propagation time from the cable end in the station to the unbalanced fault occurrence position. Because of this, it is possible to measure the exact momentary imbalance fault location. However, when the DC resistance fluctuation starts in the middle of the transmission pulse as in, the propagation time is measured as t + tg, so the propagation time includes an error tg, and the exact momentary imbalance fault occurrence position is measured. You cannot do it. As described above, the conventional instantaneous unbalanced fault position measurement method may have an error in the propagation time depending on the generation timing of the instantaneous unbalanced fault and the transmission timing of the measurement pulse, and thus the accurate unbalanced fault position may be detected. There was a drawback that the position could not be measured.

【0007】この測定誤差tg を小さくする手法として
送出のパルス幅を小さくする手法が考えられる。しか
し、送出パルスのパルス幅を小さくするとパルス伝搬中
の高周波成分の減衰により遠距離の瞬間的不平衡故障で
は反射パルスのレベルが小さくなって雑音の中にうずも
れてしまい、伝搬時間の測定が困難になる。よって不平
衡故障の発生位置も測定できなくなるという性能上の短
所を生じる。すなわち、遠距離まで測定を容易にするた
めにパルス幅を大きくすると、これに伴って誤差tg も
大きくなって測定誤差も大きくなり、逆にパルス幅が小
さいと、測定誤差tg は少ない高精度の結果が得られる
が遠距離までの測定が困難となるという問題を生じてい
た。
As a method of reducing the measurement error tg, a method of reducing the pulse width of the transmission can be considered. However, if the pulse width of the transmitted pulse is made small, the level of the reflected pulse becomes small in a long-distance momentary imbalance fault due to the attenuation of high-frequency components during the pulse propagation, and it is lost in the noise. Becomes difficult. Therefore, there is a performance disadvantage that the position where the unbalanced failure occurs cannot be measured. That is, if the pulse width is increased in order to facilitate the measurement up to a long distance, the error tg is increased accordingly and the measurement error is also increased. Conversely, if the pulse width is small, the measurement error tg is small and the measurement error tg is high. Although the result can be obtained, there has been a problem that it becomes difficult to measure a long distance.

【0008】一方、パルスの繰り返し周期については、
まずパルスの発生時間中でないと瞬間的な直流抵抗増が
発生しても、反射パルスは発生せず瞬間的不平衡故障発
生位置の特定ができない。つまり継続時間の短い瞬断を
高確率で捉えようとすると、パルス繰り返し周期を短く
する必要があり、これは結果的にパルス幅も短くしなけ
ればならなくなり前述したように遠距離の瞬間的不平衡
故障の測定が困難になる。以上述べたように、従来の測
定法では、発生時間が短く再現性のない瞬間的不平衡故
障の故障位置を遠距離まで高精度で測定することは困難
であった。
On the other hand, regarding the pulse repetition period,
First, even if a momentary increase in DC resistance occurs during the pulse generation time, the reflected pulse does not occur and the momentary imbalance fault occurrence position cannot be specified. In other words, in order to capture a short interruption with a short duration with a high probability, it is necessary to shorten the pulse repetition period.As a result, the pulse width must also be shortened. It becomes difficult to measure the balance fault. As described above, it has been difficult with the conventional measurement methods to measure the failure position of a momentary unbalanced failure, which has a short occurrence time and is not reproducible, to a long distance with high accuracy.

【0009】[0009]

【発明が解決しようとする課題】本発明は、いつ発生し
消滅するかわからないという瞬間的な直流抵抗増加に対
して、その発生位置が遠距離でも高精度で測定できる方
法を提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method capable of accurately measuring the generation position even at a long distance with respect to a momentary increase in DC resistance which is not known when it occurs and disappears. I am trying.

【0010】[0010]

【課題を解決するための手段】本発明の測定方法は、通
信用の2導体で構成される通信用平衡回線にパルスを送
出し、前記2導体とアースとで構成される縦回線に現れ
る反射パルスの伝搬時間を測定することにより、前記回
線に発生した不平衡故障の発生位置を測定する通信用平
衡回線の不平衡故障発生位置の測定方法において、瞬間
的に発生する不平衡故障の発生時間長よりも短い周期で
連続的にパルスを送出し、瞬間的不平衡故障発生時に前
記縦回線に現れる複数個の反射パルスを得、前記複数パ
ルスのうち伝搬時間が最小となる反射パルスの伝搬時間
を用いて前記不平衡故障の発生位置を測定することを特
徴としている。
According to the measuring method of the present invention, a pulse is sent to a balanced line for communication composed of two conductors for communication, and a reflection appears in a vertical line composed of the two conductors and ground. In the measuring method of the unbalanced fault occurrence position of the communication balanced line for measuring the occurrence position of the unbalanced fault occurred in the line by measuring the pulse propagation time, the occurrence time of the unbalanced fault instantaneously generated Propagation time of a reflected pulse that minimizes the propagation time among the plurality of pulses by transmitting pulses continuously in a cycle shorter than the length and obtaining a plurality of reflected pulses that appear in the vertical line when an instantaneous imbalance fault occurs. Is used to measure the position of occurrence of the unbalanced fault.

【0011】[0011]

【作用】このような本発明によれば、通信回線に発生し
た不平衡故障の位置を、遠近を問わず、容易に且つ高精
度で決定できる。
According to the present invention as described above, the position of the unbalanced fault occurring in the communication line can be easily and highly accurately determined regardless of the distance.

【0012】[0012]

【実施例】以下添付図面を用いて本発明の実施例を詳細
に説明する。図5に直流抵抗変化と測定用パルスの送出
タイミングによる反射パルスの違いを示す。パルス1の
ように抵抗の変動がない場合反射パルスは得られず、
2,3,4のように抵抗変動時にパルスが送出された時
だけ反射パルスが得られる。また3,4の反射パルスの
t3 、t4 は瞬間的不平衡故障点からの正確な伝搬時間
であるが、2の反射パルスの伝搬時間t2 はパルス送出
中に瞬間的不平衡故障が生起したことによる誤差td を
含んだものとなる。瞬間的不平衡故障の継続時間内に複
数のパルスを送出すると縦回線に現れる反射パルスの伝
搬時間tは図6のように分布する。ここで最短の伝搬時
間が時々断発生点からの正しい伝搬時間となる。したが
って反射パルスの伝搬時間を確実にかつ高精度で捉える
ため、送出パルスの繰り返し周期を適切に選定する必要
がある。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 5 shows the difference between the direct current resistance change and the reflected pulse depending on the measurement pulse transmission timing. If there is no change in resistance like pulse 1, a reflected pulse cannot be obtained,
The reflected pulse can be obtained only when the pulse is transmitted when the resistance changes, such as 2, 3, and 4. Also, t3 and t4 of the reflected pulses 3 and 4 are accurate propagation times from the momentary imbalance fault point, but the propagation time t2 of the reflected pulse 2 is that the momentary imbalance fault occurred during the pulse transmission. Error td due to When a plurality of pulses are transmitted within the duration of the momentary imbalance fault, the propagation time t of the reflected pulse appearing in the vertical line is distributed as shown in FIG. Here, the shortest propagation time is sometimes the correct propagation time from the disconnection point. Therefore, in order to reliably and accurately capture the propagation time of the reflected pulse, it is necessary to appropriately select the repetition period of the transmitted pulse.

【0013】一回の瞬間的不平衡故障発生でも図5の
3,4のように誤差のない反射パルスをより多く捉える
ためには繰り返し周期Tを短くする必要がある。一方、
繰り返し周期を短くすると瞬間的不平衡故障位置が遠方
の場合は、得られた反射パルスと送出パルスとの対応が
できず伝搬時間を正確に求められなくなる。したがって
繰り返し周期Tは次の関係式を満足する必要がある。 Tlmax<T<Tid/n ここで、 Tlmax:線路最遠点で瞬間的不平衡故障が発生した場合
の伝搬時間 Tid :瞬間的不平衡故障の継続時間 n :Tidの中で得ようとする反射パルスの個数 である。
It is necessary to shorten the repetition cycle T in order to capture more reflected pulses having no error as shown by 3 and 4 in FIG. 5 even if one instantaneous imbalance failure occurs. on the other hand,
When the repetition cycle is shortened, when the instantaneous unbalanced fault position is distant, the obtained reflected pulse cannot correspond to the transmitted pulse, and the propagation time cannot be accurately obtained. Therefore, the repetition period T needs to satisfy the following relational expression. Tlmax <T <Tid / n where: Tlmax: Propagation time when a momentary unbalanced fault occurs at the farthest point of the line Tid: Duration of momentary unbalanced fault n: Reflection to be obtained within Tid The number of pulses.

【0014】例えば線路最遠点を4kmとすれば、Tlm
axは約40μsとなり、かつTidが殆ど数100μs以
上あるという条件下で、誤差を含まない反射パルスをで
きるだけ多く捉えることを考えると、この場合繰り返し
周期Tは40μsが最適である。
For example, if the farthest point on the line is 4 km, Tlm
Under the condition that ax is about 40 μs and Tid is almost several hundreds μs or more, considering that as many reflection pulses as possible without error are captured, the repetition cycle T is optimally 40 μs in this case.

【0015】以上述べたように瞬間的に発生する不平衡
故障の発生時間長よりも短い周期で連続的にパルスを送
出し、瞬間的不平衡故障発生時に前記縦回線に現れる複
数個の反射パルスを得、さらに伝搬時間が最小となる反
射パルスの伝搬時間を測定すれば、瞬間的不平衡故障に
よる反射パルスを確実に捉え、かつ故障の発生タイミン
グに関係なく高精度で、その発生位置を測定することが
できる利点がある。
As described above, a plurality of reflected pulses appearing on the vertical line when a momentary imbalance fault occurs by continuously transmitting pulses at a cycle shorter than the time length of the momentary imbalance fault occurrence. By measuring the propagation time of the reflected pulse that minimizes the propagation time, the reflected pulse due to a momentary unbalanced failure can be reliably captured, and its position can be measured with high accuracy regardless of the failure occurrence timing. There is an advantage that can be done.

【0016】瞬間的不平衡故障位置からの反射パルスの
正確な伝搬時間をts 、送出パルスのパルス幅をTw
(図5)とすると、直流抵抗変化と測定用パルスの送出
タイミングによって伝搬時間tは、ts <t<ts +T
w の範囲に分布する。しかし上述したように瞬間的不平
衡故障の継続時間中に誤差のない反射パルス(伝搬時間
が最短)を複数個捉えることができれば、繰り返し周期
内で許される広いパルス幅で測定しても高精度の測定が
可能となる。
The accurate propagation time of the reflected pulse from the instantaneous imbalance fault position is ts, and the pulse width of the transmitted pulse is Tw.
(FIG. 5), the propagation time t is ts <t <ts + T depending on the DC resistance change and the timing of sending the measurement pulse.
It is distributed in the range of w. However, as described above, if it is possible to capture multiple error-free reflected pulses (shortest propagation time) during the duration of a momentary unbalanced fault, it is possible to obtain high accuracy even when measuring with a wide pulse width allowed within the repetition period. Can be measured.

【0017】例として瞬間的不平衡故障位置1km、瞬
間的不平衡故障継続時間1msの実験線路を用いて、パ
ルス幅を10μsと40μsとした場合の反射パルスの
伝搬時間を測定した結果をそれぞれ図7aと図7bに示
す。今回の実験では分布する範囲と最短伝搬時間を明確
にするため20回測定を行ったが、一回の瞬間的不平衡
故障であっても最短伝搬時間以外の時間が分布する数が
少なくなるだけで、最短伝搬時間は変わることがない。
パルス幅TW を拡大しても最短の伝搬時間を用いること
により瞬間的不平衡故障発生位置を特定できる。このこ
とは、本手法によれば高精度化を計るために送出パルス
のパルス幅を小さくする必要がなく、繰り返し周期内で
可能な限り広いパルス幅を用いることができることを意
味しており、遠距離の瞬間的不平衡故障に対しても高精
度の位置測定が可能になるという大きな利点を合わせて
有している。
As an example, using an experimental line with a momentary unbalanced fault position of 1 km and a momentary unbalanced fault duration of 1 ms, the propagation time of the reflected pulse was measured when the pulse width was 10 μs and 40 μs. 7a and 7b. In this experiment, we measured 20 times in order to clarify the distribution range and the shortest propagation time, but the number of times other than the shortest propagation time is distributed even if there is only one momentary imbalance fault. Therefore, the shortest propagation time does not change.
Even if the pulse width TW is expanded, the shortest propagation time can be used to identify the position of the momentary imbalance fault occurrence. This means that according to this method, it is not necessary to reduce the pulse width of the transmitted pulse in order to achieve high accuracy, and the widest possible pulse width can be used within the repetition period. It also has the great advantage that it enables highly accurate position measurement even for momentary imbalance faults in distance.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
(1)瞬間的不平衡故障の発生時間長よりも短い周期で
連続的にパルスを送出しているので瞬断が発生した場合
には、最低2個以上の反射パルスを捉えることが出来
る、(2)縦回線に現れる複数個のパルスの伝搬時間の
うち最も短い伝搬時間を用いているので送出するパルス
幅に関係なく正確な測定が出来る、(3)パルス幅を大
きく出来るので遠距離までの測定ができる、等の効果が
ある。
As described above, according to the present invention,
(1) Since pulses are continuously transmitted in a cycle shorter than the occurrence time length of a momentary imbalance fault, at least two or more reflected pulses can be captured when a momentary interruption occurs. 2) Since the shortest propagation time of the multiple pulses appearing in the vertical line is used, accurate measurement can be performed regardless of the pulse width to be sent. (3) Since the pulse width can be increased, it can be used over long distances. There is an effect that measurement is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、通信回線の設備形態を示す図である。FIG. 1 is a diagram showing an installation form of a communication line.

【図2】図2は、心線接続部の図である。FIG. 2 is a diagram of a core wire connection portion.

【図3】図3は、測定系を表す図である。FIG. 3 is a diagram showing a measurement system.

【図4】図4は、直流抵抗変動波形と送出パルス及び反
射パルスを示した図である。
FIG. 4 is a diagram showing a DC resistance fluctuation waveform and a transmission pulse and a reflection pulse.

【図5】図5は、直流抵抗変動波形の中に複数個の送出
パルスがあった場合の図である。
FIG. 5 is a diagram when there are a plurality of transmission pulses in the DC resistance fluctuation waveform.

【図6】図6は、伝搬時間の分布を示した図である。FIG. 6 is a diagram showing a distribution of propagation time.

【図7】図7は、伝搬時間ヒストグラムである。FIG. 7 is a propagation time histogram.

【符号の説明】[Explanation of symbols]

1 局舎 2 交換機 3 地下ケーブル 4 マンホール 5 地下接続点 6 電柱 7 架空ケーブル 8 架空接続点 9 引き込み線 10 電話機端末 11 L1 心線 12 L2 心線 13 抵抗 14 直流抵抗 31 導体 32 絶縁被覆 33 手ひねり部 1 station building 2 switcher 3 underground cable 4 manhole 5 underground connection point 6 utility pole 7 aerial cable 8 aerial connection point 9 lead-in wire 10 telephone terminal 11 L1 core wire 12 L2 core wire 13 resistance 14 direct current resistance 31 conductor 32 insulation coating 33 hand twist Department

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 通信用の2導体で構成される通信用平衡
回線にパルスを送出し、前記2導体とアースとで構成さ
れる縦回線に現れる反射パルスの伝搬時間を測定するこ
とにより、前記回線に発生した不平衡故障の発生位置を
測定する通信用平衡回線の不平衡故障発生位置の測定方
法において、瞬間的に発生する不平衡故障の発生時間長
よりも短い周期で連続的にパルスを送出し、瞬間的不平
衡故障発生時に前記縦回線に現れる複数個の反射パルス
を得、前記複数パルスのうち伝搬時間が最小となる反射
パルスの伝搬時間を用いて前記不平衡故障の発生位置を
測定することを特徴とする通信用平衡回線の瞬間的な不
平衡故障発生位置の測定方法。
1. A pulse is transmitted to a communication balanced line composed of two conductors for communication, and a propagation time of a reflected pulse appearing in a vertical line composed of the two conductors and the ground is measured, whereby In the method of measuring the unbalanced fault occurrence position of the communication balanced line for measuring the occurrence position of the unbalanced fault that occurred in the line, continuously pulse at a cycle shorter than the time length of the momentary unbalanced fault occurrence. A plurality of reflected pulses appearing in the vertical line when a momentary unbalanced fault occurs are transmitted, and the occurrence position of the unbalanced fault is determined by using the propagation time of the reflected pulse having the smallest propagation time among the plurality of pulses. A method for measuring an instantaneous unbalanced fault occurrence position of a balanced line for communication, which is characterized by measuring.
JP20336494A 1994-08-29 1994-08-29 Measuring method of instantaneous unbalance fault occurrence position of balanced line for communication Expired - Fee Related JP3306734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20336494A JP3306734B2 (en) 1994-08-29 1994-08-29 Measuring method of instantaneous unbalance fault occurrence position of balanced line for communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20336494A JP3306734B2 (en) 1994-08-29 1994-08-29 Measuring method of instantaneous unbalance fault occurrence position of balanced line for communication

Publications (2)

Publication Number Publication Date
JPH0870269A true JPH0870269A (en) 1996-03-12
JP3306734B2 JP3306734B2 (en) 2002-07-24

Family

ID=16472808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20336494A Expired - Fee Related JP3306734B2 (en) 1994-08-29 1994-08-29 Measuring method of instantaneous unbalance fault occurrence position of balanced line for communication

Country Status (1)

Country Link
JP (1) JP3306734B2 (en)

Also Published As

Publication number Publication date
JP3306734B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
US6829223B1 (en) Computer network physical-layer analysis method and system
CN102907010B (en) Impairements identification module and method
CN111433616B (en) Parametric traveling wave based fault location for power transmission lines
KR20130097231A (en) Diagnostic engine for determining global line characteristics of a dsl telecommunication line and method using same
US8554499B2 (en) Methods, device and installation for locating a defect in an electric link
CN115079042B (en) Acoustic wave-based transformer turn-to-turn short circuit detection positioning method and device
CN110261739B (en) Cable soft fault positioning device and positioning method
CN110346690B (en) Submarine cable fault distance measurement system and method based on optical fiber pulse transmission
JPH11133097A (en) Confirmation method for position of short circuit or cable failure in bus system and circuit device
JPH0870269A (en) Method for measuring fault location of instantaneous unbalance occurred in communication balanced line
JP2017015450A (en) Noise-proof characteristic evaluation method of cable and pair cable selection method
US7003098B2 (en) Method and system for measurement of the delay through a network link bounded by an echo canceller
JP3362755B2 (en) A method for searching for incorrectly connected cores in balanced communication lines.
Oasa et al. Verification of fault location by TDR measurement on an actual line including multiple ground-mounted equipment
US7482815B2 (en) Method of operating a shielded connection, and communication network
US20230207155A1 (en) Standard for near end crosstalk of category 6a cable (cat 6a)
JPH10247866A (en) Method and device for estimating insulating failure fault position for balanced cable
CN112198229A (en) Power cable core material distinguishing device and method
Miyoshi et al. Some features and performances of type C transmission-line fault locators
CN117723882A (en) Method for shortening fault searching range of power transmission line cable
JPS58190781A (en) Lightening surge testing circuit
Škaljo et al. Methods of locating galvanic faults in symmetrical copper pair cables in DSL systems
JPH095461A (en) Propagation delay time measuring circuit for measurement signal
JPH04215077A (en) Partial discharge measuring method
Bridgland Understanding land telemetry cable testing and save money

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees