JPH0870196A - Electromagnetic wave shielding box - Google Patents

Electromagnetic wave shielding box

Info

Publication number
JPH0870196A
JPH0870196A JP24048894A JP24048894A JPH0870196A JP H0870196 A JPH0870196 A JP H0870196A JP 24048894 A JP24048894 A JP 24048894A JP 24048894 A JP24048894 A JP 24048894A JP H0870196 A JPH0870196 A JP H0870196A
Authority
JP
Japan
Prior art keywords
box
shielding
conductor
magnetic
framework
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24048894A
Other languages
Japanese (ja)
Other versions
JP3252311B2 (en
Inventor
Shuichiro Kawamata
修一郎 川俣
Atsushi Kawamata
淳 川俣
Takeshi Kawamata
健 川俣
Yoji Nagai
洋治 永井
Hiroshi Kurata
博司 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP24048894A priority Critical patent/JP3252311B2/en
Publication of JPH0870196A publication Critical patent/JPH0870196A/en
Application granted granted Critical
Publication of JP3252311B2 publication Critical patent/JP3252311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE: To make quite equal the positions of the magnetic shielding surfaces of an electromagnetic wave shielding box to those of the electrostatic shielding plates of the shielding box by a method wherein the shielding of an electromagnetic wave is broken down into a magnetic field shielding and an electric field shielding and the shielding effect in the respective single states of the magnetic field and electric field shieldings is analyzed. CONSTITUTION: The framework of a box is constituted of conductor rods 1, which respectively constitute a plane-shaped conductor loop, and a plurality of conductor rods having the same cut section as that of the rods 1. As magnetic shielding surfaces, which fulfill the most magnetic shielding effect, of the box are formed between the surfaces 40 on the outside of the framework of the box and a virtual surface surrounded with a group of straight lines, which pass through the centers of gravity of the cut surfaces of all the conductor rods, the fact that electrostatic shielding plates of the box are installed at the positions of the magnetic shielding surfaces is a characteristic, which is hitherto never contrived. Accordingly, the box has the characteristic of such an visual appearance as to say that the central parts, which are apart from the conductor rods of the framework, of the shielding plates are more recessed than parts, which are mounted to the framework by screws, of the shielding plates. By these means, the mulfunction of an equipment due to noise radio waves, which intrude into an equipment storing container, can be prevented from being generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】通常の電子機器の格納容器、電子
制御機器の格納容器、航空機の航法関係電子機器の格納
容器、電力機器の制御回路の格納容器など
[Industrial field of application] Normal electronic equipment storage containers, electronic control equipment storage containers, aircraft navigation-related electronic equipment storage containers, power equipment control circuit storage containers, etc.

【0002】[0002]

【従来の技術】主に山形をした鋼あるいはアルミ材の導
体棒により機器格納容器の箱の枠組を構成し、枠組の外
側に、銅板あるいはアルミ板を設置した箱の中に、電子
機器などが一層で格納されるか、あるいはより多くの機
器が、箱の中で複数段に分けられて、箱の枠組およびそ
の外側板と導通状態のままの架台により、機械的に保持
され格納されている.
2. Description of the Related Art A box frame of a device storage container is mainly composed of a chevron-shaped steel or aluminum conductor bar, and an electronic device or the like is placed inside a box in which a copper plate or an aluminum plate is installed outside the frame. Stored in a single layer, or more devices are stored in multiple stages in a box, mechanically held and stored by a frame that remains in conduction with the box framework and its outer plates. .

【0003】電磁波のもつエネルギーは、電界と磁界そ
れぞれのエネルギーに2分されている.従って電磁波を
遮蔽するには、それら双方のエネルギーの侵入を阻止し
なければならないことが明白である.
The energy of electromagnetic waves is divided into two energies, electric field and magnetic field. Therefore, in order to shield the electromagnetic waves, it is obvious that the invasion of both types of energy must be blocked.

【0004】電界の遮蔽に関しては、前述のように箱の
外側を鋼板あるいはアルミ板で全て被覆すれば、その時
の緩和時間が極めて小さいので、極端に高い周波数に至
るまで、ほぼ100パーセントに近い電界遮蔽効果を期
待することができる.
Regarding the shielding of the electric field, if the outer side of the box is entirely covered with a steel plate or an aluminum plate as described above, the relaxation time at that time is extremely short, so that an electric field close to 100% is reached until an extremely high frequency is reached. A shielding effect can be expected.

【0005】一方磁界の遮蔽に関しては、箱の枠組を構
成する導体棒と、枠組の外側に設置する鋼板あるいはア
ルミ板との間に微少の隙間が存在するので、そこから漏
れて侵入する磁界を、箱の枠組で作られている導体棒の
ループの中を流れる電流により阻止しなければならない
ことは、あまり良く知られていない.
On the other hand, with respect to the shielding of the magnetic field, since there is a minute gap between the conductor rod forming the frame of the box and the steel plate or the aluminum plate installed on the outside of the frame, the magnetic field that leaks and intrudes from there is present. It is not very well known that it must be blocked by current flowing in a loop of conductor rods made of a box framework.

【0006】従来技術で最も遅れている点は、枠組の導
体ループを流れる電流によって箱の中に侵入する磁束を
最も有効に阻止する磁気遮蔽面が存在する物理現象を理
解していないため、従来技術により作られた電磁波遮蔽
箱の構造に本質的な欠陥の存在を許している点である.
すなはち、それらの箱にあっては、有効に作用する磁気
遮蔽面と静電遮蔽面とが、それぞれ離れた位置に存在し
ている構造になっている点である.
The most lagging point in the prior art is that we do not understand the physical phenomenon in which there is a magnetic shielding surface that most effectively blocks the magnetic flux that enters the box due to the current flowing through the conductor loops of the framework. This is to allow the existence of essential defects in the structure of the electromagnetic shielding box made by the technology.
That is, these boxes have a structure in which the magnetic shield surface and the electrostatic shield surface, which effectively act, are present at positions separated from each other.

【0007】電磁波のエネルギーは、電界エネルギーと
磁界エネルギーに、常に等分される.それらの中で、一
方が減衰すれば、他方からエネルギーが補充され直ちに
両者のエネルギーが等しくなる.このような物理現象が
存在するので、先に述べた2つの面が離れて存在する構
造は、欠陥のある構造であり、2つの面を一致させる飛
躍した技術の創造がまたれている.
The energy of electromagnetic waves is always divided into electric field energy and magnetic field energy. If one of them decays, the energy is replenished from the other and the energies of both are immediately equalized. Due to the existence of such a physical phenomenon, the above-mentioned structure in which the two surfaces are separated is a defective structure, and the creation of a breakthrough technique for matching the two surfaces is straddling.

【0008】従来技術による電磁波遮蔽の効果を、例を
揚げて説明する.電磁波が電磁波遮蔽箱に侵入しようと
する.すると、先ず外測の静電遮蔽面で、100パーセ
ント電界エネルギーが消滅しても、磁界エネルギーはそ
のまま保存されるから、箱の内部でエネルギーが等分さ
れて、外部から侵入したときの1/4ずつのエネルギー
を、電界と磁界がもつようになる.少し電磁波が進行す
れば、磁気遮蔽面が存在する位置に達する.そこで、磁
界が1/10に減衰すると仮定すれば、そこを通過した
後の磁界のエネルギーは、(1/4)×(1/100)
=0.0025に減少するけれども、電界エネルギーは
全く減少しないので、そこを通過した後の両者のエネル
ギーは、それぞれ外部から侵入するエネルギーの0.1
2625倍ずつとなり、箱内部の電界および磁界は、い
ずれも約−6dBの減衰となる.
The effect of shielding electromagnetic waves by the prior art will be described with reference to examples. Electromagnetic waves try to enter the electromagnetic shielding box. Then, first, even if 100% electric field energy disappears on the external electrostatic shield surface, the magnetic field energy is preserved as it is, so the energy is equally divided inside the box and 1 / An electric field and a magnetic field have four energies. If the electromagnetic wave advances a little, it will reach the position where the magnetic shielding surface exists. Therefore, assuming that the magnetic field is attenuated to 1/10, the energy of the magnetic field after passing there is (1/4) × (1/100)
However, since the electric field energy does not decrease at all, the energy of both after passing there is 0.1 of the energy penetrating from the outside.
2625 times each, and the electric field and magnetic field inside the box are both attenuated by about -6 dB.

【0009】同一の箱を利用して、磁気遮蔽面と静電遮
蔽面の位置を、同一位置に選べばその値が約−20dB
の減衰になることから、従来技術は大いに改善余地のあ
ることが明白である.
If the positions of the magnetic shield surface and the electrostatic shield surface are selected at the same position using the same box, the value is about -20 dB.
It is obvious that there is a lot of room for improvement in the conventional technology because of the attenuation of.

【0010】箱の外部の電磁界が箱に侵入する条件のも
とでは、箱の内部にあって格納機器を保持し、あるいは
箱の機械的強度を保持する目的で、箱の内部に筋交い、
支柱あるいはまた機器の格納架台など導電材料を使用し
た構造物を、箱を構成する金属導体と電気絶縁せずに使
用すると、それら構造物に、導体ループを流れる筈の電
流が分流し、磁気遮蔽の効果を大きく低減させるマイナ
ス効果を生ずる.この点に関しても、従来技術にあって
は何等の考慮もなされていない.
Under the condition that an electromagnetic field outside the box penetrates into the box, the inside of the box holds a storage device, or the inside of the box is braced for the purpose of holding the mechanical strength of the box.
If you use structures that use conductive materials, such as stanchions or housings for equipment, without being electrically insulated from the metal conductors that make up the box, the electric current that should flow through the conductor loops will be shunted to those structures, and magnetic shielding will occur. Produces a negative effect that greatly reduces the effect of. With respect to this point as well, no consideration is given to the related art.

【0011】[0011]

【発明が解決しようとする課題】襲雷時に、電気計算機
やそれの端末機器、電子制御ロボットなどの作業用機
器、航空機の航法関係機器、電力機器の制御回路など、
全ての機器が、従来から金属製の箱に格納され使用され
ているにもかかわらず、外部からの雑音信号により誤動
作、あるいは機器の損傷事故を生ずることが多い.
At the time of a lightning strike, an electric computer, terminal equipment therefor, work equipment such as an electronically controlled robot, navigation-related equipment for aircraft, control circuits for electric power equipment, etc.
Although all devices have been stored and used in metal boxes for some time, malfunctions or damage to the devices often occur due to noise signals from the outside.

【0012】軍用機や民間機が激しい雷雨の中で離着陸
を試みている際の事故の報道が少なくないことから、航
空機が雷撃を受けた際に航法関係の機器が雑音によって
誤動作することもあると考えられる.
Since there are many reports of accidents when military aircraft and civilian aircraft are attempting to take off and land in a heavy thunderstorm, navigation-related equipment may malfunction due to noise when the aircraft is hit by lightning. it is conceivable that.

【0013】上に述べた雑音が原因となる事故は、高速
処理、多機能の電子回路に使用されている電気信号が小
さく、一方では電磁波遮蔽箱に関する技術レベルが低い
ため、箱の内部に侵入する雑音信号が電気信号に比べて
大きくなることに原因がある.
The above-mentioned accident caused by noise enters the inside of the box because the electric signal used in the high-speed processing and multifunctional electronic circuit is small and the technical level of the electromagnetic shielding box is low. The cause is that the noise signal that is generated is larger than the electrical signal.

【0014】電磁波遮蔽箱の内部に侵入する雑音信号を
より一層低減し、機器の誤動作を防止出来るようになれ
ば、産業界に大きく寄与できる.この目標を達成するこ
とが、解決しようとする課題である.
If the noise signal entering the inside of the electromagnetic wave shielding box can be further reduced and the malfunction of the device can be prevented, it can greatly contribute to the industrial world. Achieving this goal is the task to be solved.

【0015】[0015]

【課題を解決するための手段】電磁波中の電界ベクトル
は、導体面に垂直にできるので、導体と導体が重ね合わ
さった隙間から電界が漏れたり、侵入する現象は生じな
い.
[Means for Solving the Problems] Since the electric field vector in the electromagnetic wave can be made perpendicular to the conductor surface, the phenomenon that the electric field does not leak or penetrate from the gap where the conductors are superposed does not occur.

【0016】一方磁界ベクトルは、導体面に並行にでき
るので、導体と導体の重ね合わさった微小な隙間から、
漏れたり、侵入したりする.
On the other hand, since the magnetic field vector can be made parallel to the conductor surface, from the minute gap in which the conductors are superposed,
It leaks or intrudes.

【0017】従って、電磁波を遮蔽する手段として、箱
の外側板では静電遮蔽面を作り、箱の枠組の導体ループ
により磁気遮蔽面をつくる.
Therefore, as a means for shielding electromagnetic waves, an electrostatic shield surface is formed on the outer plate of the box, and a magnetic shield surface is formed by the conductor loop of the frame of the box.

【0018】導体ループにより磁気遮蔽を可能にする物
理現象を明白にするために微分方程式を解くことが必要
である.
It is necessary to solve the differential equation in order to clarify the physical phenomenon that enables magnetic shielding by the conductor loop.

【0019】面積がs、ループの電気抵抗がR,その同
じループのインダクタンスがLであるである導体ループ
に、外部から侵入しようとする交番磁界がH=Hsi
nωtであるときの、導体ループを流れる電流を先ず計
算する.ここでωは角周波数である.ループとの鎖交磁
束φ(t)=μSHsinωtとなる.式中でμは
透磁率である.
The alternating magnetic field that is about to enter from the outside into a conductor loop whose area is s, the electric resistance of the loop is R, and the inductance of the same loop is L is H = H 0 si
First, the current flowing through the conductor loop when nωt is calculated. Where ω is the angular frequency. The interlinkage magnetic flux with the loop is φ 0 (t) = μSH 0 sin ωt. In the formula, μ is the magnetic permeability.

【0020】ループの起電力をV(t)とすれば、導体
ループを流れる電流iに関して次の微分方程式が成立す
る. となる.この式を書き替えれば、次の式が得られる. (式2)を解き、t=0でi=0と置き、かつ過渡状態
がすぎた後の定常態の解を示せば次式となる.
If the electromotive force of the loop is V (t), the following differential equation holds for the current i flowing through the conductor loop. Becomes. By rewriting this formula, the following formula is obtained. By solving (Equation 2), setting i = 0 at t = 0, and showing the steady-state solution after the transient state has passed, the following equation is obtained.

【0021】(式3)に、ループのインダクタンスLを
乗ずれば、磁束が得られφ′(t)=Liで表され,こ
のφ′(t)はループ電流による磁束である.従って
φ″(t)=Li+φ(t) は、ループで鎖交する
ことを阻止できないで、箱の内部に侵入する磁束とな
る.その値は、φ=μsHであるから、 となる.
By multiplying (Equation 3) by the inductance L of the loop, a magnetic flux can be obtained and represented by φ ′ (t) = Li, which φ ′ (t) is the magnetic flux due to the loop current. Therefore, φ ″ (t) = Li + φ 0 (t) cannot be prevented from interlinking in the loop, and becomes a magnetic flux penetrating into the inside of the box. Since its value is φ 0 = μsH 0 , Becomes.

【0022】(式4)中のωt=θと置き、(式4)の
極大および極小値をもとめるために、ωt=θ置いた
(式4)の変形式を、θで微分し、整理をすれば次の式
が得られる. −(R/L)cosθ=ωsinθ (式5) この(式5)から、 −(R/L)×(1/ω)=tanθ (式6) および、θ=tan−1{−R/(Lω)}±180°
×n (式7)が得られる.式中nは整数で
ある.
In order to find the maximum and minimum values of (Equation 4) by setting ωt = θ in (Equation 4), the modified equation of (Equation 4) with ωt = θ is differentiated by θ and rearranged. Then, the following formula is obtained. − (R / L) cos θ = ω sin θ (Equation 5) From this (Equation 5), − (R / L) × (1 / ω) = tan θ (Equation 6) and θ = tan −1 {−R / ( Lω)} ± 180 °
Xn (Equation 7) is obtained. In the formula, n is an integer.

【0023】(式7)が成立する時には、(式4)中の
第2項は0となり、φ″(t)の極大および極小値であ
るφ″は、次式であらわせる. φ″=φsin(θ±180°×n) (式8)
When (Equation 7) is established, the second term in (Equation 4) becomes 0, and the maximum and minimum values of φ ″ (t), φ ″, can be expressed by the following equation. φ ″ = φ 0 sin (θ ± 180 ° × n) (Equation 8)

【0024】φ(t)とφ″(t)の間の関係を、
φ″(t)の変動が大きくなるように磁気遮蔽としては
劣悪な条件を用いて描いた図を、図1に示す.劣悪な条
件とは、R/L=3000,f=1kc,tan
−1{R/(Lω)}=−25.5227±180゜×
nの条件である.
The relationship between φ 0 (t) and φ ″ (t) is
Fig. 1 shows a diagram drawn under the condition that magnetic shielding is poor so that the fluctuation of φ "(t) becomes large. Rough condition is R / L = 3000, f = 1kc, tan.
−1 {R / (Lω)} = − 25.5227 ± 180 ° ×
It is a condition of n.

【0025】図2には、縦軸にφ″とφの比の絶対値
を目盛り、また横軸にR/(Lω)の値を目盛った図を
示す.図1に示す例にあっては、R/(Lω)=0.4
7746であった.これまでに、角形の管状導体を使用
して平面状導体ループを試作した結果、R/Lの比を4
00まで作れることが確かめられたので、もしこの導体
ループを使用した場合を考えれば、同じ周波数の時に
も、R/(Lω)の比が0.06366となり、図2か
ら、図2の縦軸の値が、図1の場合に比べて遥かに小さ
な0.06353となることが判る.
2 shows the absolute value of the ratio of φ ″ and φ 0 on the vertical axis and the value of R / (Lω) on the horizontal axis. In the example shown in FIG. R / (Lω) = 0.4
It was 7746. As a result of trial manufacture of a planar conductor loop using a rectangular tubular conductor, the R / L ratio was 4
Since it has been confirmed that it is possible to make up to 00, if the case of using this conductor loop is considered, the ratio of R / (Lω) becomes 0.06366 even at the same frequency, and from FIG. It can be seen that the value of becomes 0.06353, which is much smaller than that in the case of FIG.

【0026】(式1)から(式8)までの磁気遮蔽を考
察するための数理解析は、平面状導体ループを構成する
棒状導体に、一様に(式1)に示す電流が流れることが
前提であるから、そのループ電流による磁束は、全て導
体の切断面の重心を通る直線群により囲まれた面内を通
る.従ってこの面が、磁気遮蔽の効果を最も良く発揮す
ることは明瞭である.
Mathematical analysis for considering the magnetic shielding from (Equation 1) to (Equation 8) shows that the current shown in (Equation 1) uniformly flows in the rod-shaped conductor forming the planar conductor loop. Since this is a premise, all the magnetic flux due to the loop current passes through a plane surrounded by a group of straight lines passing through the center of gravity of the cut surface of the conductor. Therefore, it is clear that this surface exerts the best magnetic shielding effect.

【0027】平面状導体ループを構成する棒状導体の切
断面の形状が異なる場合には、それぞれの重心を通り棒
に並行な直線群が、同一平面上に存在し得ないので、磁
気遮蔽の効果を最も良く発揮する磁気遮蔽面が出来ない
ことは勿論である.
If the cut surfaces of the rod-shaped conductors forming the planar conductor loop have different shapes, a group of straight lines passing through the respective centers of gravity and parallel to the rods cannot exist on the same plane. Of course, it is not possible to create a magnetically shielded surface that best exhibits.

【0028】電磁波を遮蔽するには、進行して来る電界
と磁界を同じ面の位置で阻止すればよいことが明らかで
あるから、磁気遮蔽の効果を最もよく発揮する面の位置
が明確に出来れば、その同じ面の位置で電界を遮蔽出来
れば、本願の課題を解決出来ることもまた明白である.
To shield the electromagnetic waves, it is clear that the advancing electric field and magnetic field should be blocked at the same surface position, so that the position of the surface where the magnetic shielding effect is best exerted can be clearly defined. It is also clear that the problem of the present application can be solved if the electric field can be shielded at the same plane position.

【0029】図3に、本発明の実施例の概念図をしめ
す.図にあっては、箱全体が静電遮蔽板で被われている
様子を示す.図中10は静電遮蔽板である.
FIG. 3 shows a conceptual diagram of an embodiment of the present invention. The figure shows how the entire box is covered with an electrostatic shield. In the figure, 10 is an electrostatic shield.

【0030】箱は電磁波遮蔽を必要とする目標空間を包
含する目的で、適宜の長さに切断した同じ切断面をも
つ、同じ素材の複数本の直線状導体棒それぞれの端部と
端部を、機械的および電気的に接続し、複数の平面状導
体ループからなる多面体の箱の枠組を先ず構成する.
For the purpose of including a target space requiring electromagnetic wave shielding, the box has an end portion and an end portion of each of a plurality of linear conductor rods of the same material having the same cutting surface cut into an appropriate length. First, a framework of a polyhedral box, which is mechanically and electrically connected and consists of a plurality of planar conductor loops, is constructed.

【0031】磁気遮蔽を確実にするために、隣接する平
面導体ループ間では、導体棒が共有となる.換言すれば
箱の枠組の稜線は、導東棒一本で構成される.
To ensure magnetic shielding, conductor rods are shared between adjacent planar conductor loops. In other words, the ridgeline of the box framework consists of a single Todong Bar.

【0032】箱の枠組の機械的強度を増す必要がある
か、あるいは平面状導体ループの面積が大きくなり過ぎ
る場合には、一つの平面状導体ループを細分化する目的
で、複数個の平面に間仕切りする.
When it is necessary to increase the mechanical strength of the frame of the box or the area of the planar conductor loop becomes too large, a plurality of planar conductor loops are formed in order to subdivide one planar conductor loop. Partition.

【0033】多面体の箱の枠組の外側から、その外側の
面、記号40に並行な面をもつ静電遮蔽板を、その外側
の面が、枠組の導体棒から外れた導体ループの内側で
は、枠組の外側の面、記号40の位置から、枠組の導体
棒それぞれの切断面の重心、記号20を通る複数本の直
線により囲まれた仮想面、記号30の位置までの間に、
導体ループと静電遮蔽板が電気接続された状態で設置す
る.
From the outside of the framework of the polyhedron box, an electrostatic shield having an outside surface thereof, a surface parallel to the symbol 40, is provided inside the conductor loop whose outside surface is removed from the conductor rod of the framework. Between the outer surface of the frame, the position of the symbol 40, the center of gravity of the cut surface of each conductor rod of the frame, the virtual plane surrounded by a plurality of straight lines passing through the symbol 20, and the position of the symbol 30,
It is installed with the conductor loop and the electrostatic shield plate electrically connected.

【0034】図3に示す箱の外観の特徴は、箱の枠組で
囲まれた導体棒の内側では静電遮蔽板に凹みがある点に
ある.
The appearance of the box shown in FIG. 3 is characterized in that the electrostatic shield plate has a recess inside the conductor rod surrounded by the frame of the box.

【0035】図4に、図3を一点鎖線の位置で切断し矢
印の向きに見た切断面を示す.図中1は、それぞれが平
面状導体ループを構成している導体棒であり、それら全
ての導体棒の切断面が同一の角形の管である.図中10
は静電遮蔽板であり、箱に機械的な強度を持たせる様
に、板にある程度の肉厚を考慮した例を示している.図
中記号40は枠組の外側のの面を示す.
FIG. 4 shows a cross section of FIG. 3 taken along the alternate long and short dash line and seen in the direction of the arrow. In the figure, 1 is a conductor rod which constitutes a planar conductor loop, and the cut surfaces of all the conductor rods are the same rectangular pipes. 10 in the figure
Is an electrostatic shielding plate, and shows an example in which the plate has a certain thickness so that the box has mechanical strength. The symbol 40 in the figure indicates the outer surface of the framework.

【0036】図5には、電磁波遮蔽箱を構成する一つの
平面状導体ループに静電遮蔽板を設置した実施例の概念
図を示す.図中1は直線状の導体棒である.図の例にあ
っては導体棒により作られたループの形が長方形である
けれども、これまでに示した数理解析の結果は、直線状
の導体棒で構成され同一平面上に存在するならば、複数
の辺をもつ全ての多角形に本願が適用できることは勿論
である.
FIG. 5 shows a conceptual diagram of an embodiment in which an electrostatic shield plate is installed on one planar conductor loop which constitutes an electromagnetic wave shield box. In the figure, 1 is a straight conductor rod. In the example of the figure, the shape of the loop formed by the conductor rod is rectangular, but the result of the mathematical analysis shown so far is that if it is composed of linear conductor rods and exists on the same plane, Of course, the present invention can be applied to all polygons having multiple sides.

【0037】図6、図7、図8はそれぞれ、図5を一点
鎖線の位置で切断し、矢印の向きに見た断面図である.
それぞれの図中で、記号20は導体棒の切断面の重心を
示し、その点を通る一点鎖線記号30は、導体棒にのみ
電流が流れると考えられる場合の仮想面の位置を示す.
該面の位置が磁気遮蔽の効果を最も良く発揮する時期遮
蔽面の位置と同じ位置になる条件は、磁気遮蔽板として
極めて薄い金属箔や金属蒸着膜などを用いた場合に限
る.
FIGS. 6, 7, and 8 are cross-sectional views of FIG. 5 taken along the alternate long and short dash line and seen in the direction of the arrow.
In each figure, the symbol 20 indicates the center of gravity of the cut surface of the conductor rod, and the dashed-dotted line symbol 30 passing through the point indicates the position of the virtual plane when it is considered that current flows only in the conductor rod.
The condition that the position of the surface is the same as the position of the shielding surface when the magnetic shielding effect is most exerted is limited to the case where an extremely thin metal foil or metal vapor deposition film is used as the magnetic shielding plate.

【0038】電磁波遮蔽箱の、機械的な強度を磁気遮蔽
板に多少なりとも分担させる場合には、静電遮蔽板とし
て厚地の金属板を用いることも必要になる.その様な場
合には、静電遮蔽板を流れる電磁誘導電流は、等価的に
板の周囲、つまり箱の枠組を構成する導体棒の近くを流
れるので、磁気遮蔽の効果を最も良く発揮する磁気遮蔽
面の位置は、仮想面の位置30から枠組の外側の面40
の方向に移る.
When the mechanical strength of the electromagnetic wave shielding box is to be shared by the magnetic shielding plate to some extent, it is also necessary to use a thick metal plate as the electrostatic shielding plate. In such a case, the electromagnetic induction current that flows through the electrostatic shield plate equivalently flows around the plate, that is, near the conductor rods that form the framework of the box, so that the magnetic shield that maximizes the magnetic shield effect is obtained. The position of the shielding surface is from the position 30 of the virtual surface to the surface 40 outside the framework.
Move in the direction of.

【0039】しかしながら、その磁気遮蔽面が枠組の外
側の面記号40より外側に出ることはない.
However, the magnetic shielding surface does not extend outside the surface symbol 40 outside the frame.

【0040】それぞれの図の違いは、図6が角形管状導
体棒と薄い静電遮蔽板の組合わせ、図7が角形管状導体
棒と比較的厚地の静電遮蔽板の組合わせ、図8が山形状
導体棒と比較的厚地の静電遮蔽板の組合わせの違いであ
る.
The difference between the figures is that FIG. 6 is a combination of a rectangular tubular conductor rod and a thin electrostatic shield plate, FIG. 7 is a combination of a rectangular tubular conductor rod and a relatively thick electrostatic shield plate, and FIG. The difference is the combination of the mountain-shaped conductor rod and the relatively thick electrostatic shield plate.

【0041】これまで実施例概念図として、管状あるい
は山形状の導体棒の使用例のみを示したけれども、導体
棒の切断面が中実であっても差し支えないことは勿論で
ある.ただ外側寸法が等しい場合に重量が大になること
が問題になるだけである.
Although only the examples of using the tubular or mountain-shaped conductor rods have been shown so far as the conceptual diagrams of the embodiments, it goes without saying that the conductor rods may have solid cut surfaces. The only problem is that the weight increases when the outer dimensions are the same.

【0042】R/(Lω)の値が0.1を越える条件下
では、磁界が箱の中に1/10以上の割合で侵入するの
で、箱内部の筋交い、支柱、架台などの構造物と、箱の
外側を構成する全ての構造物、枠組の導体棒、静電遮蔽
板、との間に導体ループができる.その導体ループに電
流が流れるので、箱の枠組を構成する導体ループを流れ
る電流が減少し、磁気遮蔽の効果を減少させる.その場
合には、箱内部の構造物である筋交い、支柱、架台等の
金属は、全て箱の外側を構成する金属と電気絶縁しなけ
ればならない.
Under the condition that the value of R / (Lω) exceeds 0.1, the magnetic field penetrates into the box at a rate of 1/10 or more. Therefore, the structure inside the box, such as braces, columns and pedestals. , A conductor loop is formed between all the structures that make up the outside of the box, the conductor rod of the frame, and the electrostatic shield. Since a current flows through the conductor loop, the current flowing through the conductor loop that forms the framework of the box is reduced, and the effect of magnetic shielding is reduced. In that case, the metal inside the box, such as the braces, columns, and pedestals, must be electrically insulated from the metal that forms the outside of the box.

【0043】[0043]

【作用】磁気遮蔽の効果は、図2に示すように、平面状
導体ループの電気抵抗Rと,その同じループのインダク
タンスL,および外部から侵入する電気信号の角周波数
ωの組合わせである、R/(Lω)の値できまる.しか
も磁気遮蔽の効果を最も良く発揮する磁気遮蔽面の位置
も明確にすることができた.その磁気遮蔽面の位置を、
静電遮蔽面の位置とを全く同じにすることが可能、つま
り本願の発明を具体化できることも明確にすることがで
きた.
As shown in FIG. 2, the effect of magnetic shielding is a combination of the electric resistance R of the planar conductor loop, the inductance L of the same loop, and the angular frequency ω of the electric signal penetrating from the outside. The value of R / (Lω) is determined. Moreover, it was possible to clarify the position of the magnetic shield surface that maximizes the effect of magnetic shield. The position of the magnetic shield surface,
It was also clarified that the position of the electrostatic shield surface can be made exactly the same, that is, the invention of the present application can be embodied.

【0044】従来の技術にあっては、静電遮蔽面の位置
が箱の表面であり、磁気遮蔽面がその面から離れた箱の
内部により近い処に存在していて、磁界を阻止する面で
は磁界のみを阻止し、そこから離れた位置にある電界遮
蔽面では電界のみを阻止していた.
In the prior art, the position of the electrostatic shield surface is the surface of the box, and the magnetic shield surface is located closer to the inside of the box away from the surface and is a surface for blocking the magnetic field. Blocked only the magnetic field, and blocked the electric field only at the electric field shielding surface located away from it.

【0045】換言すれば、従来技術では、例えば100
パーセント電界のみを遮蔽出来る静電遮蔽面と、同じく
100パーセント磁界を遮蔽出来る磁気遮蔽面とが、あ
る距離はなれて存在した場合に、どちらの面が侵入する
雑音の電磁波にさらされても、結局もとの電磁波エネル
ギーの0.5×0.5=0.25の割合のエネルギーが
箱の内部に侵入してしまう.そのうちで半分の0.12
5が電界のエネルギーである.こ値を2倍し平方根を求
めれば、0.5となるから、箱の中の減衰は、dBで表
示すれば−6dBとなる.
In other words, in the prior art, for example, 100
When an electrostatic shield surface that can shield only a percent electric field and a magnetic shield surface that can also shield a 100 percent magnetic field are present at a distance, no matter which surface is exposed to the electromagnetic waves of intruding noise, The energy of 0.5 × 0.5 = 0.25 of the original electromagnetic wave energy penetrates inside the box. Half of them 0.12
5 is the energy of the electric field. If this value is doubled and the square root is calculated, it will be 0.5, so the attenuation in the box will be -6 dB if expressed in dB.

【0046】その値は、従来技術で到達出来る限界であ
る.メッキした銅網の場合にも、網目は編まれて作られ
ているので、網によって作られる磁気遮蔽面と静電遮蔽
面のいずれもが網目に沿ってはいるが、いずれも波状あ
るいは凸凹状になっていて、磁気遮蔽面と静電遮蔽面と
が同一位置にあるとは言いがたい.
That value is the limit that can be reached by the prior art. Even in the case of plated copper mesh, since the mesh is knitted, both the magnetic shield surface and the electrostatic shield surface formed by the mesh are along the mesh, but both are wavy or uneven. It is hard to say that the magnetic shield surface and the electrostatic shield surface are in the same position.

【0047】本願にあっては、磁気遮蔽面の位置が明白
になり、その同じ位置に静電遮蔽面を設置することに特
徴があり、かつ具体化は容易である.箱の枠組の外側に
取り付ける静電遮蔽板は、ビス止めで充分で、したがっ
て、箱の内容物の修理や出し入れも容易である.
In the present application, the position of the magnetic shield surface is clarified, and the electrostatic shield surface is installed at the same position, and it is easy to embody. The electrostatic shield attached to the outside of the frame of the box need only be screwed, and therefore the contents of the box can be easily repaired and taken out.

【0048】本願により電磁波を遮蔽しようとすれば、
遮蔽の効果は次に示すように、従来技術による場合に比
べ、非常に優れていることが明らかである.先ず磁気遮
蔽に関しては、R/(Lω)が1/10と仮定、次に静
電遮蔽の効果が97パーセントと仮定する.磁気遮蔽面
と静電遮蔽面とが同じ位置にあるので、その位置を通過
する磁界のエネルギーは1/100となり、同じく電界
エネルギーは、(3/100)=9×10−4とな
る.両者を加算して2で割った値が、箱の中に入つたそ
れぞれ磁界エネルギーと電界エネルギーとになるから、
その値の2倍の平方根を求めれば、磁界および電界の値
が箱の外に比べ0.104403倍に減少したことにな
る.その減少をdBで表示すれば約−19dB.
According to the present application, if an electromagnetic wave is to be shielded,
As shown below, it is clear that the shielding effect is much superior to that of the conventional technique. First, regarding magnetic shielding, it is assumed that R / (Lω) is 1/10, and then the effect of electrostatic shielding is 97%. Since the magnetic shield surface and the electrostatic shield surface are at the same position, the energy of the magnetic field passing through that position is 1/100, and the electric field energy is (3/100) 2 = 9 × 10 −4 . The values obtained by adding the two and dividing by 2 are the magnetic field energy and electric field energy, respectively, which are entered in the box.
If the square root of twice that value is obtained, it means that the values of the magnetic field and electric field have decreased to 0.104403 times as compared with the outside of the box. If the reduction is expressed in dB, it will be approximately -19 dB.

【0049】これまでの説明で分かる通り、本願の発明
は、従来技術を遥かに越えた優れた発明である.
As can be seen from the above description, the invention of the present application is an excellent invention that far exceeds the prior art.

【0050】[0050]

【実施例】図3に本発明の実施例概念図をしめす。図中
1は平面状導体ループを構成する導体棒、同じ切り口断
面をもつ複数の導体棒により箱の枠組を構成する.最も
磁気遮蔽の効果を発揮する磁気遮蔽面が、箱の枠組の外
側の面、記号40と全ての導体棒の切断面の重心を通る
直線群により囲まれた仮装面との間にできることから、
静電遮蔽板を磁気遮蔽面の位置に設置することが、従来
に無い特徴である.従って、静電遮蔽板の枠組の導体棒
から離れた中央の部分では、静電遮蔽板が枠組にビスで
取り付ける部分より凹むという外観の特徴をもってい
る.その外観を図3に示す.
FIG. 3 is a conceptual diagram of an embodiment of the present invention. In the figure, 1 is a conductor rod forming a planar conductor loop, and a box frame is constituted by a plurality of conductor rods having the same cross section. Since the magnetic shield surface that exerts the most magnetic shield effect can be formed between the outer surface of the frame of the box, the symbol 40 and the temporary surface surrounded by the straight line group passing through the centers of gravity of the cut surfaces of all the conductor rods,
One of the unique features is that the electrostatic shield is installed at the position of the magnetic shield. Therefore, in the central portion of the frame of the electrostatic shield away from the conductor rod, the electrostatic shield has the appearance feature that it is recessed from the portion attached to the frame with a screw. The appearance is shown in Fig. 3.

【0051】導体棒としては、角形管状導体棒、図6お
よび図7、の方が山形状導体棒図8より電磁波遮蔽の見
地からは優れている.理由は、図6および図7がともに
重心の位置が角形管状導体棒の内部に存在し、その位置
には電界が生じないのに反して、山形状導体棒の場合に
は切断面の重心が導体で囲まれていないので、電界を生
ずることが可能であるからである.従って電界遮蔽の効
果が少し劣る.
As a conductor rod, a rectangular tubular conductor rod, FIGS. 6 and 7, is superior to the mountain-shaped conductor rod in FIG. 8 from the viewpoint of electromagnetic wave shielding. The reason is that in both FIGS. 6 and 7, the position of the center of gravity is inside the rectangular tubular conductor rod, and no electric field is generated at that position, whereas in the case of the mountain-shaped conductor rod, the center of gravity of the cut surface is Because it is not surrounded by a conductor, it is possible to generate an electric field. Therefore, the effect of electric field shielding is slightly inferior.

【0052】角形管状導体棒として、切断面が2cm×
2cmで管の肉厚2mmの銅棒を使用し、一辺が1mの
平面状導体ループを試作し、R/Lの値を計測した結果
400であった.この値を用い、本願の発明を具体化
し、雷の対地雷撃時の雑音周波数のピーク500サイク
ルでどの程度雑音電波が低減されるかを検討すれば、次
の通りである.
As a rectangular tubular conductor rod, the cut surface is 2 cm ×
Using a copper rod having a wall thickness of 2 mm and a tube thickness of 2 mm, a flat conductor loop having a side length of 1 m was manufactured as a prototype, and the R / L value was measured to be 400. Using this value, the invention of the present application is embodied, and it is as follows if the noise radio wave is reduced at the peak 500 cycles of the noise frequency at the time of lightning strike to ground.

【0053】先ずR/(Lω)を計算すれば、0.12
73となる.次に静電遮蔽の効果を0.95と仮定すれ
ば、磁界および電界が箱の内部で約−17dBとなる.
First, R / (Lω) is calculated to be 0.12
73. Next, assuming that the effect of electrostatic shielding is 0.95, the magnetic field and electric field are about -17 dB inside the box.

【0054】その同じ箱を、10kcで検討すれば、R
/(Lω)の値が0.00636619となり、静電遮
蔽の効果は周波数によって変化しないから、箱の内部の
磁界および電界の低減効果は、約−26dBとなる.
If the same box is examined at 10 kc, R
Since the value of / (Lω) is 0.006366619, and the effect of electrostatic shielding does not change with frequency, the effect of reducing the magnetic field and electric field inside the box is approximately -26 dB.

【0055】箱の内部に設置した機器の発熱を放出する
ための換気窓、外部との電気接続のために、静電遮蔽の
効果は100パーセントにはならない.面積の割合から
勘案して、97から95パーセントが限度であると考え
られる.
Due to the ventilation window for releasing the heat generated by the equipment installed inside the box and the electrical connection with the outside, the effect of electrostatic shielding is not 100%. Considering the area ratio, the limit is considered to be 97 to 95%.

【0056】[0056]

【発明の効果】従来技術の物理的な内容を0044なら
びに
The physical contents of the prior art are

【0046】に、またそれによる技術上の限界を004
5に説明した.
In addition, the technical limit resulting therefrom is 004.
I explained in 5.

【0056】本願の特徴である物理的な内容の要約を0
047に示し、従来技術を遥かに越える新しい技術の内
容を0048および0052、0053、0054に具
体的な数値で示した通り、本願の発明は、産業に大きく
寄与する優れた発明である.
The summary of the physical contents which is the characteristic of the present application is 0
The invention of the present application is an excellent invention that greatly contributes to the industry, as indicated by the specific numerical values 0048 and 0052, 0053, 0054, which show the contents of the new technology far exceeding the conventional technology as shown in 047.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1のグラフは、縦軸にφ(t)およびφ″
(t)を、横軸にθ=ωtを示す図である.
FIG. 1 is a graph in which the vertical axis represents φ 0 (t) and φ ″.
(T) is a diagram showing θ = ωt on the horizontal axis.

【図2】図は縦軸にφ″/φの比の絶対値を、横軸に
R/(Lω)を示す図である.
FIG. 2 is a diagram showing the absolute value of the ratio of φ ″ / φ 0 on the vertical axis and R / (Lω) on the horizontal axis.

【図3】図は本発明の実施例概念図である.FIG. 3 is a conceptual diagram of an embodiment of the present invention.

【図4】図3を一点鎖線の位置で切断し、矢印の向きに
見た切断面である.
FIG. 4 is a cross-sectional view of FIG. 3 taken along the alternate long and short dash line and seen in the direction of the arrow.

【図5】電磁波遮蔽箱を構成する一つの平面状導体ルー
プに静電遮蔽板を設置した実施例の概念図である.
FIG. 5 is a conceptual diagram of an embodiment in which an electrostatic shielding plate is installed on one planar conductor loop which constitutes an electromagnetic wave shielding box.

【図6】図5を一点鎖線の位置で切断し、矢印の向きに
見た断面図である.角形管状導体棒に薄い静電遮蔽板を
設置した実施例である.
FIG. 6 is a cross-sectional view of FIG. 5 taken along the chain line and seen in the direction of the arrow. This is an example in which a thin electrostatic shield is installed on a rectangular tubular conductor rod.

【図7】図6と同じ位置の切断面.角形管状導体棒に厚
地の静電遮蔽板を設置した実施例である.
FIG. 7 is a sectional view at the same position as in FIG. This is an example in which a thick electrostatic shield is installed on a rectangular tubular conductor rod.

【図8】図6と同じ位置の切断面.山形状導体棒に厚地
の静電遮蔽板を設置した実施例である.
FIG. 8 is a sectional view at the same position as in FIG. This is an example in which a thick electrostatic shield is installed on a mountain-shaped conductor rod.

【符号の説明】[Explanation of symbols]

記号1は、平面状導体ループおよび箱の枠組を構成する
直線状導体棒. 記号10は、箱の外側に設置される静電遮蔽板. 記号20は、導体棒の切断面の重心. 記号30は、導体棒の切断面の重心を通る直線により囲
まれた仮装面の位置を示す. 記号40は、複数の導体棒により構成された、箱の枠組
の外側の面の位置を示す.
Symbol 1 is a linear conductor rod that constitutes the framework of the planar conductor loop and the box. Symbol 10 is an electrostatic shield plate installed on the outside of the box. Symbol 20 is the center of gravity of the cut surface of the conductor rod. The symbol 30 indicates the position of the temporary surface surrounded by the straight line passing through the center of gravity of the cut surface of the conductor rod. The symbol 40 indicates the position of the outer surface of the box framework, which is composed of a plurality of conductor rods.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 594164209 倉田 博司 神奈川県横浜市港南区下永谷2−1−26 アルカデイア下永谷304号 (72)発明者 川俣 修一郎 埼玉県浦和市領家7−29−15 (72)発明者 川俣 淳 静岡県裾野市稲荷82番地の1 (72)発明者 川俣 健 埼玉県浦和市領家7−29−15 (72)発明者 永井 洋治 神奈川県平塚市東中原1−17−10 三伊ビ ル 305 (72)発明者 倉田 博司 神奈川県横浜市港南区下永谷 2−1−26 アルカデイア 下永谷 304号 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 594164209 Kurashita Kurashita 2-1-26 Shimonagaya, Konan-ku, Yokohama-shi, Kanagawa Prefecture Arcadia No. 304 Shimonagaya Shimonagaya (72) Inventor Shuichiro Kawamata 7-29-15 (72) Ryoke, Urawa City, Saitama Prefecture ) Inventor Jun Kawamata 1 at 82 Inari, Susono City, Shizuoka Prefecture (72) Inventor Ken Kawamata 7-29-15 Ryoke, Urawa City Saitama Prefecture (72) Inventor Yoji Nagai 1-17-10 Higashi Nakahara, Hiratsuka City, Kanagawa Prefecture Bill 305 (72) Inventor Hiroshi Kurata 2-1-26 Shimonagaya, Konan-ku, Yokohama-shi, Kanagawa Arcadia Shimonagaya 304

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電磁波遮蔽を必要とする目標空間を包含
する目的に応じ、適宜の長さに切断した同じ切断面をも
つ同じ素材の複数本の導体棒それぞれの、端部と端部を
機械的および電気的に接続し、平面状導体ループを構成
し、また必要に応じ該導体棒により複数個の平面に間仕
切りされた平面状導体ループを構成し、隣接する平面状
導体ループ間では導体棒が共有となる複数の平面状導体
ループ面により、多面体の箱の枠組を構成し、枠組とな
るそれぞれの平面状導体ループ面に、箱の外側から、そ
の面と並行な静電遮蔽板の、その外側の面が、枠組を構
成する導体棒より外れた導体ループの内側では、枠組の
面と一致する位置から、平面状導体ループを構成する導
体棒それぞれの、切断面の重心を通る直線により囲まれ
た仮想面の位置までの間に、導体ループと静電遮蔽板が
電気接続された状態で設置され、多面体の各々の面にお
いて磁気遮蔽の効果を最も良く発揮する磁気遮蔽面の位
置に静電遮蔽板が設置されることを特徴とする電磁波遮
蔽箱.
1. An end portion and an end portion of each of a plurality of conductor rods of the same material having the same cut surface cut into an appropriate length according to the purpose of including a target space requiring electromagnetic wave shielding are machined. Electrically and electrically connected to form a planar conductor loop, and if necessary, a planar conductor loop partitioned into a plurality of planes by the conductor rod, and a conductor rod between adjacent planar conductor loops. A plurality of planar conductor loop surfaces that are shared to form a framework of a box of a polyhedron, on each planar conductor loop surface that is a framework, from the outside of the box, of an electrostatic shield plate parallel to that surface, On the inside of the conductor loop whose outer surface is dislocated from the conductor rods that form the framework, use a straight line that passes through the center of gravity of the cut surface of each conductor rod that forms the planar conductor loop from a position that matches the surface of the frame. To the position of the enclosed virtual plane Between the conductor loop and the electrostatic shield plate are electrically connected to each other, and the electrostatic shield plate is installed on each face of the polyhedron at the position of the magnetic shield face that maximizes the magnetic shield effect. Electromagnetic wave shielding box characterized by
JP24048894A 1994-08-30 1994-08-30 Electromagnetic wave shielding box Expired - Fee Related JP3252311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24048894A JP3252311B2 (en) 1994-08-30 1994-08-30 Electromagnetic wave shielding box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24048894A JP3252311B2 (en) 1994-08-30 1994-08-30 Electromagnetic wave shielding box

Publications (2)

Publication Number Publication Date
JPH0870196A true JPH0870196A (en) 1996-03-12
JP3252311B2 JP3252311B2 (en) 2002-02-04

Family

ID=17060265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24048894A Expired - Fee Related JP3252311B2 (en) 1994-08-30 1994-08-30 Electromagnetic wave shielding box

Country Status (1)

Country Link
JP (1) JP3252311B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293536C (en) * 2003-08-25 2007-01-03 阿尔卑斯电气株式会社 Shielding box for magnetic head,magnetic head,magnetic tape recording regenerating device and magnetic head mfg method
JP2007202320A (en) * 2006-01-27 2007-08-09 Toshiba Corp Current detector, and power converter for rail-car using the same
CN103606443A (en) * 2013-11-29 2014-02-26 华北电力大学 Method for shielding electric reactor magnetic field by additionally assembling shielding plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773007B (en) * 2020-12-09 2022-08-01 英業達股份有限公司 Folding assembled type electromagnetic shielding cover

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293536C (en) * 2003-08-25 2007-01-03 阿尔卑斯电气株式会社 Shielding box for magnetic head,magnetic head,magnetic tape recording regenerating device and magnetic head mfg method
JP2007202320A (en) * 2006-01-27 2007-08-09 Toshiba Corp Current detector, and power converter for rail-car using the same
CN103606443A (en) * 2013-11-29 2014-02-26 华北电力大学 Method for shielding electric reactor magnetic field by additionally assembling shielding plate

Also Published As

Publication number Publication date
JP3252311B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
US8399964B2 (en) Multilayer structures for magnetic shielding
Hoburg A computational methodology and results for quasistatic multilayered magnetic shielding
JPH0870196A (en) Electromagnetic wave shielding box
Joseph et al. de Haas—van Alphen Effect and Fermi Surface in Rhenium
Sun et al. A new model for analysis of the shielding effectiveness of multilayer infinite metal meshes in a wide frequency range
US6028266A (en) Low frequency EMF shield
Orlov et al. The impact of coupled conductors in a dielectric material above an ideally conducting plane on the difference of board delay per unit length of even and odd modes
Eriksson et al. Shielding properties of welded and unwelded wire mesh enclosures
Orlov et al. Methods for increasing noise immunity of radio electronic systems with redundancy
Kasaš-Lažetić et al. DC Magnetic Field Reduction Inside Particular Part of Space
Casinovi et al. Magnetic field near a concrete wall during a lightning stroke
RU85267U1 (en) MULTI-LAYER ELECTROMAGNETIC SCREEN
EP1241926A2 (en) Magnetic Shielding
Hussein Spatial filter housing for enhancement of the shielding effectiveness of perforated enclosures with lossy internal coating: Broadband characterization
Tatematsu et al. Plane-wave coupling analysis of a distribution line with a multipoint grounded shield wire and surge arresters using the three-dimensional fdtd method
Dawson et al. Reduction of radiated emissions from apertures in resonant enclosures by the use absorptive materials
Conecici et al. Study of the shielding performances of different materials regarding Electromagnetic Field Interference
Sun et al. Approximate Simulation of Low Frequency Magnetic Shielding of a Rectangular Shielding Box with All Walls Perforated Periodical Holes
Gavrilov et al. Low Frequency Magnetic Field Reduction Applying Different Shielding Procedures
Gardner et al. The penetration of EM waves through loaded apertures
Tatu et al. Effectiveness analysis of different screens and frequency influence on electromagnetic attenuation
CN204391224U (en) A kind of Three-Dimensional Isotropic negative magnetoconductivity structure
RU2381601C1 (en) Multilayer electromagnetic screen
CN109067010A (en) A kind of shielding electromagnetism Meta Materials of nearly zero magnetic conductivity of double frequency and its application
Naranjo-Villamil et al. Analysis of the shielding effectiveness of reinforced concrete in case of a direct lightning strike

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees