JPH0868899A - Holder for optical element - Google Patents

Holder for optical element

Info

Publication number
JPH0868899A
JPH0868899A JP6203919A JP20391994A JPH0868899A JP H0868899 A JPH0868899 A JP H0868899A JP 6203919 A JP6203919 A JP 6203919A JP 20391994 A JP20391994 A JP 20391994A JP H0868899 A JPH0868899 A JP H0868899A
Authority
JP
Japan
Prior art keywords
optical element
holder
optical
elastic body
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6203919A
Other languages
Japanese (ja)
Inventor
Shinichi Takahashi
進一 高橋
Takeshi Okuyama
猛 奥山
Masashi Okada
正思 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6203919A priority Critical patent/JPH0868899A/en
Publication of JPH0868899A publication Critical patent/JPH0868899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE: To provide a holder capable of mitigating the distortion of optical elements due to aging and temperature change. CONSTITUTION: In a holder 5, a contact part 70 for contacting with an optical element 2 as a holding object is provided. The contact part 10 is supported with an elastic body 71 elastically changeable more significantly than the optical element 2 by the force in the direction perpendicular to the optical axis AX of the optical element 2. By this, distortion of the optical element 2 is mitigated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線顕微鏡やX線分析
装置等で使用される高精度の光学素子の保持に適した保
持具及び保持方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a holder and a holding method suitable for holding a highly accurate optical element used in an X-ray microscope, an X-ray analyzer or the like.

【0002】[0002]

【従来の技術】軟X線の波長は0.1nm〜30nmであり、可
視光の波長(380nm〜770nm程度)に比べ短くまた物質の
透過力が高いという特徴をもっている。この軟X線を顕
微鏡や分析装置等のX線装置に用いることにより、従来
よりも高い分解能で物質の内部構造が観察できるなどの
大きな特徴を生み出す。しかしながら、軟X線の波長が
可視光よりも短いために反射面の形状精度も非常に高い
ものが要求される。近年超微細加工技術の発展と共にX
線用の反射鏡に使用できるような形状精度の高い光学素
子の製作が可能となり、X線顕微鏡や分析装置などへの
応用が行われるようになってきた。
2. Description of the Related Art The wavelength of soft X-rays is 0.1 nm to 30 nm, which is shorter than the wavelength of visible light (about 380 nm to 770 nm) and has a high material permeability. The use of this soft X-ray in an X-ray device such as a microscope or an analyzer produces a great feature that the internal structure of a substance can be observed with higher resolution than before. However, since the wavelength of the soft X-ray is shorter than that of visible light, the shape accuracy of the reflecting surface is required to be very high. With the development of ultra-fine processing technology in recent years, X
It has become possible to manufacture an optical element having a high shape accuracy that can be used for a reflecting mirror for X-ray, and it has come to be applied to an X-ray microscope, an analyzer, and the like.

【0003】X線は従来の可視光のような屈折作用を利
用したレンズを用いることができないために、回転軸対
称双曲面と回転軸対称楕円面とを組み合わせたウォルタ
ー型斜入射反射鏡、回転軸対称楕円鏡等のすれすれの角
度からの入射X線の全反射を利用した斜入射反射鏡や、
球面鏡を2枚組み合わせたシュバルツシルド型光学系等
の多層膜を用いたX線光学素子が開発されている。
Since X-rays cannot use a conventional lens utilizing a refraction effect such as visible light, a Wolter type oblique incidence reflecting mirror in which a rotation axis symmetric hyperboloid and a rotation axis symmetric elliptical surface are combined, a rotation. An oblique-incidence reflecting mirror that uses total reflection of incident X-rays from a grazing angle such as an axisymmetric elliptical mirror,
An X-ray optical element using a multilayer film such as a Schwarzschild type optical system in which two spherical mirrors are combined has been developed.

【0004】図7及び図8は上記X線装置に用いられる
X線光学素子の保持方法の一例を示す平面図及び断面図
である。この例では、保持具1の貫通孔1aにX線用の
光学素子2が挿通され、貫通孔1aの内周面と光学素子
2の外周面との間に可視光用レンズを固定するのと同様
の接着剤3が充填される。
7 and 8 are a plan view and a sectional view showing an example of a method of holding an X-ray optical element used in the X-ray apparatus. In this example, the X-ray optical element 2 is inserted into the through hole 1a of the holder 1, and the visible light lens is fixed between the inner peripheral surface of the through hole 1a and the outer peripheral surface of the optical element 2. A similar adhesive 3 is filled.

【0005】[0005]

【発明が解決しようとする課題】上述した図7及び図8
の固定方法では、保持具1が光学素子2よりも剛性が高
いため、接着剤3の乾燥に伴う体積変化により光学素子
2が変形する。また、保持具1の温度変化に伴う伸縮に
よっても光学素子2が変形する。従来の可視光用のレン
ズや反射鏡ではこれらの形状変形はほとんど光学性能に
影響を与えなかったが、可視光よりも短い波長を用いる
軟X線用などの高精度光学素子に於いては、これらの反
射鏡の形状変形が大きく光学性能に影響する。そこで、
高精度光学素子の光学性能を充分に発揮するためには、
接着剤の乾燥による体積変化や温度変化等による保持具
の変形の影響を高精度光学素子が受けないように配慮す
る必要が生じる。
7 and 8 described above.
In the fixing method, since the holder 1 has higher rigidity than the optical element 2, the optical element 2 is deformed due to the volume change accompanying the drying of the adhesive 3. Further, the optical element 2 is also deformed by the expansion and contraction of the holder 1 due to the temperature change. In conventional lenses and reflectors for visible light, these shape deformations hardly affected the optical performance, but in high-precision optical elements for soft X-rays that use wavelengths shorter than visible light, The shape deformation of these reflecting mirrors greatly affects the optical performance. Therefore,
In order to fully demonstrate the optical performance of high precision optical elements,
It is necessary to consider that the high-precision optical element is not affected by the deformation of the holder due to the volume change due to the drying of the adhesive or the temperature change.

【0006】本発明は、経時変化や温度変化に対する光
学素子の変形を抑制できる保持具及び保持方法を提供す
ることを目的とする。
It is an object of the present invention to provide a holder and a holding method capable of suppressing the deformation of an optical element due to changes over time and changes in temperature.

【0007】[0007]

【課題を解決するための手段】一実施例を示す図1及び
図2に対応付けて説明すると、請求項1の発明の保持具
5は保持対象の光学素子2に接合される接合部70を具
備する。そして、光学素子2の光軸AXと直交する方向
の剛性が光学素子2よりも低く設定された弾性体71に
より接合部70を支持して上述した目的を達成する。請
求項2の発明は請求項1の保持具5に適用され、接合部
70が、光学素子2の光軸AXの回りに複数設けられて
いる。請求項3の発明の保持具5は、保持具本体6と、
保持対象の光学素子2を保持するために保持具本体6に
取付けられる保持腕7とを具備する。そして、保持腕7
に、光学素子2に接合される接合部70と、撓み方向を
接合部70と光学素子2の接合方向に向けた状態で接合
部70と保持具本体6とを連結する板ばね状の弾性体7
1とを設けて上述した目的を達成する。請求項4の発明
は請求項3の保持具5に適用され、保持腕7が光学素子
2の光軸AXの回りに回転対称をなすように複数設けら
れる。そして、各保持腕7には、弾性体71が各保持腕
7の接合部70の中心位置及び光学素子2の光軸AXの
双方を通過する仮想平面IPに対して対称に設けられて
いる。請求項5の発明の保持方法では、請求項2〜4の
いずれかに記載の保持具5を使用し、この保持具5の接
合部70と光学素子2とを接着する。
1 and 2 showing an embodiment, the holder 5 of the invention of claim 1 has a joint portion 70 to be joined to the optical element 2 to be held. To have. Then, the joint portion 70 is supported by the elastic body 71 whose rigidity in the direction orthogonal to the optical axis AX of the optical element 2 is set lower than that of the optical element 2 to achieve the above-described object. The invention of claim 2 is applied to the holder 5 of claim 1, and a plurality of bonding portions 70 are provided around the optical axis AX of the optical element 2. The holder 5 of the invention of claim 3 comprises a holder body 6 and
A holding arm 7 attached to the holder main body 6 for holding the optical element 2 to be held. And the holding arm 7
Further, the joint portion 70 joined to the optical element 2 and the leaf spring-like elastic body that connects the joint portion 70 and the holder body 6 in a state where the bending direction is directed to the joint direction between the joint portion 70 and the optical element 2. 7
1 is provided to achieve the above-mentioned object. The invention of claim 4 is applied to the holder 5 of claim 3, and a plurality of holding arms 7 are provided so as to be rotationally symmetrical about the optical axis AX of the optical element 2. An elastic body 71 is provided on each holding arm 7 symmetrically with respect to a virtual plane IP passing through both the center position of the joint portion 70 of each holding arm 7 and the optical axis AX of the optical element 2. In the holding method of the invention of claim 5, the holder 5 according to any one of claims 2 to 4 is used, and the joint portion 70 of the holder 5 and the optical element 2 are bonded.

【0008】[0008]

【作用】請求項1、2の発明では、保持具5と光学素子
2との間に光軸AXと直交する方向の力が作用すると、
弾性体71が弾性変形して光学素子2の変形が抑えられ
る。請求項2の発明では、弾性体71の弾性変形に対す
る復元力が互いに異なる方向から光学素子2に作用し、
これらの復元力の釣り合いにより光学素子2が拘束され
る。請求項3、4の発明では、保持具5自身を支持する
ために必要な剛性を保持具本体6に与えつつ、板ばね状
の弾性体71の撓み方向の剛性を光学素子2よりも十分
に小さく設定できる。これにより、保持具5と光学素子
2との間に光軸AXと直交する方向の力が作用したとき
に弾性体71が変形して光学素子2の変形が抑えられ
る。板ばね状の弾性体71によれば、その撓み方向の剛
性を低く設定しつつ光軸AX方向の幅を十分に大きく設
定できるので、光学素子2を光軸AX方向に支持するた
めに十分な剛性を保持具5に与えることができる。請求
項4の発明では、弾性体71の弾性変形に対する復元力
の釣り合いにより光学素子2の光軸AXが一定の位置に
保持される。弾性体71が仮想平面IPに対して等しく
変形するので光学素子2に捩り力が作用しない。請求項
5の発明では、複数の接合部70のみを光学素子2と接
着して光学素子2を効率良く固定できる。
According to the first and second aspects of the invention, when a force in a direction orthogonal to the optical axis AX acts between the holder 5 and the optical element 2,
The elastic body 71 is elastically deformed and the deformation of the optical element 2 is suppressed. According to the second aspect of the invention, the restoring forces for elastic deformation of the elastic body 71 act on the optical element 2 from different directions,
The optical element 2 is constrained by the balance of these restoring forces. According to the inventions of claims 3 and 4, the rigidity required for supporting the holder 5 itself is given to the holder body 6, and the rigidity in the bending direction of the leaf spring-like elastic body 71 is more sufficient than that of the optical element 2. Can be set small. Thereby, when a force in a direction orthogonal to the optical axis AX is applied between the holder 5 and the optical element 2, the elastic body 71 is deformed and the deformation of the optical element 2 is suppressed. According to the leaf spring-like elastic body 71, since the rigidity in the bending direction can be set low and the width in the optical axis AX direction can be set sufficiently large, it is sufficient to support the optical element 2 in the optical axis AX direction. Rigidity can be given to the holder 5. According to the invention of claim 4, the optical axis AX of the optical element 2 is held at a constant position by the balance of the restoring force against the elastic deformation of the elastic body 71. Since the elastic body 71 is deformed equally with respect to the virtual plane IP, no twisting force acts on the optical element 2. In the fifth aspect of the invention, only the plurality of joints 70 can be adhered to the optical element 2 to efficiently fix the optical element 2.

【0009】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above-mentioned problems for explaining the constitution of the present invention, the drawings of the embodiments are used to make the present invention easy to understand. It is not limited to.

【0010】[0010]

【実施例】図1〜図6により本発明の実施例を説明す
る。図1及び図2は本発明の実施例の保持具5により光
学素子2を保持した状態を示す。これらの図から明らか
なように、本実施例の保持具5は、円板状の保持具本体
6と、保持具本体6の中心の貫通孔60の内周面に適宜
間隔をおいて一体に成形された3つの保持腕7とを備え
ている。保持具本体6の中心軸は保持対象の光学素子2
の光軸AXと一致し、保持腕7は光軸AXの回りに回転
対称(120゜ピッチ)をなすよう配置されている。保
持腕7の形状及び大きさは相互に等しい。なお、光学素
子2は図7、8に示すものと同じである。61は保持具
本体6を他の部品に固定するために周方向3箇所に設け
られた取付孔である。
Embodiments of the present invention will be described with reference to FIGS. 1 and 2 show a state in which the optical element 2 is held by the holder 5 according to the embodiment of the present invention. As is clear from these figures, the holder 5 according to the present embodiment is integrally formed with the disc-shaped holder main body 6 and the inner peripheral surface of the through hole 60 at the center of the holder main body 6 at appropriate intervals. It has three molded holding arms 7. The central axis of the holder body 6 is the optical element 2 to be held.
And the holding arm 7 is arranged so as to have rotational symmetry (pitch of 120 °) around the optical axis AX. The holding arms 7 have the same shape and size. The optical element 2 is the same as that shown in FIGS. Reference numeral 61 designates mounting holes provided at three locations in the circumferential direction for fixing the holder main body 6 to other parts.

【0011】保持腕7には光学素子2の外周面に接着剤
3にて接合される接合部70と、各接合部70の両側に
配置されて接合部70と保持具本体6とを連結する板ば
ね状の弾性体71とを備える。接合部70と光学素子2
との接合方向への弾性体71の厚さtは、接合部70の
同一方向の厚さや光学素子2の肉厚に比して十分に小さ
く設定され、この接合方向への弾性体71の剛性は光学
素子2の同一方向の剛性に対して遥かに小さい。一方、
光軸AXの方向(図1の紙面と直交する方)への弾性体
71の幅は保持具本体6の同一方向の厚さと等しく、従
って光学素子2をその光軸AXの方向に支持するのに十
分な剛性が弾性体71に確保されている。さらに、各接
合部70の中心位置及び光学素子2の光軸AXの双方を
通過する仮想平面IPを仮定したとき、各保持腕7の弾
性体71は、仮想平面IPを挟んで左右対称に設けられ
ている。このため、接合部70に光学素子2の半径方向
の力が作用したとき、左右の弾性体71は仮想平面IP
の方向に均一に変形する。
The holding arms 7 are joined to the outer peripheral surface of the optical element 2 with the adhesive 3, and the joining portions 70 are arranged on both sides of each joining portion 70 to connect the joining portion 70 and the holder body 6. And a leaf spring-like elastic body 71. Joining part 70 and optical element 2
The thickness t of the elastic body 71 in the joining direction with and is set to be sufficiently smaller than the thickness of the joining portion 70 in the same direction and the wall thickness of the optical element 2, and the rigidity of the elastic body 71 in the joining direction. Is much smaller than the rigidity of the optical element 2 in the same direction. on the other hand,
The width of the elastic body 71 in the direction of the optical axis AX (the direction orthogonal to the paper surface of FIG. 1) is equal to the thickness of the holder main body 6 in the same direction, so that the optical element 2 is supported in the direction of the optical axis AX. The sufficient rigidity is ensured in the elastic body 71. Furthermore, assuming a virtual plane IP that passes through both the center position of each joint 70 and the optical axis AX of the optical element 2, the elastic body 71 of each holding arm 7 is provided symmetrically across the virtual plane IP. Has been. Therefore, when a force in the radial direction of the optical element 2 is applied to the joint portion 70, the left and right elastic bodies 71 move to the virtual plane IP.
Deforms uniformly in the direction of.

【0012】以上の保持具5と光学素子2との接合構造
では、図3に示すように接着剤3を接合部70からはみ
出る程に塗布しても、これらが乾燥すると図4に示すよ
うに接着剤3の体積が減少して各接合部70が光学素子
2の半径方向中心側へ引張力を受ける。このとき、最も
剛性の低い弾性体71が光学素子2の半径方向に撓み変
形して光学素子2の変形が抑えられる。各接合部70が
光軸AXの回りに回転対称に配置され、接合部70毎に
弾性体71が仮想平面IPに対して対称に設けられてい
るため、弾性体71の変形に対する復元力が光軸AX上
で互いに均衡して光軸AXが同一位置に拘束される。光
学素子2をその周方向に捩り変形させる力も発生しな
い。光学素子2の全周に接着剤3を塗布することなく接
合部70のみを接着するので、接着剤3の消費量が節約
され、接着作業が効率化される。
In the above-described joining structure of the holder 5 and the optical element 2, even if the adhesive 3 is applied to the extent that it protrudes from the joining portion 70 as shown in FIG. 3, when these are dried, as shown in FIG. The volume of the adhesive 3 decreases and each joint 70 receives a tensile force toward the center of the optical element 2 in the radial direction. At this time, the elastic body 71 having the lowest rigidity is flexibly deformed in the radial direction of the optical element 2 and the deformation of the optical element 2 is suppressed. Since the joints 70 are arranged rotationally symmetrically around the optical axis AX, and the elastic bodies 71 are provided symmetrically with respect to the virtual plane IP for each joint 70, the restoring force for the deformation of the elastic body 71 is optical. The optical axes AX are locked in the same position in equilibrium with each other on the axis AX. A force for twisting and deforming the optical element 2 in the circumferential direction is also not generated. Since only the joint portion 70 is adhered without applying the adhesive 3 to the entire circumference of the optical element 2, the consumption amount of the adhesive 3 is saved and the adhering work is made efficient.

【0013】図5及び図6は温度変化に伴う保持具5の
形状変化を示すものである。図5に示す状態から保持具
本体6や弾性体71が膨張すると、図6に示すように弾
性体71が熱変位を吸収するように変形して光学素子2
の変形が阻止される。この場合も、接合部70の配置の
対称性および各接合部70に対する弾性体71の対称性
により光学素子2の光軸AXが同一位置に拘束され、光
学素子2の捩り力も発生しない。なお、弾性体71の厚
さtについては、保持対象の光学素子2の大きさ並びに
重さなどに応じて最適な弾性力をもった厚みを任意に選
択することができる。
FIGS. 5 and 6 show changes in the shape of the holder 5 with changes in temperature. When the holder body 6 or the elastic body 71 expands from the state shown in FIG. 5, the elastic body 71 is deformed to absorb thermal displacement as shown in FIG.
Deformation is prevented. Also in this case, the optical axis AX of the optical element 2 is constrained to the same position due to the symmetry of the arrangement of the joint portions 70 and the symmetry of the elastic body 71 with respect to each joint portion 70, and the twisting force of the optical element 2 is not generated. Regarding the thickness t of the elastic body 71, a thickness having an optimal elastic force can be arbitrarily selected according to the size and weight of the optical element 2 to be held.

【0014】本発明は以上の実施例に限定されるもので
はなく、対象とする光学素子もX線用のものに限定され
ない。可視光用の光学素子であっても、高い形状精度が
要求される場合には、本発明により接着後の形状変化及
び温度による熱変形の影響を同様に抑えることができ
る。
The present invention is not limited to the above-mentioned embodiments, and the target optical element is not limited to the one for X-rays. Even in the case of an optical element for visible light, when high shape accuracy is required, the present invention can similarly suppress the influence of shape change after bonding and thermal deformation due to temperature.

【0015】また、実施例では接合部を3つ設けたが、
2つまたは4以上設けてもよい。いずれの場合でも接合
部は光学素子の光軸の回りに回転対称に配置することが
望ましい。光学素子を外周から保持する例に限らず、内
周側で保持する場合にも本発明は適用できる。弾性体は
皿ばね等の他のばね手段でもよい。弾性係数の異方性が
大きな弾性材料を、光学素子の接合方向に弾性係数が小
さくなるように配置してもよい。
In addition, although three joints are provided in the embodiment,
Two or four or more may be provided. In either case, it is desirable that the joints are arranged rotationally symmetrically around the optical axis of the optical element. The present invention is applicable not only to the case where the optical element is held from the outer circumference, but also to the case where the optical element is held from the inner circumference side. The elastic body may be another spring means such as a disc spring. An elastic material having a large anisotropy of elastic coefficient may be arranged so that the elastic coefficient becomes small in the bonding direction of the optical element.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
保持具と光学素子との間に作用する光軸と直交する方向
の力に対して弾性体を変形させて光学素子の変形を抑制
できる。従って、保持具の経時変化や温度変化に対する
光学素子の変形が小さくて信頼性の高い保持具及び保持
方法を提供できる。特に請求項3、4の発明によれば、
板ばね状の弾性体の採用により光学素子を光軸方向に支
持するために十分な剛性を確保しつつ、光軸と直交する
方向の弾性体の剛性を低くして光学素子の変形を抑える
ことができる。また、請求項2、4の発明によれば各弾
性体の弾性変形に対する復元力の釣り合いによって光学
素子を光軸と直交する面内の定位置に拘束できる。特に
請求項4の発明によれば光学素子の光軸を常に一定位置
に保持でき、かつ光学素子の周方向への捩りも阻止でき
る。また、請求項5の発明では、光学素子の周方向に並
んだ複数の接合部のみを光学素子と接着するので、接着
剤の消費量を減らし、かつ接着作業の効率を向上させる
ことができる。
As described above, according to the present invention,
It is possible to suppress the deformation of the optical element by deforming the elastic body with respect to the force acting between the holder and the optical element in the direction orthogonal to the optical axis. Therefore, it is possible to provide a highly reliable holder and a holding method in which the deformation of the optical element with respect to a change with time or a temperature change of the holder is small. Particularly, according to the inventions of claims 3 and 4,
While using a leaf spring-like elastic body to secure sufficient rigidity to support the optical element in the optical axis direction, reduce the rigidity of the elastic body in the direction orthogonal to the optical axis to suppress deformation of the optical element. You can According to the second and fourth aspects of the invention, the optical element can be constrained to a fixed position in the plane orthogonal to the optical axis by the balance of the restoring force against the elastic deformation of each elastic body. In particular, according to the invention of claim 4, the optical axis of the optical element can always be held at a fixed position, and twisting of the optical element in the circumferential direction can be prevented. Further, in the invention of claim 5, since only a plurality of joint portions arranged in the circumferential direction of the optical element are bonded to the optical element, the consumption amount of the adhesive can be reduced and the efficiency of the bonding work can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の保持具により光学素子を保持
した状態を示す平面図。
FIG. 1 is a plan view showing a state in which an optical element is held by a holder according to an embodiment of the present invention.

【図2】図1の保持具の軸線方向の断面図。FIG. 2 is an axial cross-sectional view of the holder shown in FIG.

【図3】図1の保持具と光学素子とを接着した直後の状
態を示す図。
FIG. 3 is a diagram showing a state immediately after bonding the holder of FIG. 1 and an optical element.

【図4】図3の状態から接着剤の乾燥が進行した状態を
示す図。
FIG. 4 is a diagram showing a state where the drying of the adhesive has progressed from the state of FIG.

【図5】図1の保持具の熱変形が小さい状態を示す図。FIG. 5 is a diagram showing a state where thermal deformation of the holder of FIG. 1 is small.

【図6】図5の状態から熱変形が増加した状態を示す
図。
6 is a diagram showing a state in which thermal deformation has increased from the state of FIG.

【図7】従来例の保持具により光学素子を保持した状態
を示す平面図。
FIG. 7 is a plan view showing a state where an optical element is held by a holder of a conventional example.

【図8】図7の保持具の軸線方向の断面図。8 is a sectional view of the holder shown in FIG. 7 taken along the axial direction.

【符号の説明】[Explanation of symbols]

2 光学素子 3 接着剤 5 保持具 6 保持具本体 7 保持腕 70 接合部 71 板ばね状の弾性体 AX 光学素子の光軸 IP 仮想平面 2 Optical element 3 Adhesive 5 Holding tool 6 Holding tool body 7 Holding arm 70 Joint part 71 Leaf spring elastic body AX Optical axis of optical element IP Virtual plane

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 保持対象の光学素子に接合される接合部
を具備し、前記光学素子の前記光軸と直交する方向の剛
性が前記光学素子よりも低く設定された弾性体により前
記接合部が支持されていることを特徴とする光学素子の
保持具。
1. A joint part to be joined to an optical element to be held, wherein the joint part is made of an elastic body whose rigidity in the direction orthogonal to the optical axis of the optical element is set lower than that of the optical element. An optical element holder characterized by being supported.
【請求項2】 前記接合部が、前記光学素子の光軸の回
りに複数設けられていることを特徴とする請求項1記載
の光学素子の保持具。
2. The holder for an optical element according to claim 1, wherein a plurality of the joint portions are provided around an optical axis of the optical element.
【請求項3】 保持具本体と、保持対象の光学素子を保
持するために前記保持具本体に取付けられる保持腕とを
具備し、前記保持腕には、前記光学素子に接合される接
合部と、撓み方向を前記接合部と前記光学素子の接合方
向に向けた状態で前記接合部と前記保持具本体とを連結
する板ばね状の弾性体とが設けられていることを特徴と
する光学素子の保持具。
3. A holder main body, and a holding arm attached to the holder main body for holding an optical element to be held, wherein the holding arm has a joint portion joined to the optical element. An optical element having a leaf spring-like elastic body that connects the joint and the holder main body in a state in which the bending direction is directed to the joint between the joint and the optical element. Retainer.
【請求項4】 前記保持腕が前記光学素子の光軸の回り
に回転対称をなすように複数設けられ、各保持腕には、
前記弾性体が各保持腕の接合部の中心位置及び前記光学
素子の光軸の双方を通過する仮想平面に対して対称に設
けられていることを特徴とする請求項3記載の光学素子
の保持具。
4. A plurality of the holding arms are provided so as to be rotationally symmetric about the optical axis of the optical element, and each holding arm includes:
4. The holding of an optical element according to claim 3, wherein the elastic body is provided symmetrically with respect to a virtual plane that passes through both the center position of the joint portion of each holding arm and the optical axis of the optical element. Ingredient
【請求項5】 請求項2〜4のいずれかに記載の保持具
を使用し、該保持具の前記接合部と前記光学素子とを接
着することを特徴とする光学素子の保持方法。
5. A method of holding an optical element, which comprises using the holder according to claim 2 and bonding the joint portion of the holder to the optical element.
JP6203919A 1994-08-29 1994-08-29 Holder for optical element Pending JPH0868899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6203919A JPH0868899A (en) 1994-08-29 1994-08-29 Holder for optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6203919A JPH0868899A (en) 1994-08-29 1994-08-29 Holder for optical element

Publications (1)

Publication Number Publication Date
JPH0868899A true JPH0868899A (en) 1996-03-12

Family

ID=16481870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6203919A Pending JPH0868899A (en) 1994-08-29 1994-08-29 Holder for optical element

Country Status (1)

Country Link
JP (1) JPH0868899A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141974A (en) * 1999-10-06 2001-05-25 Jenoptik Ag Elastic lens holder
JP2002365013A (en) * 2001-06-04 2002-12-18 Fuji Photo Optical Co Ltd Support device of reference plate for light wave interferometer
JP2003188066A (en) * 2001-11-07 2003-07-04 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2004031491A (en) * 2002-06-24 2004-01-29 Nikon Corp Optical element retaining mechanism, optical system lens-barrel and aligner
WO2005017622A1 (en) * 2003-07-17 2005-02-24 Carl Zeiss Smt Ag Device for mounting an optical element, particularly a lens in an objective
JP2009181144A (en) * 2009-05-20 2009-08-13 Nikon Corp Optical element retention mechanism, optical system lens barrel, and exposure system
JP2010520501A (en) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド Optical mount pivotable around a single point
US8064152B2 (en) 2009-09-11 2011-11-22 Canon Kabushiki Kaisha Supporting device, optical apparatus, exposure apparatus, and device manufacturing method
CN103890629A (en) * 2011-06-16 2014-06-25 松下电器产业株式会社 Image pickup device
JP2015041108A (en) * 2013-08-23 2015-03-02 イエーノプティーク オプティカル システムズ ゲーエムベーハー Optical subassembly with mount with connection unit of directed flexibility
CN108980543A (en) * 2018-07-20 2018-12-11 中国科学院长春光学精密机械与物理研究所 It can the in-orbit parallel support system for replacing optics load

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141974A (en) * 1999-10-06 2001-05-25 Jenoptik Ag Elastic lens holder
JP2002365013A (en) * 2001-06-04 2002-12-18 Fuji Photo Optical Co Ltd Support device of reference plate for light wave interferometer
JP2003188066A (en) * 2001-11-07 2003-07-04 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP4565261B2 (en) * 2002-06-24 2010-10-20 株式会社ニコン Optical element holding mechanism, optical system barrel, and exposure apparatus
JP2004031491A (en) * 2002-06-24 2004-01-29 Nikon Corp Optical element retaining mechanism, optical system lens-barrel and aligner
US6859337B2 (en) 2002-06-24 2005-02-22 Nikon Corporation Optical-element mountings exhibiting reduced deformation of optical elements held thereby
WO2005017622A1 (en) * 2003-07-17 2005-02-24 Carl Zeiss Smt Ag Device for mounting an optical element, particularly a lens in an objective
JP2010520501A (en) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド Optical mount pivotable around a single point
JP2009181144A (en) * 2009-05-20 2009-08-13 Nikon Corp Optical element retention mechanism, optical system lens barrel, and exposure system
US8064152B2 (en) 2009-09-11 2011-11-22 Canon Kabushiki Kaisha Supporting device, optical apparatus, exposure apparatus, and device manufacturing method
CN103890629A (en) * 2011-06-16 2014-06-25 松下电器产业株式会社 Image pickup device
US9201209B2 (en) 2011-06-16 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Image pickup device
JP2015041108A (en) * 2013-08-23 2015-03-02 イエーノプティーク オプティカル システムズ ゲーエムベーハー Optical subassembly with mount with connection unit of directed flexibility
CN108980543A (en) * 2018-07-20 2018-12-11 中国科学院长春光学精密机械与物理研究所 It can the in-orbit parallel support system for replacing optics load
CN108980543B (en) * 2018-07-20 2019-10-11 中国科学院长春光学精密机械与物理研究所 It can the in-orbit parallel support system for replacing optics load

Similar Documents

Publication Publication Date Title
JP5043468B2 (en) Holding device
JP4809987B2 (en) Support structure for optical element, exposure apparatus using the same, and method for manufacturing semiconductor device
US5801891A (en) Flat mirror mounting flexure
US6859337B2 (en) Optical-element mountings exhibiting reduced deformation of optical elements held thereby
TWI534552B (en) Optical element with low surface figure deformation
JPH0868899A (en) Holder for optical element
TWI402551B (en) Optical element holding apparatus
JP2000028886A (en) Assembly consisting of optical element and mount
JP5602233B2 (en) Optical structure of a microlithographic projection exposure apparatus
JP2007528125A (en) Equipment consisting of at least one optical component
US20060164619A1 (en) Imaging device in a projection exposure machine
JP2016508626A (en) Monolithic optical component with integrated flexure
US6661962B1 (en) Optical element support structure and methods of using and making the same
TW434421B (en) Active mirror
JP5243957B2 (en) Objective for immersion lithography
JP2004247484A (en) Mirror holding device, aligner, and method of manufacturing device
JPH10253872A (en) Holding device for reflecting optical member and exposure device
JP2003086504A (en) Lithography apparatus, device manufacturing method, and device manufactured by the same method
JPS5932967Y2 (en) lens support
JP4956680B2 (en) Support structure for optical element, exposure apparatus using the same, and method for manufacturing semiconductor device
SU1701120A3 (en) Optical members fixing device
TW202311805A (en) Optical element, projection optical unit and projection exposure apparatus
JPH1096843A (en) Structure for holding optical device
JP2795181B2 (en) Light reflection telescope for satellite
JP5795014B2 (en) Reflector support mechanism