JPH0868817A - Method and device for measuring c/i ratio of same or neighboring channel-interference signal with digital-type movable radio system - Google Patents

Method and device for measuring c/i ratio of same or neighboring channel-interference signal with digital-type movable radio system

Info

Publication number
JPH0868817A
JPH0868817A JP7060322A JP6032295A JPH0868817A JP H0868817 A JPH0868817 A JP H0868817A JP 7060322 A JP7060322 A JP 7060322A JP 6032295 A JP6032295 A JP 6032295A JP H0868817 A JPH0868817 A JP H0868817A
Authority
JP
Japan
Prior art keywords
measuring
ratio
envelope
measurement
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7060322A
Other languages
Japanese (ja)
Inventor
Ingo Gaspard
ガスパルト インゴー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Telekom AG
Telekom Deutschland GmbH
Original Assignee
Deutsche Telekom AG
DeTeMobil Deutsche Telekom Mobilfunk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom AG, DeTeMobil Deutsche Telekom Mobilfunk GmbH filed Critical Deutsche Telekom AG
Publication of JPH0868817A publication Critical patent/JPH0868817A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Transmitters (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE: To measure the C/I ratio of the same or each other neighboring channel interference waves by envelope-demodulating a signal received from a receiving antenna with a measurement receiver to digitalize scanned values for an envelope. CONSTITUTION: A signal received by a receiving antenna 1 at a receiving point is envelope-demodulated with a measurement receiver 2 and scanned at preset time intervals in a limited measurement time period with an A/D converter 3, and N-pairs of scanned values for an envelop are digitalized and memorized as 1-N continuous sequences of square values for the envelop in a computer 4. Two types of subsidiary variables are calculated from the memorized values to estimate a C/I radio in proper steps. In this way, the measured value for the C/I ratio is estimated as the function of a time from measured receiving output instead of costly collation measurement and from the analyzing calculation of the C/I ratio by using a time function value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、送信帯域内の高周波
数搬送波発振の位相変調を利用したディジタル式可動無
線システムで、情報信号と不要な信号との比率を直接的
に測定するものである。従って、この発明の方法はGS
M規格に基づくディジタル式可動無線システムで有利に
利用できる。その場合、C/I比とは、受信位置での所
望の情報信号C(搬送波)と不要な妨害信号I(妨害
波)との受信出力の比率のことである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a digital mobile radio system using phase modulation of high frequency carrier oscillation within a transmission band, and directly measures the ratio of information signals to unnecessary signals. . Therefore, the method of the present invention is
It can be advantageously used in a digital mobile radio system based on the M standard. In that case, the C / I ratio is the ratio of the reception output of the desired information signal C (carrier wave) to the unwanted interference signal I (interference wave) at the reception position.

【0002】[0002]

【従来の技術】従来から、ディジタル式可動無線システ
ムでC/I比を直接的に測定することが可能な方法は公
知である。この場合、直接的に、とは送信に含まれる情
報を復号することなく、高周波数数値の測定技術的な検
出とその処理、すなわち受信出力の評価だけによってC
/I比の測定を実行することを意味する。従前は、GS
M可動無線システムで先ず、受信機用に受信出力RXL
EVと、ビット誤り率RXQUALとの関係を校正測定
の形式で、同一チャネル妨害がない場合、並びに同一チ
ャネル妨害が限定的に影響する場合について判定するこ
とが公知である。そのようにしてコストが高い実験室測
定によってC/I=f(RXLEV;RXQUAL)の
関係の測定点が得られたのである。このような経験的な
方法では、校正測定された受信機を現場測定でのC/I
測定に使用することができる。簡略な表現では、高い受
信出力と同時に“劣悪な”受信性能、すなわち高いビッ
ト誤り率があることによって、“劣悪な”C/I比(す
なわち妨害波があること)を確認するのである。その他
に、高周波搬送波発振の周波数変調を利用したアナログ
式可動無線システムでの同一チャネル妨害波用にC/I
比を測定する方法が公知である。このような方法は自動
車技術に関するIEEE会報VT38巻第1号、198
7年2月刊、7ページから13ページに記載されてい
る。
2. Description of the Related Art Conventionally, a method capable of directly measuring a C / I ratio in a digital mobile radio system is known. In this case, directly and without decoding the information contained in the transmission, only by the measurement-technical detection of high-frequency values and their processing, ie the evaluation of the received power, C
Means to perform a / I ratio measurement. Previously, GS
In the M mobile radio system, first, the reception output RXL for the receiver
It is known to determine the relationship between EV and bit error rate RXQUAL in the form of calibration measurements in the absence of co-channel interference and in the case of limited co-channel interference. In this way, the measurement point of the relation of C / I = f (RXLEV; RXQUAL) was obtained by the laboratory measurement which is expensive. In such an empirical method, the calibrated receiver is used for the C / I in the field measurement.
It can be used for measurement. In a simple expression, the "poor" C / I ratio (that is, the presence of an interference wave) is confirmed by the "poor" reception performance, that is, the high bit error rate, simultaneously with the high reception power. In addition, C / I for co-channel interference in an analog mobile radio system using frequency modulation of high frequency carrier oscillation
Methods for measuring the ratio are known. Such a method is described in IEEE Bulletin VT38 Vol.
It is described in pages 7 to 13 of February 2007.

【0003】これまで行われてきた方法には、測定中に
性能劣化させる、同一チャネル妨害とは別の理由が存在
することを否定できる場合に限り、同一チャネル妨害の
存在により、高い出力と同時に“劣悪な”受信性能であ
るという結論が正しいという重大な欠点がある。しか
し、そのためには測定の際に速度や根拠となるフェーデ
ィング・プロフィルのようなパラメタが判明していなけ
ればならないので、正に上記のことが保証されないので
ある。加えて、RXQUAL測定とRXLEV測定に
は、所望の測定には無視できないGSM推奨事項05.0
8に記載の欠点がある。これまで利用されてきた方法
は、まず第1に上記のようにC/I=f(RXLEV;
RXQUAL)の関係を得るために先行して実験室での
膨大な測定試験を行わなければならないので、極めてコ
スト高である。
[0003] The methods that have been used up to now do not allow the simultaneous use of high power at the same time due to the presence of co-channel interference, only if it can be denied that there is a reason other than co-channel interference that degrades the performance during measurement. There is a serious drawback that the conclusion of "poor" reception performance is correct. However, for this purpose, the parameters such as speed and fading profile, which are the basis, must be known at the time of measurement, and thus the above cannot be guaranteed exactly. In addition, for RXQUAL and RXLEV measurements, GSM Recommendation 05.0 is not negligible for the desired measurements.
There is a drawback described in item 8. The methods used so far are, first of all, as described above, C / I = f (RXLEV;
Since a huge amount of measurement tests in a laboratory must be performed in advance in order to obtain the RXQUAL relationship, the cost is extremely high.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、同一
チャネル並びに隣接チャネル妨害におけるC/I比を測
定するための、公知の方法と比較して大幅に簡単で説得
力がある方法を開発することにある。その場合、従来ま
では通常行われてきたコスト高の校正測定は破棄されよ
う。更に、主電源への干渉がなされてはならない。例え
ばTDMA時間枠構造のようなGSM可動無線システム
の典型的な特性はこの新規の方法に適正に算入されなけ
ればならない。
It is an object of the invention to develop a method for measuring the C / I ratio in co-channel as well as adjacent channel interference, which is considerably simpler and more compelling than known methods. To do. In that case, costly calibration measurements that were normally performed until now would be discarded. Furthermore, no interference with the mains supply should be made. Typical characteristics of GSM mobile radio systems, such as the TDMA time frame structure, must be properly included in this new method.

【0005】[0005]

【課題を解決するための手段】この発明の方法は、送信
帯域での高周波搬送波発振の位相変調を前提としてい
る。受信アンテナ1が受信位置で受信した信号は第1の
動作ステップで包絡線復調される。その後、包絡線復調
された信号は限定された測定時間Tges の間に所定の時
間間隔ΔTで走査され、ディジタル化される。それによ
って測定時間Tges の間の時間間隔ΔTで、包絡線R
(t)のN対の走査値が、i=1−Nであるtiとti
ΔTの時点でディジタル化され、包絡線の2乗R2(t)
の1−Nの連続順番列として記憶される。包絡線の2乗
2(t)の1−Nの順番列として記憶された値から、補
助変数X’とY’とが算出される。補助変数X’の算出
は、測定時間Tges の間のtiとti+ΔTの時点で算
定され、i=1−Nの連続順番列としてディジタル化さ
れた、包絡線R(t)の1−N対の走査値に基づいてい
る。tiの時点(i=1−N)でN個のR(t)の値が
引き続き2乗され、1−Nの個々の2乗が総和され、総
計が数Nで除算される。この計算の結果はX’で表され
る。補助変数X’は測定時間Tges の間に受信機入力に
送られた単一信号である情報信号s(t)及び妨害信号
i(t)の平均合計出力と比例する。第2の補助変数
Y’も、包絡線R(t)のディジタル化された走査値か
ら算出される。先ず、2乗され、時間間隔ΔTを隔てて
連続する包絡線の走査値のNの差分が算出される。この
差分は2乗され、総和される。2乗された差分の総計N
はNで除算される。このようにして算出された数値Y’
は、全測定時間Tges と時間差ΔTとを適切に選択した
場合に信号s(t)及び信号i(t)の単一出力の4倍
積と比例する。補助変数Y’は次の処理前に修正係数
(k)を用いて修正される。修正係数kは、ΔTの値
と、採用される位相変調方式にとって代表的な値である
誤差値を含んでいる。
The method of the invention is premised on phase modulation of the high frequency carrier oscillation in the transmission band. The signal received by the receiving antenna 1 at the receiving position is subjected to envelope demodulation in the first operation step. The envelope-demodulated signal is then scanned and digitized at predetermined time intervals ΔT for a limited measurement time Tges. As a result, with the time interval ΔT between the measurement times Tges, the envelope R
Scanning values of the N pairs of (t) is the i = 1-N t i and t i +
It is digitized at the time of ΔT, and the square of the envelope R 2 (t)
Are stored as a continuous sequence of 1-N. The auxiliary variables X ′ and Y ′ are calculated from the values stored as the 1-N sequence of the squared R 2 (t) of the envelope. The calculation of the auxiliary variable X ′ is calculated at the time points ti and ti + ΔT during the measurement time Tges, and the 1-N pairs of the envelope R (t) are digitized as a continuous sequence of i = 1-N. It is based on the scan value. At time t i (i = 1−N), the N R (t) values are subsequently squared, the individual squares of 1−N are summed, and the sum is divided by the number N. The result of this calculation is represented by X '. The auxiliary variable X ′ is proportional to the average sum power of the information signal s (t) and the disturbing signal i (t), which are single signals sent to the receiver input during the measuring time Tges. The second auxiliary variable Y'is also calculated from the digitized scan value of the envelope R (t). First, the difference of N between the scanning values of the envelopes that are squared and are continuous at time intervals ΔT is calculated. This difference is squared and summed. Sum of squared differences N
Is divided by N. Numerical value Y'calculated in this way
Is proportional to the quadruplet product of the single outputs of the signal s (t) and the signal i (t) if the total measurement time Tges and the time difference ΔT are properly selected. The auxiliary variable Y'is modified using the modification coefficient (k) before the next processing. The correction coefficient k includes the value of ΔT and an error value that is a typical value for the phase modulation method adopted.

【0006】本発明の方法を実施するために必要な測定
装置は、受信位置の受信アンテナ1に接続された、包絡
線復調用の測定用受信機を備えている。測定用受信機2
の出力信号は次の処理のために測定用受信機2の後に接
続されたアナログ/ディジタル変換器3に送られる。こ
のアナログ/ディジタル変換器は測定用受信機の出力信
号を時間間隔ΔTをおいて走査し、次の処理による量子
化によって、アナログ/ディジタル変換器3の後に接続
されたコンピュータ4に送る。
The measuring device necessary for carrying out the method of the invention comprises a measuring receiver for envelope demodulation, which is connected to the receiving antenna 1 at the receiving position. Measuring receiver 2
The output signal is sent to the analog / digital converter 3 connected after the measuring receiver 2 for the next processing. This analog-to-digital converter scans the output signal of the measuring receiver at time intervals ΔT and sends it to a computer 4 connected after the analog-to-digital converter 3 by quantization in the next process.

【0007】[0007]

【実施例】次にこの発明を実施例に基づいて詳細に説明
する。この発明のC/I測定方法は、送信帯域での高周
波搬送波発振の位相変調を前提としている。図1に示し
た本発明の装置の構成図では、ブロック1は受信位置の
受信アンテナを示している。ブロック2は、受信アンテ
ナから送られた信号を包絡線復調するために使用される
測定用受信機を示している。測定用受信機2の出力信号
は次の処理のために測定用受信機2の後に接続されたア
ナログ/ディジタル変換器3に送られる。このアナログ
/ディジタル変換器は測定時間Tges の間にΔTの時間
間隔をおいて測定用受信機2の出力信号を走査し、次の
処理による量子化によってアナログ/ディジタル変換器
3の後に接続されたコンピュータ4にアクセスされる。
これはパーソナルコンピュータを使用しても実現可能で
ある。その場合、アナログ/ディジタル変換器3は市販
の、パーソナルコンピュータに内蔵された、最大走査周
波数が200KHz まで可能な挿入カードからなってい
る。200KHz の最大走査周波数は、5μsである、
2つの近接する走査時点の間の最小時間ΔTと対応して
いる。
EXAMPLES The present invention will now be described in detail based on examples. The C / I measuring method of the present invention is premised on the phase modulation of the high frequency carrier oscillation in the transmission band. In the block diagram of the apparatus of the present invention shown in FIG. 1, block 1 shows a receiving antenna at a receiving position. Block 2 represents the measuring receiver used for envelope demodulating the signal sent from the receiving antenna. The output signal of the measuring receiver 2 is sent to an analog / digital converter 3 connected after the measuring receiver 2 for further processing. This analog / digital converter scans the output signal of the measuring receiver 2 with a time interval of ΔT during the measuring time Tges, and is connected after the analog / digital converter 3 by the quantization by the following processing. The computer 4 is accessed.
This can also be achieved using a personal computer. In that case, the analog / digital converter 3 is composed of a commercially available insertion card built in a personal computer and capable of a maximum scanning frequency of up to 200 kHz. The maximum scanning frequency of 200 kHz is 5 μs,
Corresponds to the minimum time ΔT between two adjacent scan points.

【0008】次にこの発明に従った方法の理論的根拠を
詳細に説明する。受信アンテナ1で受信された所望の搬
送波の信号(情報信号C)は、受信位置で、
The rationale for the method according to the invention will now be described in detail. The signal of the desired carrier wave (information signal C) received by the receiving antenna 1 is

【0009】[0009]

【数1】 s(t)=S(t)sin〔2πf0 t+φ(t)〕 (1) として表すことができ、ここに、φ(t)は送信される
情報を含んでおり、特にGSM可動無線システムで利用
される変調用に、
S (t) = S (t) sin [2πf 0 t + φ (t)] (1), where φ (t) contains the information to be transmitted, and in particular GSM For modulation used in mobile radio systems,

【0010】[0010]

【数2】 として表すことができる。方程式(2)で、g(r)は
送信基本パルス(ガウス・パルス)を表し、hはGMS
Kの場合、0.5の値を有し(変調指標)、iは記号指標
を表し、ai ε( +1,−1)は送信される記号であ
る。フェーディングの影響により、受信した信号の振幅
は時間によって左右され、これはs(t)で表現されて
いる。次に、より重大な同一チャネル妨害に場合につい
てだけ理論的に検討する。しかし、この新規の方法は、
隣接チャネル妨害に場合にも等しく適用できる。受信位
置での同一チャネル妨害の信号には次の方程式が適用さ
れる。
[Equation 2] Can be expressed as In equation (2), g (r) represents the transmission fundamental pulse (Gaussian pulse), and h is GMS.
In the case of K, it has a value of 0.5 (modulation index), i represents the symbol index and a i ε (+1, -1) is the symbol to be transmitted. Due to the effects of fading, the amplitude of the received signal depends on time, which is represented by s (t). Next, only theoretically consider the case of more severe co-channel interference. But this new method
It is equally applicable to adjacent channel interference. The following equations apply to co-channel interfering signals at the receiving location.

【0011】[0011]

【数3】 i(t)=I(t)sin(2πf0 t+α(t)+φ0 (3) ここに、φ0はゼロ位相角である。妨害信号にも、I
(t)によって表現されるフェージングの影響により振
幅が時間によって左右される。s(t)及びi(t)の
合計信号には下記の方程式が当てはまる。
I (t) = I (t) sin (2πf 0 t + α (t) + φ 0 (3) where φ 0 is the zero phase angle.
The amplitude is time-dependent due to the effects of fading represented by (t). The following equations apply to the sum signal of s (t) and i (t).

【0012】[0012]

【数4】 である。次に、[Equation 4] Is. next,

【0013】[0013]

【数5】 R2 (t) =S2 (t) +I2 (t) +2S(t) I(t) cos φ(t) (6) となる包絡線の2乗を検討してみる。方程式(6)に基
づき包絡線の2乗は、
## EQU00005 ## Consider the square of the envelope that gives R 2 (t) = S 2 (t) + I 2 (t) + 2S (t) I (t) cos φ (t) (6). Based on equation (6), the square of the envelope is

【0014】[0014]

【数6】 で変動する加数S2 (t) +I2 (t) と、情報及び妨害信
号の位相変調に起因して、周波数、
(Equation 6) Due to the addend S 2 (t) + I 2 (t) that fluctuates with and the frequency modulation due to the phase modulation of the information and interference signals,

【0015】[0015]

【数7】 d/dt〔φ(t) 〕>>fs (8) で変動する加数2S(t) I(t) cos φ(t) とを含んでい
る。方程式(8)によって、項S2 (t) +I2 (t) と項
2S(t) I(t) cos φ(t) とを分離することができ、C
/I測定を行うことができる。C/I測定は以下に記載
する方法に基づいて実施される。その場合、φ(t) が間
隔〔0.2π〕で等分配されることを前提としている。簡
略に記載すると次のようになろう。
## EQU00007 ## This includes the addend 2S (t) I (t) cos .phi. (T) which varies with d / dt [.phi. (T)] >> fs (8). According to equation (8), the term S 2 (t) + I 2 (t) and the term 2S (t) I (t) cos φ (t) can be separated, and C
/ I measurement can be performed. The C / I measurement is performed based on the method described below. In that case, it is assumed that φ (t) is evenly distributed at intervals [0.2π]. The following is a brief description.

【0016】[0016]

【数8】 ここに、上線は一時的な平均値算出の演算を意味してい
る。方程式(9)と方程式(10)を解くことによっ
て、測定されるべきC/I比が得られる。
[Equation 8] Here, the upper line means the calculation of temporary average value calculation. Solving equations (9) and (10) gives the C / I ratio to be measured.

【0017】[0017]

【数9】 測定技術上、パーソナルコンピュータを使用したディジ
タル化と再処理によって下記の総和が算出される。
[Equation 9] In terms of measurement technology, the following sum is calculated by digitization and reprocessing using a personal computer.

【0018】[0018]

【数10】 又、更に、ti+ΔTの場合に生ずる包絡線の2乗を算
入すれば、次のようになる。
[Equation 10] Further, if the square of the envelope generated in the case of t i + ΔT is further included, the following is obtained.

【0019】[0019]

【数11】 である。[Equation 11] Is.

【0020】[0020]

【外1】 に選択される。これらの条件が満たされると、Y’=
Y、及びX’=Xとなるので、方程式11に基づいてC
/I測定を行うことができる。実験によれば、ΔT≦1
00μsの場合、GMSシステムで利用するために条件
S(t)〜S(t+ΔT)、並びにI(t)〜I(t+
ΔT)は充分に良好に満たされることが判明している。
更に、充分に長い測定時間(≧1秒)の間、方
[Outer 1] To be selected. If these conditions are met, Y '=
Since Y and X ′ = X, based on Equation 11, C
/ I measurement can be performed. According to the experiment, ΔT ≦ 1
In the case of 00 μs, the conditions S (t) to S (t + ΔT) and I (t) to I (t +) for use in the GMS system.
It has been found that ΔT) is sufficiently well met.
Furthermore, during a sufficiently long measurement time (≧ 1 second),

【0021】[0021]

【外2】 Xが満たされる。それと同時に、GMSに従って変調さ
れた信号での測定では、
[Outside 2] X is satisfied. At the same time, for measurements on signals modulated according to GMS,

【0022】[0022]

【外3】 されないことが判明した。しかし、時間ΔT≦100μ
sの場合、方程式(13)は、
[Outside 3] It turned out not to be. However, time ΔT ≦ 100μ
For s, equation (13) becomes

【0023】[0023]

【数12】 という表現に簡略化することが出来る。ここで2cos
φ(t) cosφ(t+Δ
[Equation 12] Can be simplified to the expression. 2cos here
φ (t) cos φ (t + Δ

【0024】[0024]

【外4】 方式にとって代表的な値である。この誤差項の値は実験
室測定でkとすることができる。誤差項kは位相差φ
(t) とφ(t+ΔT)との相関、もしくは類似の尺度で
ある。例えばΔTとして、
[Outside 4] This is a typical value for the method. The value of this error term can be k in laboratory measurements. The error term k is the phase difference φ
It is a correlation between (t) and φ (t + ΔT), or a similar scale. For example, as ΔT,

【0025】[0025]

【数13】 上記のことは、s(t)とi(t)との間の2つの位相
差が互いに無限の長さにある場合は(ΔT→∞)、双方
に相関はないことを示している。誤差項kによってY’
を修正できるので、
[Equation 13] The above shows that when the two phase differences between s (t) and i (t) are of infinite length to each other (ΔT → ∞), there is no correlation between them. Y'according to the error term k
Can be fixed,

【0026】[0026]

【数14】 が当てはまり、方程式(11)をC/I比の測定に利用
できる。C/I比の測定を可能な実施例をもとに、より
詳細に説明する。C/I比を測定する際には、先ず、例
えば4秒の測定時間の間にアナログ/ディジタル変換器
2の全ての走査値がコンピュータ3に記憶される。走査
速度が200KHz である場合、この走査値は全部で包
絡線の2乗の値R2 (t)である4s・200000s
-1=800000となる。先ず、この1−N=8000
00の値で、X’については方程式(12)に従って、
又、Y’については方程式(13)に従って総和がコン
ピュータ4で算出される。方程式(13)については、
パラメタΔTは隣接する走査値の時間間隔からΔT=5
μsである。その後、上記のX’とY’の上記の計算結
果が、方程式(16)に基づく修正係数kを算入して方
程式(11)に代入され、C/I比がコンピュータ4で
計算される。この計算が終了し、例えば後の再処理のた
めに、好ましくはコンピュータ4に記憶されると、走査
値を新たに記録して、引き続きC/I比の計算を続行す
ることができる。本発明の更に別の有利な構成は、コン
ピュータ4に補助的にGPS受信機(地球投影位置決定
システム)5が接続される。C/I比に加えて、GPS
受信機によって供給された位置情報が記憶されるので、
利用上重要であるC/I比の場所に応じた表示が可能に
なる。何故ならば、この新規の測定方法は移動する測定
車両から実施されるからである。
[Equation 14] And equation (11) can be used to measure the C / I ratio. A more detailed description will be given based on an example in which the C / I ratio can be measured. When measuring the C / I ratio, first, all scan values of the analog / digital converter 2 are stored in the computer 3 during a measuring time of, for example, 4 seconds. When the scanning speed is 200 KHz, this scanning value is the squared value R 2 (t) of the envelope, 4 s / 200000 s.
-1 = 800,000. First, this 1-N = 8000
With a value of 00, for X'according to equation (12),
Further, for Y ′, the sum total is calculated by the computer 4 according to the equation (13). For equation (13),
The parameter ΔT is ΔT = 5 from the time interval between adjacent scan values.
μs. After that, the above calculation results of X ′ and Y ′ are included in the equation (11) by including the correction coefficient k based on the equation (16), and the C / I ratio is calculated by the computer 4. When this calculation is finished and is preferably stored in the computer 4, for example for later reprocessing, the scan value can be recorded again and the C / I ratio calculation can continue. In a further advantageous configuration of the invention, a GPS receiver (Earth projection positioning system) 5 is connected to the computer 4 as an auxiliary. GPS in addition to C / I ratio
Since the location information supplied by the receiver is stored,
It is possible to display according to the location of the C / I ratio, which is important in use. This is because this new measuring method is implemented from a moving measuring vehicle.

【0027】[0027]

【発明の効果】本発明の方法の特徴は、C/I比の測定
値がコスト高の校正測定によってではなく、測定された
受信出力から時間の関数として、又、この時間関数の関
数値を利用したC/I比の分析的計算から算定されるこ
とにある。その上、TDMA時間枠構造のようなGSM
可動無線システムの代表的な特性は、本発明の方法で適
正に処理される。C/I比はビット誤り率(RXQUA
L)のような補助変数を介してではなく、直接の作用変
数から、すなわち受信位置での搬送波Cと妨害波Iとの
比率から判明する受信出力の時間推移から測定される。
その際に、この新規の方法は主電源には介入しない。こ
の新規の方法の別の利点は、測定を行う際のハードウェ
アのコストが最小限ですむことにある。
A feature of the method of the present invention is that the measured C / I ratio is not a costly calibration measurement, but rather as a function of time from the measured received power and also of the function value of this time function. It is to be calculated from the analytical calculation of the C / I ratio used. Besides, GSM like TDMA timeframe structure
The typical characteristics of mobile radio systems are properly handled by the method of the present invention. The C / I ratio is the bit error rate (RXQUA
It is not measured via an auxiliary variable, such as L), but from the direct action variable, ie from the time course of the received power, which is known from the ratio of the carrier C to the jammer I at the receiving position.
The new method then does not intervene in the mains. Another advantage of this new method is that it minimizes the hardware cost of making measurements.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従った測定装置の構成図である。1 is a block diagram of a measuring device according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 7/26 17/00 M H04L 27/10 A 9297−5K 27/14 // G01S 5/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H04B 7/26 17/00 MH04L 27/10 A 9297-5K 27/14 // G01S 5/14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 送信レーン内の位置変調された高周波搬
送波発振を利用したディジタル式可動無線システムで、
同一又は隣接チャネル妨害信号のC/I比を測定する方
法において、アンテナに入る受信信号が包絡線復調され
ること、その後で限定された測定時間(Tges )の間に
特定の時間差ΔTをおいて包絡線の値R(t)がi=1
−Nであるtiとti+ΔTの時点で走査され、ディジタ
ル化され、かつ包絡線の2乗R2(t)の1−Nの連続順
番列として記憶されること、包絡線の2乗R2(t)の1
−Nの順番列として記憶された値から、一方では測定時
間Tges の間に受信機入力に送られた情報信号s(t)
及び妨害信号i(t)の単一出力の平均合計出力と比例
する数値X’が算出され、他方では、全測定時間(Tge
s )と時間差(ΔT)とを適切に選択した場合に情報信
号s(t)及び妨害信号i(t)の単一出力の4倍積と
最適に比例する数値Y’が算出されること、算出された
数値Y’が修正係数(k)を算入して、情報信号s
(t)及び妨害信号i(t)の単一出力の4倍積と実質
的に比例する数値Yに移行すること、及びそれに引き続
いてC/I値が算定されること、を特徴とする測定方
法。
1. A digital mobile radio system using position-modulated high-frequency carrier wave oscillation in a transmission lane,
In a method for measuring the C / I ratio of co-channel or adjacent-channel jamming signals, the received signal entering the antenna is envelope-demodulated, after which a specific time difference ΔT is set for a limited measurement time (Tges). Envelope value R (t) is i = 1
-N, scanned at t i and t i + ΔT, digitized and stored as a 1-N continuous permutation of the square of the envelope R 2 (t), the square of the envelope 1 of R 2 (t)
The information signal s (t) sent to the receiver input during the measuring time Tges from the values stored as the sequence of -N
And a numerical value X'which is proportional to the average sum output of the single outputs of the disturbing signal i (t) is calculated, while the total measurement time (Tge
s) and the time difference (ΔT) are appropriately selected, a numerical value Y ′ that is optimally proportional to the quadruple product of the single output of the information signal s (t) and the interference signal i (t) is calculated, The calculated numerical value Y'includes the correction coefficient (k), and the information signal s
A measurement characterized in that (t) and a transition to a numerical value Y which is substantially proportional to the quadrupling product of the single output of the disturbing signal i (t) and the C / I value is subsequently calculated. Method.
【請求項2】 ディジタル式可動無線システムで同一又
は隣接チャネル妨害信号のC/I比を測定する装置にお
いて、受信位置の受信アンテナ(1)に、アナログ/デ
ィジタル変換器(3)を介してコンピュータ(4)と連
結された測定用受信機(2)を接続したことを特徴とす
る測定装置。
2. An apparatus for measuring the C / I ratio of co-channel or adjacent-channel interference signals in a digital mobile radio system, wherein a computer is provided to a receiving antenna (1) at a receiving position via an analog / digital converter (3). A measuring device comprising a measuring receiver (2) connected to (4).
【請求項3】 移動測定車両から測定する場合、コンピ
ュータ(4)には、コンピュータ(4)にC/I比を場
所に応じて表示するための位置情報を送るGPS受信機
(5)を接続したことを特徴とする請求項2に記載の測
定装置。
3. When measuring from a mobile measuring vehicle, the computer (4) is connected to a GPS receiver (5) which sends position information for displaying the C / I ratio according to the location to the computer (4). The measuring device according to claim 2, wherein
JP7060322A 1994-03-18 1995-03-20 Method and device for measuring c/i ratio of same or neighboring channel-interference signal with digital-type movable radio system Pending JPH0868817A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4409455:8 1994-03-18
DE4409455A DE4409455C1 (en) 1994-03-18 1994-03-18 Method for determining the C / I ratio of a received signal for like or adjacent channel interferers in digital mobile radio networks

Publications (1)

Publication Number Publication Date
JPH0868817A true JPH0868817A (en) 1996-03-12

Family

ID=6513269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7060322A Pending JPH0868817A (en) 1994-03-18 1995-03-20 Method and device for measuring c/i ratio of same or neighboring channel-interference signal with digital-type movable radio system

Country Status (5)

Country Link
US (1) US5706307A (en)
EP (1) EP0673129B1 (en)
JP (1) JPH0868817A (en)
AT (1) ATE271731T1 (en)
DE (2) DE4409455C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207800A (en) * 2012-03-29 2013-10-07 Samsung Electronics Co Ltd Method and device of detecting envelope

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512077C2 (en) * 1997-01-22 2000-01-24 Ericsson Telefon Ab L M Method and apparatus for estimating the attenuation of a radio communication system
DE19727516B4 (en) * 1997-06-30 2006-05-04 T-Mobile Deutschland Gmbh Method for determining the internal noise of digital circuits
WO2000019643A1 (en) * 1998-09-28 2000-04-06 Motorola Inc. A terminal unit and a method for locating a terminal unit
US6775544B2 (en) 1999-06-03 2004-08-10 At&T Wireless Services, Inc. Automatic diagnostic for detection of interference in wireless communication system
DE10014394B4 (en) * 2000-03-23 2004-01-08 Siemens Ag Method for determining interference signal power of signals transmitted via a radio interface of a radio communication system
DE10014395A1 (en) * 2000-03-23 2001-10-04 Siemens Ag Method for signal noise ratio determination for a signal received over a radio interface of a mobile telecommunications system by determination of initial received signal power level and level after signal is processed
US8233493B2 (en) 2008-09-08 2012-07-31 Wisconsin Alumni Research Foundation Packet router having improved packet classification

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457006A (en) * 1981-11-16 1984-06-26 Sperry Corporation Global positioning system receiver
US4561114A (en) * 1983-02-08 1985-12-24 Nippon Telegraph & Telephone Public Corporation Cochannel interference measurement system
US4807256A (en) * 1985-12-23 1989-02-21 Texas Instruments Incorporated Global position system receiver
BR9204795A (en) * 1991-04-29 1993-07-13 Motorola Inc CIRCUIT AND PROCESS TO INDICATE INTERFERENCE LEVEL, AND COMMUNICATION DEVICE
US5410737A (en) * 1992-04-27 1995-04-25 American Pcs L.P. Frequency agile sharing technology (FAST) for a personal communications service system
US5506869A (en) * 1994-10-27 1996-04-09 Northern Telecom Limited Methods and apparatus for estimating carrier-to-interference ratios at cellular radio base stations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207800A (en) * 2012-03-29 2013-10-07 Samsung Electronics Co Ltd Method and device of detecting envelope

Also Published As

Publication number Publication date
EP0673129A2 (en) 1995-09-20
DE4409455C1 (en) 1996-01-18
EP0673129B1 (en) 2004-07-21
DE59510928D1 (en) 2004-08-26
EP0673129A3 (en) 1999-09-08
US5706307A (en) 1998-01-06
ATE271731T1 (en) 2004-08-15

Similar Documents

Publication Publication Date Title
CN1325926C (en) Method and apparatus for locating source of unknown signal
EP1185878B1 (en) Improvements in radio positioning systems
EP1312234B1 (en) Systems and methods for determining signal coverage
KR20010113672A (en) A deeply-integrated adaptive ins/gps navigator
WO1994005097A1 (en) Method for estimating c/i density and interference probability in the uplink
JPS62279736A (en) Apparatus and method for determining indication of received radio frequency signal intensity with high speed
JP2789388B2 (en) Method for controlling signal reception and processing in a receiver
EP1685664A1 (en) Signal interference measurement
CA1240367A (en) Apparatus and method for producing a signal-to-noise ratio figure of merit for digitally encoded-data
US6239746B1 (en) Radiogoniometry method and device co-operating in transmission
JPH0868817A (en) Method and device for measuring c/i ratio of same or neighboring channel-interference signal with digital-type movable radio system
JPH09304503A (en) Gap receiver
CA2172321C (en) Method and apparatus for testing rf devices
Djuth et al. Application of the coded long‐pulse technique to plasma line studies of the ionosphere
US20070024497A1 (en) Navigation signal receiving apparatus and navigation signal receiving method
EP1916540A1 (en) Gps positioning method and gps position device
US4035802A (en) Method and apparatus for wind measurement
US6498924B2 (en) Apparatus for measuring the distance between a mobile station and a base station in a mobile radiocommunications system
CA2268329C (en) Method of determining receiver locations in a common wave network
WO1998024204A3 (en) Method of measuring frequency difference, and receiver
JP2557118B2 (en) Timing jitter measurement method
JP2617673B2 (en) Weather radar equipment
RU2118836C1 (en) Method of single-point distance measurement to electromagnetic radiation sources
RU2042958C1 (en) Method for determining range to lightning discharge source
Bartelme et al. A study of the frequency modulation distortion due to multi-path in the land-mobile environment