JPH0868702A - X-ray stress measuring method - Google Patents

X-ray stress measuring method

Info

Publication number
JPH0868702A
JPH0868702A JP6207270A JP20727094A JPH0868702A JP H0868702 A JPH0868702 A JP H0868702A JP 6207270 A JP6207270 A JP 6207270A JP 20727094 A JP20727094 A JP 20727094A JP H0868702 A JPH0868702 A JP H0868702A
Authority
JP
Japan
Prior art keywords
diffraction
angle
stress
ray
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6207270A
Other languages
Japanese (ja)
Inventor
Toshio Shiraiwa
俊男 白岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAC SCI KK
Original Assignee
MAC SCI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAC SCI KK filed Critical MAC SCI KK
Priority to JP6207270A priority Critical patent/JPH0868702A/en
Publication of JPH0868702A publication Critical patent/JPH0868702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE: To realize highly accurate measurement of stress by increasing the number of set inclination angles depending on the required accuracy of measurement, employing the angle at the center of gravity of each diffraction line profile as a diffraction angle, and weighting the interplanar spacing with the integration intensity of diffraction line profile for each inclination angle. CONSTITUTION: A sample 1 is irradiated with an incident X-ray 2 having wavelength λ and the X-ray is diffracted on the crystal lattice plane F having interplanar spacing of (a) to produce a diffracted X-ray 3. The number of set inclination angle ϕ of the lattice plane F is increased as the accuracy required for the measurement of stress increases and then the diffraction line profile is measured for each inclination angle ϕ. Subsequently, the center of gravity is determined for the profile thus measured and the corresponding angle is set at the diffraction angle θ for the inclination angle ϕ. The distance (d) is then determined according to a formula; 2dsinθ=nλ (n: integer) and weighted with the integration intensity I of each profile thus describing a graph d-sin<2> θ. The processing is repeated for all measuring points thus determining the stress from the d-sin<2> ϕ graph with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粗粒試料又は微小部の
応力測定に適したX線応力測定法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray stress measuring method suitable for measuring stress on a coarse grain sample or a minute portion.

【0002】[0002]

【従来の技術】図2は、応力測定する試料と、該試料に
照射するX線との関係を図示したものである。図2にお
いて、1は測定対象の試料、2は応力測定のために試料
1に照射される入射X線、3は回折X線、Fは前記入射
X線2の回折に寄与する結晶格子面F、Hは前記試料1
の表面、Moは前記試料表面Hに垂直な試料表面法線M
o、Mは前記結晶格子面Fに垂直な結晶格子面法線、d
は結晶格子面F相互の間隔である格子面間距離、ψは前
記試料表面法線Moと結晶格子面法線Mとのなす角度
(すなわち、結晶格子面Fの傾きで、以下、傾角と呼
ぶ)である。
2. Description of the Related Art FIG. 2 shows a relationship between a sample for stress measurement and X-rays applied to the sample. In FIG. 2, 1 is a sample to be measured, 2 is an incident X-ray that is irradiated on the sample 1 for stress measurement, 3 is a diffracted X-ray, and F is a crystal lattice plane F that contributes to the diffraction of the incident X-ray 2. , H is the sample 1
, Mo is a sample surface normal M perpendicular to the sample surface H.
o and M are crystal lattice plane normals perpendicular to the crystal lattice plane F, and d
Is the inter-lattice plane distance, which is the distance between the crystal lattice planes F, and ψ is the angle between the sample surface normal Mo and the crystal lattice plane normal M (that is, the inclination of the crystal lattice plane F, hereinafter referred to as the tilt angle). ).

【0003】従来では、前記結晶格子面F内に作用して
いる応力σを測定する場合、まず、前記傾角ψにおける
回折線プロファイルを測定し、その回折線プロファイル
から回折角θ(入射X線2と回折X線3とのなす角度の
半分)を求め、その回折角θを元にして、次の式(1)
に示すブラッグの式から格子面間距離dを求める。
Conventionally, when measuring the stress σ acting on the crystal lattice plane F, first, a diffraction line profile at the tilt angle ψ is measured, and the diffraction angle θ (incident X-ray 2 And half of the angle formed by the diffracted X-ray 3), and based on the diffraction angle θ, the following formula (1)
The inter-lattice plane distance d is obtained from the Bragg equation shown in.

【0004】 2dsinθ=nλ …(1) 前記式(1)において、λは入射X線2の波長であり、
nは正の整数(通常はn=1)である。
2dsin θ = nλ (1) In the above formula (1), λ is the wavelength of the incident X-ray 2, and
n is a positive integer (usually n = 1).

【0005】次いで、求めた格子面間距離dを次の式
(2)に代入して、応力σを求める d=σ・const−sin2 ψ …(2) 前述の式(2)において、constは測定する結晶格
子面及び試料の弾性係数により決まる定数である。
Next, the calculated inter-lattice distance d is substituted into the following equation (2) to obtain the stress σ d = σ · const-sin 2 ψ (2) In the above equation (2), const Is a constant determined by the crystal lattice plane to be measured and the elastic coefficient of the sample.

【0006】図3は、ある傾角ψについて測定した回折
線プロファイル(回折X線の強度プロファイル)の例を
示したものである。ここに示した例は、測定試料中の回
折に寄与する結晶粒の数が充分に多く、しかも回折X線
強度が充分に高い場合のもので、一つのピーク値を中央
に持つ滑らかなプロファイルとなっている。
FIG. 3 shows an example of a diffraction line profile (diffraction X-ray intensity profile) measured at a certain tilt angle ψ. The example shown here is for the case where the number of crystal grains contributing to diffraction in the measurement sample is sufficiently large and the diffracted X-ray intensity is sufficiently high, and a smooth profile having one peak value in the center Has become.

【0007】このようなプロファイルから回折角θを決
定する方法の代表的なものとしては、半価幅法、放物線
近似法、重心法等が知られている。
As a typical method of determining the diffraction angle θ from such a profile, a half-value width method, a parabolic approximation method, a center of gravity method, etc. are known.

【0008】前記半価幅法は、回折線プロファイルのピ
ーク値Ipの1/2の高さでバックグラウンドに平行な
中線を引き、その半価幅bの中点位置に対する角度θを
回折角とするものである。また、放物線近似法は、回折
線プロファイルの頂点近傍で数点を選び、これらの点を
通る放物線を最小二乗法によって求め、その放物線の頂
点位置における角度θを回折角とするものである。ま
た、重心法は、ピーク位置を含む適当な角度範囲の回折
線プロファイル(回折強度曲線)の重心位置wの角度θ
をもって回折角とする方法である。
In the full width at half maximum method, a center line parallel to the background is drawn at a height of 1/2 of the peak value Ip of the diffraction line profile, and the angle .theta. It is what In the parabolic approximation method, several points are selected near the apex of the diffraction line profile, a parabola passing through these points is obtained by the least squares method, and the angle θ at the apex position of the parabola is taken as the diffraction angle. The centroid method is an angle θ of the centroid position w of a diffraction line profile (diffraction intensity curve) in an appropriate angle range including the peak position.
Is the diffraction angle.

【0009】図3のようにピーク値が一つで顕著な場合
には、単純にピーク位置の角度を回折角とすることも考
えられるし、上述した半価幅法、放物線近似法、重心法
のいずれを使用することも可能であり、また、いずれの
方法でも、比較的に容易に、また、少ない誤差で回折角
を設定することができる。
When one peak value is significant as shown in FIG. 3, it is possible to simply use the angle of the peak position as the diffraction angle, and the half width method, parabola approximation method, and center of gravity method described above can be used. Any of the above can be used, and the diffraction angle can be set relatively easily and with a small error by any method.

【0010】そして、理論上では、傾角ψとして2点を
設定して、それぞれの傾角ψ1 ,ψ2 について回折線プ
ロファイルを求めて、各回折線プロファイル毎に回折角
θを決定して前述の式(1)による格子面間距離dの算
出をしておけば、式(2)によって解を得ることができ
る。しかし、一般には、測定誤差を考慮して、傾角ψと
して4点を設定して処理を行う。そして、傾角ψとして
2点以上を設定した場合には、最小二乗法などの統計的
処理が利用される。
Theoretically, two points are set as the tilt angle ψ, a diffraction line profile is obtained for each of the tilt angles ψ 1 and ψ 2 , and a diffraction angle θ is determined for each diffraction line profile to determine the above-mentioned. If the inter-lattice surface distance d is calculated by the equation (1), the solution can be obtained by the equation (2). However, generally, in consideration of the measurement error, four points are set as the inclination angle ψ and the processing is performed. Then, when two or more points are set as the inclination angle ψ, a statistical process such as the least square method is used.

【0011】図4は前記式(2)を図示したもので、d
−sin2 ψ線図と呼ばれており、d−sin2 ψ線の
傾きからλが求められる。求める応力値σの精度を高め
るには、dをより高精度に求めることが必要になる。
FIG. 4 shows the above equation (2), d
It is called a −sin 2 ψ diagram, and λ can be obtained from the slope of the d-sin 2 ψ line. In order to improve the accuracy of the stress value σ to be obtained, it is necessary to obtain d with higher accuracy.

【0012】[0012]

【発明が解決しようとする課題】ところで、格子面間距
離dの値から応力σを求める従来の応力測定方法で使用
した前述の式(2)は、結晶粒の数も多くかつ完全な無
方向性の多結晶体が測定試料となる場合のもので、測定
対象が結晶粒の数が少ない粗粒材や微小領域に制限され
るような場合には相応しくない。
By the way, the above-mentioned formula (2) used in the conventional stress measuring method for obtaining the stress σ from the value of the inter-lattice distance d is large in the number of crystal grains and completely non-oriented. It is not suitable for the case where a crystalline polycrystal is used as a measurement sample and the measurement target is limited to a coarse grain material having a small number of crystal grains or a minute region.

【0013】それには二つの理由が上げられる。There are two reasons for this.

【0014】一つは、粗粒材や微小領域に対する回折X
線の測定では、X線回折に寄与する結晶粒も少なく、ま
た、結晶粒の方向性のばらつきも大きく影響して、測定
される回折線プロファイルは、図5に示すように、個々
の結晶粒からの回折線が分離された状態で表れて、滑ら
かなプロファイルが得られなくなる。そのため、回折角
θの決定が難しくなり、回折角θから求める格子面間距
離dの値も測定誤差が大きくなりやすいということが考
えられる。
One is diffraction X for coarse-grained materials and minute areas.
In the measurement of the X-ray, few crystal grains contribute to the X-ray diffraction, and the variation in the directionality of the crystal grains also greatly affects the measured diffraction line profile, as shown in FIG. Diffraction lines from are shown in a separated state, and a smooth profile cannot be obtained. Therefore, it is considered that it is difficult to determine the diffraction angle θ, and the measurement error of the value of the inter-lattice surface distance d obtained from the diffraction angle θ tends to increase.

【0015】そして、他の一つは、さらに大きな要因と
なるものであるが、例えば、傾角ψ1 において回折線プ
ロファイルの測定を行った場合、入射X線の照射範囲内
の全結晶が回折を生じているのではなく、結晶格子面傾
きがψ1 の方向を持つ結晶粒のみが回折を生じていると
いうことである。したがって、もし、その様な結晶粒が
僅かで、その体積も小であれば、その回折線プロファイ
ルから求めた格子面間距離dの値はその試料全体を代表
しているとはいえず、そのまま式(2)に用いると、極
めて大きな誤差を生む結果となるということである。
The other one is an even greater factor. For example, when the diffraction line profile is measured at the tilt angle ψ 1 , all the crystals within the irradiation range of the incident X-ray diffract. It means that only the crystal grains having the crystal lattice plane inclination of ψ 1 are diffracted. Therefore, if the number of such crystal grains is small and the volume thereof is also small, the value of the inter-lattice plane distance d obtained from the diffraction line profile cannot be said to be representative of the entire sample, and it is as it is. When used in the equation (2), it results in an extremely large error.

【0016】このような粗粒材や微小領域に対するX線
応力測定時の問題点に対する改善策として、従来では、
回折に寄与する結晶粒の数を出来るだけ増やすように、
入射X線の発散角を広げたりあるいは試料を揺動させる
という対処が考えられていた。しかし、このような対処
は傾角ψの変動の要因となるため、入射X線の発散角の
拡張や揺動幅は小さく制限しなければならず、結局、そ
れ程の効果を期待することはできない。
Conventionally, as a remedy for the problem at the time of measuring the X-ray stress for such a coarse-grained material or a minute area,
To increase the number of crystal grains that contribute to diffraction as much as possible,
It has been considered to deal with widening the divergence angle of the incident X-ray or rocking the sample. However, since such a measure causes a change in the tilt angle ψ, it is necessary to limit the expansion of the divergence angle of the incident X-ray and the swing width to a small value, and in the end, such an effect cannot be expected.

【0017】本発明は、前記事情に鑑みてなされたもの
で、測定対象の試料が結晶粒の数の少ない粗粒材や微小
領域に制限されるような場合にも、回折X線の測定によ
って高精度に応力を求めることの出来るX線応力測定法
を提供することを目的とする。
The present invention has been made in view of the above circumstances. Even when the sample to be measured is limited to a coarse-grained material having a small number of crystal grains or a minute region, it is possible to measure the diffraction X-rays. An object of the present invention is to provide an X-ray stress measurement method capable of obtaining stress with high accuracy.

【0018】[0018]

【課題を解決するための手段】本発明に係るX線応力測
定法は、測定対象の試料の試料表面法線Moと結晶格子
面法線Mとのなす角度である結晶格子面の傾角をψi
するとき、前記試料に波長λの特性X線を照射して、得
た回折線プロファイルから前記試料に作用している応力
σを算出するものであるが、測定すべき応力の要求精度
が高い程前記傾角ψi の設定数を増やして、各傾角ψi
において回折線プロファイルを測定する。
In the X-ray stress measurement method according to the present invention, the tilt angle of the crystal lattice plane, which is the angle formed by the sample surface normal Mo and the crystal lattice plane normal M of the sample to be measured, is defined as ψ. In the case of i , the sample is irradiated with a characteristic X-ray having a wavelength λ, and the stress σ acting on the sample is calculated from the obtained diffraction line profile. increase the set number of the inclination angle [psi i higher, the inclination angle [psi i
The diffraction line profile is measured at.

【0019】そして、各傾角ψi における格子面間距離
i は、それぞれの回折線プロファイルの重心位置の角
度を回折角θi としてブラッグ式に基づいて算出する。
Then, the inter-lattice surface distance d i at each tilt angle ψ i is calculated based on the Bragg equation with the angle of the center of gravity of each diffraction line profile as the diffraction angle θ i .

【0020】そして、格子面間距離dとsin2 ψとの
相関を示すd−sin2 ψ線図を求める際には、前記格
子面間距離dとして、回折に寄与した結晶粒の体積を考
慮するために、各ψi における算出値di に各回折線プ
ロファイルの積分強度Ii で重みをつけたdi ・F(I
i )を使用して、前記試料における応力σを求める。
When the d-sin 2 ψ diagram showing the correlation between the inter-lattice face distance d and sin 2 ψ is obtained, the volume of crystal grains contributing to diffraction is taken into consideration as the inter-lattice face distance d. In order to do so, the calculated value d i at each ψ i is weighted by the integrated intensity I i of each diffraction line profile, and d i · F (I
i ) is used to determine the stress σ in the sample.

【0021】[0021]

【作用】本発明に係るX線応力測定法は、測定すべき応
力の要求精度に応じて傾角ψiの設定数を増やし、より
多数の測定データを得ることによって、結晶粒の数が少
数であることに起因した測定誤差の増大を防止する。
In the X-ray stress measuring method according to the present invention, the number of tilt angles ψ i is increased according to the required accuracy of the stress to be measured, and more measurement data is obtained, so that the number of crystal grains can be reduced. This prevents an increase in measurement error caused by the existence of the error.

【0022】また、測定した各回折線プロファイルの重
心位置の角度を回折角θi として使うことによって、回
折に寄与した個々の結晶粒の影響を平均化し、回折線プ
ロファイルに表れた一部の特定の結晶粒の応力状態が過
大評価されることを防止する。
Further, by using the angle of the barycentric position of each measured diffraction line profile as the diffraction angle θ i , the influence of the individual crystal grains contributing to the diffraction is averaged to identify a part of the diffraction line profile. Prevent the stress state of the crystal grains from being overestimated.

【0023】また、それぞれの傾角ψi 毎の回折線プロ
ファイルの積分強度で格子面間距離dに重みをつけるこ
とによって、各傾角ψi 毎の回折に寄与した結晶粒の相
違に起因したばらつきも小さくする。
Further, by attaching a weight to the lattice plane spacing d in the integrated intensity of the diffraction line profile for each of the inclination angle [psi i, also variations due to differences in crystal grains to contribute to the diffraction of each inclination angle [psi i Make it smaller.

【0024】[0024]

【実施例】図6は、本発明の一実施例のX線応力測定法
によって応力測定する試料と、該試料に照射するX線と
の関係を図示したものである。図6において、1は測定
対象の試料、2は応力測定のために試料1に照射される
波長λの入射X線、3は回折X線、Fは前記入射X線2
の回折に寄与する結晶格子面、Hは前記試料1の表面、
Moは前記試料表面Hに垂直な試料表面法線、Mは前記
結晶格子面Fに垂直な結晶格子面法線、dは結晶格子面
F相互の間隔である格子面間距離、ψi は前記試料表面
法線Moと結晶格子面法線Mとのなす角度(すなわち、
結晶格子面Fの傾角)である。
EXAMPLE FIG. 6 is a diagram showing the relationship between a sample whose stress is measured by the X-ray stress measuring method according to an embodiment of the present invention and the X-rays irradiated on the sample. In FIG. 6, 1 is a sample to be measured, 2 is an incident X-ray of wavelength λ with which the sample 1 is irradiated for stress measurement, 3 is a diffracted X-ray, and F is the incident X-ray 2.
Crystal lattice planes that contribute to diffraction of H, H is the surface of the sample 1,
Mo is a sample surface normal line perpendicular to the sample surface H, M is a crystal lattice plane normal line perpendicular to the crystal lattice plane F, d is a lattice plane distance which is a distance between crystal lattice planes F, and ψ i is the above The angle between the sample surface normal Mo and the crystal lattice plane normal M (that is,
The tilt angle of the crystal lattice plane F).

【0025】図1は、本発明の一実施例のX線応力測定
法による処理手順を示したものである。
FIG. 1 shows a processing procedure by an X-ray stress measuring method according to an embodiment of the present invention.

【0026】従来のX線応力測定法では、一般的には、
傾角ψの設定点数は測定すべき応力の要求精度にかかわ
らず一定(例えば4点)にして、応力の精度を高めるに
は、格子面間距離dの測定精度を向上させるといった対
応が採られる。しかし、この一実施例のX線応力測定法
は、粗粒材や微小領域に対する応力測定を前提としたも
ので、従来と比較して傾角ψi の設定点数を増やしてお
り、しかも、測定すべき応力の要求精度が高いほど前記
傾角ψi の設定数を増やして、各傾角ψi において回折
線プロファイルを測定する。
In the conventional X-ray stress measurement method, generally,
The number of set points of the tilt angle ψ is kept constant (for example, 4 points) regardless of the required accuracy of the stress to be measured, and in order to improve the accuracy of the stress, the accuracy of measuring the inter-lattice surface distance d is improved. However, the X-ray stress measurement method of this embodiment is premised on the measurement of stress on a coarse-grained material or a minute area, and the number of set points of the tilt angle ψ i is increased as compared with the conventional method, and the measurement is performed. The higher the required accuracy of the power stress is, the larger the number of inclination angles ψ i is set, and the diffraction line profile is measured at each inclination angle ψ i .

【0027】統計学によれば、統計的変動を持つM個の
値の平均値は、真の値に対して、Mの平方根に反比例し
た誤差を持つ。このことは、回折線プロファイルは、回
折に寄与する結晶粒の数が多いほど滑らかになり、誤差
の少ない回折角θの算出が可能になることからも明らか
である。そのため、回折に寄与する結晶粒の数が多くな
るように試料上の入射X線の照射位置の調整などが行わ
れるが、その様な対応には、限度があり、大きな改善を
期待することはできない。しかし、この一実施例のよう
に、測定するψ点を増加させる対応は、比較的容易かつ
確実に、測定する結晶粒の数を増やすことができる。
According to statistics, the mean value of M values with statistical variation has an error that is inversely proportional to the square root of M with respect to the true value. This is also clear from the fact that the diffraction line profile becomes smoother as the number of crystal grains contributing to diffraction increases, and the diffraction angle θ with less error can be calculated. Therefore, the incident X-ray irradiation position on the sample is adjusted so that the number of crystal grains contributing to the diffraction is increased, but such measures are limited, and a large improvement cannot be expected. Can not. However, as in this embodiment, the measure to increase the ψ point to be measured can relatively easily and surely increase the number of crystal grains to be measured.

【0028】以下、一つの傾角ψi における一連の処理
を図1に基づいて説明する。
A series of processes for one tilt angle ψ i will be described below with reference to FIG.

【0029】まず、測定点として予め設定された最初の
ψi (例えば、i=1の場合のψ1)について、回折線
プロファイルを求める(ステップ101)。試料1が粗
粒材等で、回折に寄与する結晶粒が少ないときは、前述
の図5に示したように、回折線プロファイルは個々の結
晶粒からの回折線が分離して起伏の多い形状となる。
First, a diffraction line profile is obtained for the first ψ i preset as a measurement point (for example, ψ 1 when i = 1 ) (step 101). When the sample 1 is a coarse-grained material or the like and there are few crystal grains that contribute to diffraction, as shown in FIG. 5, the diffraction line profile has a shape with many undulations due to the separation of diffraction lines from individual crystal grains. Becomes

【0030】次いで、測定した回折線プロファイルの重
心位置を決め、その重心位置に対する角度を傾角ψ1
おける回折角θ1 に決定する(ステップ102)。回折
線プロファイルが滑らかでなくとも、その重心は比較的
容易かつ高精度に求めることが出来る。
Next, the barycentric position of the measured diffraction line profile is determined, and the angle with respect to the barycentric position is determined as the diffraction angle θ 1 at the tilt angle ψ 1 (step 102). Even if the diffraction line profile is not smooth, the center of gravity can be obtained relatively easily and with high accuracy.

【0031】傾角ψ1 における回折X線の測定時に、回
折に寄与している結晶粒の数をm1とする。そのj番目
の結晶粒の体積をv1jとすると、ψi 点に対する回折線
の積分強度Ii は、回折に寄与した結晶粒の全体積Vi
=Σv1jに比例している。そして、重心位置の角度であ
る回折角θ1 は、Vi の体積の結晶粒の平均の回折角を
意味している。
At the time of measuring the diffracted X-ray at the tilt angle ψ 1 , the number of crystal grains contributing to the diffraction is m 1 . If the volume of the j-th crystal grain is v 1j , the integrated intensity I i of the diffraction line with respect to the ψ i point is the total volume V i of the crystal grains contributing to the diffraction.
= Proportional to Σv 1j . The diffraction angle θ 1 which is the angle of the center of gravity means the average diffraction angle of the crystal grains of the volume V i .

【0032】次いで、前記回折角θ1 を用いて、ブラッ
グ式からその傾角ψ1 における格子面間距離d1 を算出
する(ステップ103)。
[0032] Then, by using the diffraction angle theta 1, to calculate the lattice plane spacing d 1 at the inclination angle [psi 1 from the Bragg equation (step 103).

【0033】次に、格子面間距離dとsin2 ψとの相
関を示すd−sin2 ψ線図を描くが、この場合、予
め、傾角ψ1 の回折線プロファイルにおける積分強度
(すなわち、回折線プロファイルの囲う面積)I1 を求
める。そして、前記格子面間距離d1 に各回折線プロフ
ァイルの積分強度I1 で重みをつけたd1 ・F(I1
を、d−sin2 ψ線図における格子面間距離dに使用
する(ステップ104)。重みF(Ii )は、実際に回
折に寄与した結晶粒の数が僅かでその体積も小で、算出
した格子面間距離di が試料全体の代表値として扱うに
は不適当な場合に、格子面間距離di の影響を軽減させ
るためのもので、統計的な処理によって決定される。
[0033] Next, draw a d-sin 2 [psi diagram showing a correlation between interstitial plane distance d and sin 2 [psi, in this case, in advance, the integrated intensity in the diffraction line profile of inclination [psi 1 (i.e., the diffraction The area I 1 surrounding the line profile is calculated. Then, the distance d 1 between the lattice planes is weighted by the integrated intensity I 1 of each diffraction line profile, d 1 · F (I 1 )
Is used as the inter-lattice plane distance d in the d-sin 2 ψ diagram (step 104). The weight F (I i ) is set when the number of crystal grains actually contributing to diffraction is small and the volume thereof is small, and the calculated inter-lattice distance d i is unsuitable to be treated as a representative value of the entire sample. This is for reducing the influence of the inter-lattice surface distance d i and is determined by statistical processing.

【0034】次いで、他に測定するψi が残っている場
合には、そのψi の値について前記ステップ101〜ス
テップ104を繰り返す。この一実施例では、ψ1 ,ψ
2 ,ψ3 ,…ψk と、予定した測定点数分だけ、前記ス
テップ101〜ステップ104を繰り返す(ステップ1
05,106)。
[0034] Then, when there remains [psi i to be measured other repeats the steps 101 to 104 for the value of the [psi i. In this embodiment, ψ 1 , ψ
2 , ψ 3 , ... ψ k, and the above steps 101 to 104 are repeated for the number of the planned measurement points (step 1
05, 106).

【0035】予定した測定点数の全てについて、前記ス
テップ101〜ステップ104の処理が終了したら、描
いたd−sin2 ψ線図から応力σを求め(ステップ1
07)、一連の応力測定処理が終了する。
After the processing of steps 101 to 104 is completed for all the planned number of measurement points, the stress σ is obtained from the drawn d-sin 2 ψ diagram (step 1
07), a series of stress measurement processing ends.

【0036】以上のようなX線応力測定法においては、
傾角ψi の設定点数を増やすことによって、結晶粒の数
が少数であることに起因した測定誤差の増大を防止する
ことができる。しかも、測定した各回折線プロファイル
の重心位置の角度を回折角θi として使うことによっ
て、回折線プロファイルに表れた一部の特定の結晶粒の
応力状態を過大評価してしまう危険を軽減することがで
きる。さらに、測定した複数の回折線プロファイルから
d−sin2 ψ線図を求める場合には、各回折線プロフ
ァイル毎に求めた格子面間距離di をそれぞれの回折線
プロファイルの積分強度で重みをつけるため、各傾角ψ
i で回折に寄与した結晶粒が相違する場合でも、その相
違に起因したばらつきを小さくすることができる。
In the X-ray stress measurement method as described above,
By increasing the number of set points of the tilt angle ψ i , it is possible to prevent an increase in measurement error due to the small number of crystal grains. Moreover, by using the angle of the center of gravity position of each measured diffraction line profile as the diffraction angle θ i , it is possible to reduce the risk of overestimating the stress state of some specific crystal grains shown in the diffraction line profile. You can Furthermore, when a d-sin 2 ψ diagram is obtained from a plurality of measured diffraction line profiles, the inter-lattice plane distance d i obtained for each diffraction line profile is weighted by the integrated intensity of each diffraction line profile. Therefore, each tilt angle ψ
Even if the crystal grains that contributed to the diffraction at i are different, the variation caused by the difference can be reduced.

【0037】そして、以上の相乗効果により、回折に寄
与した結晶粒の数の少なさに起因した測定誤差の増大が
防止され、測定対象の試料が結晶粒の数が少ない粗粒材
や微小領域に制限されるような場合にも、回折X線の測
定によって高精度に応力を求めることが可能になる。
Due to the above synergistic effect, an increase in measurement error due to the small number of crystal grains contributing to diffraction is prevented, and the sample to be measured is a coarse-grained material having a small number of crystal grains or a minute region. Even in the case where the stress is limited to, the stress can be obtained with high accuracy by measuring the diffraction X-ray.

【0038】なお、以上の一実施例では、図1に示すよ
うに、一つのψ点について回折線プロファイルの測定、
重心位置の算出、回折角の決定等の処理を行った後、別
のψ点について同様の処理を繰り返すようにしたが、処
理順序は、図1のものに限定するものではない。
In the above embodiment, as shown in FIG. 1, the diffraction line profile is measured for one ψ point,
After the processes such as the calculation of the center of gravity position and the determination of the diffraction angle are performed, the same process is repeated for another ψ point, but the process order is not limited to that shown in FIG.

【0039】[0039]

【発明の効果】以上の説明から明らかなように、本発明
に係るX線応力測定法においては、傾角ψi の設定点数
を増やすことによって、結晶粒の数が小数であることに
起因した測定誤差の増大を防止し、測定した各回折線プ
ロファイルの重心位置の角度を回折角θi として使うこ
とによって、回折線プロファイルに表れた一部の特定の
結晶粒の応力状態が過大評価されることを防止し、それ
ぞれの傾角ψi 毎の回折線プロファイルの積分強度で格
子面間距離dに重みをつけることによって、各傾角ψi
毎の回折に寄与した結晶粒の相違に起因したばらつきを
小さくする。
As is apparent from the above description, in the X-ray stress measurement method according to the present invention, the number of set points of the tilt angle ψ i is increased, so that the number of crystal grains is small. By preventing an increase in error and using the angle of the center of gravity position of each measured diffraction line profile as the diffraction angle θ i , the stress state of some specific crystal grains shown in the diffraction line profile is overestimated. prevented by attaching a weight to the lattice plane spacing d in the integrated intensity of the diffraction line profile for each of the inclination angle [psi i, each inclination angle [psi i
The variation caused by the difference in crystal grains contributing to each diffraction is reduced.

【0040】したがって、回折に寄与した結晶粒の数の
少なさに起因した測定誤差の増大が防止され、測定対象
の試料が結晶粒の数の少ない粗粒材や微小領域に制限さ
れるような場合にも、回折X線の測定によって高精度に
応力を求めることが可能になる。
Therefore, an increase in measurement error due to the small number of crystal grains contributing to diffraction is prevented, and the sample to be measured is limited to a coarse grain material having a small number of crystal grains or a minute region. Also in this case, the stress can be obtained with high accuracy by measuring the diffraction X-ray.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の処理手順の説明図である。FIG. 1 is an explanatory diagram of a processing procedure according to an embodiment of the present invention.

【図2】X線応力測定法の概略の説明図である。FIG. 2 is a schematic explanatory diagram of an X-ray stress measurement method.

【図3】多結晶試料の回折線プロファイルの説明図であ
る。
FIG. 3 is an explanatory diagram of a diffraction line profile of a polycrystalline sample.

【図4】X線応力測定法に使うd−sin2 ψ線図の説
明図である。
FIG. 4 is an explanatory diagram of a d-sin 2 ψ diagram used in the X-ray stress measurement method.

【図5】粗粒材等における回折線プロファイルの説明図
である。
FIG. 5 is an explanatory diagram of a diffraction line profile of a coarse grain material or the like.

【図6】本発明の一実施例における概略説明図である。FIG. 6 is a schematic explanatory diagram according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…試料、2…入射X線、d,di …格子面間距離、M
o…試料表面法線、M…結晶格子面法線、ψ,ψi …傾
角。
1 ... Sample, 2 ... incident X-ray, d, d i ... lattice plane spacing, M
o ... Sample surface normal, M ... Crystal lattice plane normal, ψ, ψ i ... Inclination angle.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 測定対象の試料の試料表面法線Moと結
晶格子面法線Mとのなす角度である結晶格子面の傾角を
ψi とするとき、前記試料に波長λの特性X線を照射し
て、得た回折線プロファイルから前記試料に作用してい
る応力σを算出するX線応力測定法であって、 測定すべき応力の要求精度が高いほど前記傾角ψi の設
定数を増やして、各傾角ψi において回折線プロファイ
ルを測定し、 各傾角ψi における格子面間距離di は、それぞれの回
折線プロファイルの重心位置の角度を回折角θi とし
て、ブラッグ式に基づいて算出し、 かつ、格子面間距離dとsin2 ψとの相関を示すd−
sin2 ψ線図を求める際には、前記格子面間距離dと
して、回折に寄与した結晶粒の体積を考慮するために、
各ψi における算出値di に各回折線プロファイルの積
分強度Ii で重みをつけたdi ・F(Ii )を使用し
て、 前記試料における応力σを求めることを特徴とするX線
応力測定法。
1. When a tilt angle of a crystal lattice plane, which is an angle formed by a sample surface normal Mo and a crystal lattice plane normal M of a sample to be measured, is ψ i , a characteristic X-ray having a wavelength λ is applied to the sample. An X-ray stress measurement method of irradiating and calculating the stress σ acting on the sample from the obtained diffraction line profile, wherein the higher the required accuracy of the stress to be measured, the greater the number of setting of the tilt angle ψ i. Te, the diffraction line profile measured at each inclination angle [psi i, lattice plane distance d i for each inclination angle [psi i is the angle of the center of gravity of each diffraction line profile as a diffraction angle theta i, calculated on the basis of Bragg equation , And d− which indicates the correlation between the lattice plane distance d and sin 2 ψ.
When obtaining the sin 2 ψ diagram, in order to consider the volume of the crystal grains that contributed to diffraction as the inter-lattice distance d,
Use integrated intensity I i d was weighted at i · F (I i) of each diffraction line profile calculated value d i at each [psi i, X-rays and obtains the stress σ in the sample Stress measurement method.
JP6207270A 1994-08-31 1994-08-31 X-ray stress measuring method Pending JPH0868702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6207270A JPH0868702A (en) 1994-08-31 1994-08-31 X-ray stress measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6207270A JPH0868702A (en) 1994-08-31 1994-08-31 X-ray stress measuring method

Publications (1)

Publication Number Publication Date
JPH0868702A true JPH0868702A (en) 1996-03-12

Family

ID=16537020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6207270A Pending JPH0868702A (en) 1994-08-31 1994-08-31 X-ray stress measuring method

Country Status (1)

Country Link
JP (1) JPH0868702A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201640A (en) * 2004-01-13 2005-07-28 Jeol Ltd Sample evaluation method and sample evaluating device
CN113176285A (en) * 2021-04-23 2021-07-27 中国兵器工业第五九研究所 Nondestructive testing method for residual stress in short-wavelength characteristic X-ray
CN113310611A (en) * 2021-07-12 2021-08-27 中国兵器工业第五九研究所 Nondestructive testing device and method for internal stress of short-wavelength characteristic X-ray

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201640A (en) * 2004-01-13 2005-07-28 Jeol Ltd Sample evaluation method and sample evaluating device
JP4498751B2 (en) * 2004-01-13 2010-07-07 日本電子株式会社 Sample evaluation method and sample evaluation apparatus
CN113176285A (en) * 2021-04-23 2021-07-27 中国兵器工业第五九研究所 Nondestructive testing method for residual stress in short-wavelength characteristic X-ray
CN113176285B (en) * 2021-04-23 2023-12-15 中国兵器工业第五九研究所 Nondestructive testing method for residual stress in short-wavelength characteristic X-ray
CN113310611A (en) * 2021-07-12 2021-08-27 中国兵器工业第五九研究所 Nondestructive testing device and method for internal stress of short-wavelength characteristic X-ray
CN113310611B (en) * 2021-07-12 2023-08-18 中国兵器工业第五九研究所 Nondestructive testing device and method for short-wavelength characteristic X-ray internal stress

Similar Documents

Publication Publication Date Title
Kaganer et al. X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films
Cheary et al. Fundamental parameters line profile fitting in laboratory diffractometers
US7885383B1 (en) Method for measuring crystallite size with a two-dimensional X-ray diffractometer
JP2005518552A (en) Feedforward and feedback control of semiconductor manufacturing methods using secondary electron microscopy and a focused ion beam system
JP3726080B2 (en) Method for evaluating orientation of polycrystalline materials
JP2007285923A (en) Measurement of critical dimensions using x-ray diffraction in reflection mode
JP2007285923A5 (en)
US20060231752A1 (en) Crystallographic metrology and process control
JPH0868702A (en) X-ray stress measuring method
Pukite et al. Sensitive reflection high‐energy electron diffraction measurement of the local misorientation of vicinal GaAs surfaces
Cheary et al. X-ray diffraction line broadening from thermally deposited gold films
Snyder Accuracy in angle and intensity measurements in X-ray powder diffraction
Scott et al. Foil thickness measurements in transmission electron microscope
JP2002022679A (en) X-ray diffraction device
JPH06273357A (en) Crystal defect evaluation equipment
Jakob et al. Quantitative analysis of time-resolved RHEED during growth of vertical nanowires
Saxena et al. Correction factors for neutron diffraction from lamellar structures
Moras et al. Experimental determination of the instrumental transparency function of texture goniometers
JPH09178675A (en) Measuring method for aggregate texture in depth direction
JPS649575B2 (en)
JP2619149B2 (en) Method for estimating background component of X-ray fluorescence spectrum
He Stress measurement
JP2000213999A (en) X-ray stress measuring method
Toraya et al. Kα1–Kα2 characteristic of a parabolic graded multilayer
Kujofsa et al. Resolution of X-Ray Rocking Curve Measurements Made with Finite Counting Statistics