JPH0868011A - Vibration controlling cable - Google Patents

Vibration controlling cable

Info

Publication number
JPH0868011A
JPH0868011A JP6206479A JP20647994A JPH0868011A JP H0868011 A JPH0868011 A JP H0868011A JP 6206479 A JP6206479 A JP 6206479A JP 20647994 A JP20647994 A JP 20647994A JP H0868011 A JPH0868011 A JP H0868011A
Authority
JP
Japan
Prior art keywords
cable
vibration
drag coefficient
concave
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6206479A
Other languages
Japanese (ja)
Other versions
JP2898205B2 (en
Inventor
Tetsuo Hojo
北條哲男
Shinsuke Yamazaki
山崎伸介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6206479A priority Critical patent/JP2898205B2/en
Publication of JPH0868011A publication Critical patent/JPH0868011A/en
Application granted granted Critical
Publication of JP2898205B2 publication Critical patent/JP2898205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/005Making ropes or cables from special materials or of particular form characterised by their outer shape or surface properties
    • D07B5/006Making ropes or cables from special materials or of particular form characterised by their outer shape or surface properties by the properties of an outer surface polymeric coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2083Jackets or coverings
    • D07B2201/2084Jackets or coverings characterised by their shape
    • D07B2201/2086Jackets or coverings characterised by their shape concerning the external shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2015Construction industries
    • D07B2501/203Bridges

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Ropes Or Cables (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

PURPOSE: To restrain rain vibration while reducing wind load working on cables by providing recesses or projections to a cable or the like for suspension structure with coating applied to its surface. CONSTITUTION: In a cable 3, made of an aggregate of strands 1, with anti-corrosive coating 2 applied to its surface, a number of aggregates 4, 5, each composed of a number of circular or polygonal recesses 4a or projections 5a are arranged regularly or at random to the coated surface. Thereby, turbulance is made in wind, and vibration is prevented from occurring to the cable 3. The area for the recess or the projection should be less than 3-10% of unit area on the surface of the cable, and thereby increase of drag coefficient for the cable can be restrained without causing in incrfease of wind load working on the cable while improving the appearances of the cable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吊構造用ケーブル例え
ば斜張橋ケーブル、吊橋ハンガー等のケーブル類あるい
は送電線ケーブル等に用いられるものでケーブルに作用
する風荷重の増大を招くことがなく、かつ風・雨による
振動を抑える制振ケーブルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for cables for suspension structures, such as cables for cable-stayed bridges, hangers for suspension bridges, cables for power transmission lines, etc. without increasing the wind load acting on the cables. It also relates to a vibration damping cable that suppresses vibrations caused by wind and rain.

【0002】[0002]

【従来の技術】斜張橋等の吊構造ケーブルや送電線ケー
ブルには、防食対策として、ポリエチレン被覆された円
形断面を持つケーブルが広く用いられるようになってき
た。ところが円形断面を持つケーブルには、風による微
小振幅を伴う渦励振の他に、雨と風の相互作用により大
振幅で振動するレインバイブレーションが発生する。特
に、ポリエチレン被覆された円形断面ケーブルが傾斜し
て配置された場合、防食被覆部表面に降雨による水路が
形成され易く、ある風速域で発散的な振動が発生し、ケ
ーブル定着部に大きな角変化が生じて大きな曲げ応力や
疲労による破壊が懸念されるためこの振動を抑制する対
策として、以下の従来技術が挙げられる。
2. Description of the Related Art Polyethylene-coated cables having a circular cross section have come to be widely used as cables for suspending structures such as cable-stayed bridges and cables for power transmission lines as an anticorrosion measure. However, in a cable with a circular cross section, in addition to vortex excitation accompanied by a small amplitude due to wind, rain vibration that vibrates with a large amplitude occurs due to the interaction between rain and wind. In particular, when a polyethylene-coated circular cross-section cable is placed at an inclination, water channels are easily formed on the surface of the anticorrosion coating part due to rainfall, and divergent vibration occurs in a certain wind speed range, causing a large angle change in the cable fixing part. Therefore, the following conventional techniques can be cited as a measure for suppressing this vibration because a large bending stress or a fracture due to fatigue may occur.

【0003】 例えば、特開昭63−197703、
特開平1−146006に開示されているようなケーブ
ルを防食するためポリエチレンからなる防食被覆の全表
面に、図11(a),(b)又は(c),(d)に示す
ようなケーブル3の軸方向全長にわたって数mm程度の
高さの線状突起7または溝6を設けることにより、防食
ケーブル周辺の空気流を制御し、レインバイブレーショ
ンの発生原因となる水路の形成を阻止し、振動を抑制す
る方式。
For example, JP-A-63-197703,
A cable 3 as shown in FIGS. 11 (a), 11 (b) or 11 (c), 11 (d) is formed on the entire surface of an anticorrosion coating made of polyethylene for protecting the cable as disclosed in JP-A-1-146006. By providing the linear protrusions 7 or the grooves 6 with a height of about several mm over the entire axial length, the air flow around the anticorrosion cable is controlled, the formation of water channels that cause rain vibration is prevented, and vibration is prevented. Method to suppress.

【0004】 図12に示すように、橋桁9を支持す
る多数のケーブル3をワイヤーロープ8により相互に連
結して、ケーブルの見かけの剛度、減衰性能を高めるこ
とにより振動を抑制する方式。
As shown in FIG. 12, a method in which a large number of cables 3 supporting a bridge girder 9 are connected to each other by a wire rope 8 to improve apparent rigidity and damping performance of the cables to suppress vibration.

【0005】 図13に示すように、ケーブル3の定
着部近傍に、オイルダンパーあるいは粘弾性体を利用し
たダンパー類10を取り付けて減衰効果を増加させるこ
とにより振動を抑制する方式がある。
As shown in FIG. 13, there is a method of suppressing vibration by attaching a damper 10 using an oil damper or a viscoelastic body near the fixing portion of the cable 3 to increase the damping effect.

【0006】[0006]

【発明が解決しようとする課題】しかし、これらの従来
技術は以下にような課題があった。
However, these conventional techniques have the following problems.

【0007】においては、防食被覆の表面に高さ数m
mで幅が数mm程度の線状突起もしくは溝を設けること
により、ケーブル表面に発生する水路の形成を阻害し、
レインバイブレーションの発現を抑制する方法である
が、この場合水路の形成を阻止するためには、ケーブル
全表面にわたってケーブル径の2〜3%程度の高さの突
起または溝を設けるため、円滑な表面を持つ円形ケーブ
ルに比べるとケーブル断面の抗力係数が著しく増加す
る。このために斜張橋の様な構造物においてはケーブル
に作用する風荷重が増大し、そのため桁や塔の設計断面
が過大となる恐れがある。また架設作業を行うとき、防
食被覆の切り欠き部から亀裂等の損傷が発生するのを防
止しなければならないことや、ケーブル設置時において
ケーブルがねじれることにより溝や突起が回転し、本来
の機能を発揮できない恐れがあるために、製作および架
設上の取扱いに大幅な制限を設定しなければならない問
題点があった。
In the above, the height of the surface of the anticorrosion coating is several meters.
By forming a linear protrusion or groove with a width of about several mm in m, formation of a water channel generated on the cable surface is hindered,
Although this is a method of suppressing the occurrence of rain vibration, in order to prevent the formation of water channels in this case, a projection or groove having a height of about 2 to 3% of the cable diameter is provided over the entire surface of the cable, so that a smooth surface is provided. The drag coefficient of the cable cross section is significantly increased as compared with the circular cable with. Therefore, in a structure such as a cable-stayed bridge, the wind load acting on the cable increases, which may result in an excessively large design cross section of the girder or tower. In addition, when performing erection work, it is necessary to prevent damage such as cracks from the notch of the anticorrosion coating, and when the cable is twisted when installing the cable, the grooves and protrusions rotate and the original function is Therefore, there is a problem in that it is necessary to set a large limit to the handling in manufacturing and erection because there is a possibility that the product cannot be exhibited.

【0008】においては、ケーブル相互をワイヤーロ
ープにより連結するために、クランプ等の治具によりケ
ーブルを締め付ける必要があるが、ケーブル表面層を構
成しているポリエチレンからなる防食被覆はクリープが
大きい材料であるため締め付け力が弱まり、そのため滑
りに対する十分な安全率を保つには定期的なメンテナン
スが必要となる。また、ケーブルを連結するワイヤーロ
ープは、斜張橋の景観を損ねる。
In the above method, the cables need to be clamped by a jig such as a clamp in order to connect the cables with a wire rope. However, the anticorrosion coating made of polyethylene forming the cable surface layer is a material having a large creep. Because of this, the tightening force is weakened, which requires regular maintenance to maintain a sufficient safety factor against slipping. In addition, the wire rope connecting the cables spoils the view of the cable-stayed bridge.

【0009】においては、制振ダンパーを全ケーブル
に取り付けるため、ケーブル定着部近傍に付属構造物を
設けることが必要となる。また、橋梁が大型化してケー
ブル長が長くなると、橋桁近傍では十分な制振効果が得
られなくなり高い位置に設ける必要が生じて、美観の面
からも好ましくない。
In this case, since the vibration damper is attached to all the cables, it is necessary to provide an attached structure near the cable fixing portion. Further, when the bridge becomes large and the cable length becomes long, a sufficient vibration damping effect cannot be obtained in the vicinity of the bridge girder, and it becomes necessary to provide it at a high position, which is not preferable from the viewpoint of aesthetics.

【0010】本発明者等は前記従来技術のようにケーブ
ルに付加的な部材を取り付けたり、防食被覆の強度特性
に大きな悪影響を与えることもなく、比較的容易に製作
可能な対策で、ケーブルに作用する風荷重の増大を招く
ことがなくレインバイブレーションの発生を抑制した制
振ケーブルを特願平05−63867として出願してい
る。この制振ケーブルはケーブルを防食するためのポリ
エチレンからなる防食被覆の全表面に、複数の円形状又
は多角形状の凹または凸の集合部を設けたもので、ケー
ブル表面の滑らかな気流を乱すことにより、水路の形成
を阻止し、振動を抑制するものであり、凹または凸の集
合部の面積の和が、ケーブルの単位表面積(凹凸も含め
た)に占める割合を10〜30%としたものである。本
発明は既出願の前記発明において、ケーブル表面の加工
面積を減少し美観性をさらに向上させたものである。
The present inventors did not attach additional members to the cable as in the above-mentioned prior art, and do not have a great adverse effect on the strength characteristics of the anticorrosion coating, and are relatively easy to manufacture. Japanese Patent Application No. 05-63867 has filed for a damping cable that suppresses the occurrence of rain vibration without increasing the wind load that acts. This anti-vibration cable has multiple circular or polygonal concave or convex aggregates on the entire surface of the anticorrosion coating made of polyethylene to protect the cable. This prevents the formation of water channels and suppresses vibration, and the sum of the areas of the concave or convex aggregates is 10 to 30% of the unit surface area of the cable (including irregularities). Is. The present invention is the above-mentioned invention of the already filed application, in which the processed area of the cable surface is reduced to further improve the aesthetic appearance.

【0011】[0011]

【課題を解決するための手段および作用】本発明の要旨
は、表面の防食被覆に凹または凸状の加工が施されてい
る空中懸架ケーブルにおいて、防食被覆表面に複数の円
形または多角形状の凹または凸の集合部を、ケーブルの
単位表面積に対応する凹または凸の面積の和が3%〜1
0%未満の範囲になるように多数形成したことを特徴と
する制振ケーブルである。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a plurality of circular or polygonal concaves on the surface of an anticorrosion coating in an aerial suspension cable in which the surface of the anticorrosion coating has concave or convex processing. Alternatively, the sum of convex or concave areas corresponding to the unit surface area of the cable is 3% to 1
It is a vibration-damping cable characterized by being formed in large numbers in a range of less than 0%.

【0012】(作用)雨と風の相互作用により円形の防
食ケーブルに発生するレインバイブレーションと呼ばれ
る振動現象は、防食ケーブルの上面および下面の特定位
置にある幅をもった水路の形成が原因と考えられること
から、この水路形成の阻止がレインバイブレーション抑
制の対策となる。
(Operation) It is considered that the vibration phenomenon called rain vibration generated in the circular anticorrosion cable due to the interaction between rain and wind is caused by the formation of a water channel having a certain width on the upper and lower surfaces of the anticorrosion cable. Therefore, the prevention of this water channel formation is a measure to suppress rain vibration.

【0013】水路形成の阻止のために本発明は、防食被
覆の表面に複数の円形状又は多角形状の凹または凸の集
合部を設ける。この凹または凸部は、ケーブル表面の滑
らかな気流を乱すことにより水路の形成を阻止すること
ができ、レインバイブレーションの発生を抑制する。
To prevent the formation of water channels, the present invention provides a plurality of circular or polygonal concave or convex aggregates on the surface of the anticorrosion coating. The concave portion or the convex portion can prevent the formation of a water channel by disturbing the smooth air flow on the cable surface, and suppress the occurrence of rain vibration.

【0014】凹または凸の集合部はケーブル全長にわた
って整列あるいはランダムに多数配置し、その面積の和
が、ケーブルの単位表面積(凹または凸部も含めた)に
占める割合が3%〜10%未満の範囲になるようにす
る。この理由は、ケーブルに作用する風荷重の増大を招
くことがなくレインバイブレーションを抑制させるため
である。レインバイブレーションの抑制のためには、出
来るだけ凹または凸部を多く施した方がよいが、ケーブ
ルの表面の凹または凸部が増大すると平滑な面が減少し
その結果、抗力係数が増加して風荷重が増大する。円断
面の抗力係数は平滑な表面を持つ形状が最も小さく、直
径が10〜20cmのケーブルの場合風速が50m/s
程度では、抗力係数CD は0.5〜0.6である。ケー
ブルの表面に溝または突起を施した場合、その程度が大
きいほど、また加工面積が広いほど平滑な表面からの変
形が大きくなり、その結果抗力係数は大きくなり、従来
例ではCD =1.2を示すものもある。ケーブル表面へ
の凹または凸の加工面積を少なくすると抗力係数は小さ
くできるが3%未満ではレインバイブレーションの抑制
効果がなくなる。本発明ではケーブル表面への凹または
凸加工面積を3%〜10%未満として、抗力係数の増加
の抑制を図ったもので風速50m/sでも抗力係数CD
は約0.6で凹または凸のない円断面とほぼ同等であ
る。また、ケーブル表面に形成する凹または凸は単独で
はなく、複数のものを集合部として配置している。これ
は空気流の乱流作用をより効果的に行わせしめるためで
ある。この結果従来のような表面に溝又は突起を設けた
制振ケーブルの抗力係数1.0〜1.2に比べ、ケーブ
ルへの風荷重を大幅に低減させしかもレインバイブレー
ションの発生も抑制できるとともに、ケーブル表面に凹
または凸の加工量が減少でき、製作が容易となり、架設
ケーブルの美観性も向上する。
A large number of concave or convex aggregates are arranged or randomly arranged over the entire length of the cable, and the sum of the areas occupies 3% to less than 10% of the unit surface area of the cable (including concave or convex portions). To be within the range. The reason for this is to prevent rain vibration without increasing the wind load acting on the cable. In order to suppress rain vibration, it is better to make as many recesses or protrusions as possible, but if the number of recesses or protrusions on the surface of the cable increases, the smooth surface decreases, resulting in an increase in the drag coefficient. Wind load increases. The drag force coefficient of the circular cross section is the smallest for a shape with a smooth surface, and the wind velocity is 50 m / s for a cable with a diameter of 10 to 20 cm.
To a degree, the drag coefficient C D is between 0.5 and 0.6. When grooves or protrusions are formed on the surface of the cable, the larger the extent and the larger the processing area, the greater the deformation from the smooth surface, resulting in a larger drag coefficient. In the conventional example, C D = 1. Some show 2. The drag coefficient can be reduced by reducing the concave or convex processing area on the cable surface, but if it is less than 3%, the effect of suppressing rain vibration is lost. In the present invention, the concave or convex processing area on the cable surface is set to 3% to less than 10% to suppress the increase of the drag coefficient. Therefore, the drag coefficient C D is reduced even at a wind speed of 50 m / s.
Is about 0.6, which is almost equivalent to a circular cross section without a concave or convex shape. Moreover, the concaves or convexes formed on the surface of the cable are not single, but a plurality of concaves or convexes are arranged as a collective portion. This is to make the turbulent action of the air flow more effective. As a result, compared to the drag coefficient of 1.0 to 1.2 of the conventional vibration damping cable having grooves or protrusions, the wind load on the cable can be significantly reduced and the occurrence of rain vibration can be suppressed. The amount of recesses or protrusions on the cable surface can be reduced, manufacturing is easier, and the aesthetic appearance of the erected cable is also improved.

【0015】[0015]

【実施例】【Example】

実施例1 図1は本発明の第1実施例を示すものであり、ケーブル
素線1の集合体からなるケーブルの表面に、ポリエチレ
ンからなる防食被覆2が施され、その防食ケーブル3の
被覆部表面に楕円形の凹部4aを複数(4ケ)集合した
集合部4を整列配置したものである。
Example 1 FIG. 1 shows a first example of the present invention, in which a surface of a cable composed of an assembly of cable strands 1 is provided with an anticorrosion coating 2 made of polyethylene, and a coating portion of the anticorrosion cable 3 thereof. A plurality of (four) elliptical concave portions 4a are gathered on the surface, and a gathering portion 4 is arranged in an array.

【0016】図2は凹部の形状の詳細を示す。FIG. 2 shows details of the shape of the recess.

【0017】具体的寸法諸元は、ケーブル外径150m
mの表面に3mm×5mmの楕円形状凹部4a4個を1
集合体とし、ケーブル周方向に8ケ等間隔、軸方向に並
行に配置したもので、ケーブルの単位表面積に対応する
凹部の面積の和は約4%である。1個の凹部は大きくす
ると乱流効果が減少して制振効果が得にくくなるため、
小さくして複数個集めた集合部4を形成したもので、凹
部4a1個の面積は約12mm2 としこれを4個配置し
たものを1つの集合部4とした。
The concrete dimensions are as follows: cable outer diameter 150 m
One 3 mm x 5 mm elliptical recess 4a on the surface of m
The assembly is arranged in eight equal intervals in the circumferential direction of the cable and arranged in parallel in the axial direction, and the total area of the concave portions corresponding to the unit surface area of the cable is about 4%. If one recess is made larger, the turbulence effect will be reduced and the damping effect will be difficult to obtain.
A plurality of smaller gathering portions 4 are formed. The area of one concave portion 4a is about 12 mm 2, and four gathering portions 4a are arranged to form one gathering portion 4.

【0018】また、凹部4aの深さはケーブル径の2〜
3%以上になると、凹部のケーブル表面積に占める割合
増とともに抗力係数が増加するため、ケーブルに作用す
る風荷重が増加してしまう。このため制振効果が得られ
かつ抗力係数が増加しない範囲とするため、凹部4aの
深さは1〜1.5mmとケーブル径の約1%以下とし
た。
The depth of the recess 4a is 2 to the cable diameter.
If it is 3% or more, the drag coefficient increases as the ratio of the concave portion to the cable surface area increases, so that the wind load acting on the cable increases. For this reason, the depth of the concave portion 4a is set to 1 to 1.5 mm, which is about 1% or less of the cable diameter, in order to obtain a vibration damping effect and not increase the drag coefficient.

【0019】実施例2 図3は本発明の第2の実施例を示すものであり、第1実
施例と同様のケーブルに円形状の凹部5aを複数(5
ケ)集合した集合部5を整列配置したものである。
Embodiment 2 FIG. 3 shows a second embodiment of the present invention, in which a cable similar to the first embodiment is provided with a plurality of circular recesses 5a (5).
(3) The gathering units 5 gathered are arranged in an array.

【0020】図4は凹部5aの形状の詳細を示す。FIG. 4 shows details of the shape of the recess 5a.

【0021】ケーブル外径150mmの表面に3mm×
5mmの楕円形状凹部5a5個を1集合体として、ケー
ブル周方向に8ケ等間隔、軸方向に並行に配置したもの
である。この場合、ケーブル単位表面積に対応する凹部
の面積の和は約5%である。
3 mm x on the surface of the outer diameter of the cable 150 mm
The five 5 mm elliptical recesses 5a are treated as one aggregate and are arranged in parallel in the axial direction at eight equal intervals in the cable circumferential direction. In this case, the sum of the areas of the concave portions corresponding to the cable unit surface area is about 5%.

【0022】比較例1 図5,図6は比較例1で、ケーブル単位表面積に対応す
る凹部の面積の和を3%未満とした例であり、ケーブル
外径150mmの面積に3mm×5mmの楕円形状凹部
6aの3個を1集合体としてケーブル周方向に8ケ等間
隔、軸方向に並行に配置したものである。
Comparative Example 1 FIGS. 5 and 6 show Comparative Example 1 in which the sum of the areas of the concave portions corresponding to the cable unit surface area is less than 3%, and an ellipse of 3 mm × 5 mm is formed in an area having a cable outer diameter of 150 mm. The three shaped recesses 6a are arranged as one assembly and arranged in parallel in the axial direction at eight equal intervals in the cable circumferential direction.

【0023】比較例2 図7は比較例2で1ケの凹部の面積が230mm2 と大
きくし、単独配置したものである。
Comparative Example 2 In FIG. 7, the area of one concave portion in Comparative Example 2 was increased to 230 mm 2, and the concave portions were arranged independently.

【0024】図8及び図9は本発明の前記第1実施例と
第2実施例および比較例と従来例の風洞実験結果を示
す。図8に示すように円滑な表面を持つ無対策のケーブ
ルおよび比較例1では風速9〜10m/s程度で発散的
な振動即ちレインバイブレーションが発生するが、本発
明の第1実施例及び第2実施例のケーブルではレインバ
イブレーションは全く発生しない。また、図7に示すよ
うに1個の凹部の面積を大きくし、単独配置した比較例
2の場合は、15m/s以上になると乱流効果が減少し
てレインバイブレーションが発生した。
FIGS. 8 and 9 show the results of wind tunnel experiments of the first and second embodiments of the present invention, the comparative example, and the conventional example. As shown in FIG. 8, in the non-measured cable having a smooth surface and in Comparative Example 1, divergent vibration, that is, rain vibration occurs at a wind speed of about 9 to 10 m / s, but the first embodiment and the second embodiment of the present invention Rain vibration does not occur at all in the example cable. Further, as shown in FIG. 7, in the case of Comparative Example 2 in which the area of one concave portion was increased and the concave portions were individually arranged, at 15 m / s or more, the turbulent flow effect was reduced and rain vibration occurred.

【0025】図9は本発明における凹形状と抗力係数C
D の関係を実験したものでケーブル径の1%の凹部の深
さ(高さ)の円形状の表面加工面積を変化させて、抗力
係数を測定した結果を示したものである。これによれ
ば、ケーブル表面への加工度が単位表面積に対応する凹
部の面積の和が30%以下では抗力係数CD の減少がみ
られ、20%以下では円形断面の抗力係数0.5とほぼ
同等となる。本発明の実施例1および2は円形断面とほ
ぼ同等の抗力係数となっている。また、円形断面はレイ
ノルズ数の影響を受け、その凹の度合いにより抗力係数
が大きく変化することが知られている。図10は平滑な
ケーブルと従来の制振ケーブルおよび本発明の制振ケー
ブルのレイノルズ数に対する抗力係数CD を比較して表
したものである。表面が円滑な無対策のケーブルNo.
1は低レイノルズ数域では、抗力係数CD は1.2であ
り、3〜4×105 で限界レイノルズ数に達し、それ以
降抗力係数はやや増加して設計風速50m/s領域に相
当するレイノルズ数5.5×105 において抗力係数C
D は0.52となった。
FIG. 9 shows the concave shape and drag coefficient C in the present invention.
This is an experiment result of the relationship of D , and shows the result of measuring the drag coefficient by changing the surface processing area of the circular shape having the depth (height) of the recess of 1% of the cable diameter. According to this, when the sum of the areas of the concave portions corresponding to the surface area of the cable is 30% or less, the drag coefficient C D is decreased, and when the sum is 20% or less, the drag coefficient of the circular cross section is 0.5. It is almost the same. In Examples 1 and 2 of the present invention, the drag coefficient is almost equal to that of the circular cross section. It is known that the circular cross section is affected by the Reynolds number, and the drag coefficient greatly changes depending on the degree of the depression. FIG. 10 shows a comparison of the drag coefficient C D with respect to the Reynolds number of the smooth cable, the conventional damping cable and the damping cable of the present invention. No countermeasure cable with smooth surface.
In the low Reynolds number range, 1 has a drag coefficient C D of 1.2, reaches the limit Reynolds number at 3 to 4 × 10 5 , and thereafter the drag coefficient slightly increases and corresponds to the design wind speed of 50 m / s. Drag coefficient C at Reynolds number of 5.5 × 10 5
D was 0.52.

【0026】前記の本発明の実施例1及び第2実施例の
ケーブルNo.2では限界レイノルズ数は1×105
度となり、その後抗力係数の増加は認められず、設計風
速50m/s領域に相当するレイノルズ数5.5×10
5 において抗力係数CD は0.63となった。従って、
橋梁の設計上風荷重を算出するためのケーブルの抗力係
数CD は、本発明の実施例では平滑な断面に比べてもわ
ずかに増加するのみである。
Cable Nos. 1 and 2 of the first and second embodiments of the present invention described above. At 2, the limit Reynolds number was about 1 × 10 5 , and after that no increase in the drag coefficient was observed, and the Reynolds number 5.5 × 10 5 equivalent to the design wind speed of 50 m / s region.
At 5 , the drag coefficient C D was 0.63. Therefore,
The drag coefficient C D of the cable for calculating the design wind load of the bridge only slightly increases in the embodiment of the present invention as compared with the smooth cross section.

【0027】一方、これまで制振対策を行った図11に
示すような断面の従来例の制振ケーブルNo.3では、
形状変化が大きいため4〜5×104 で限界レイノルズ
数に達し、風速50m/sでは抗力係数CD は1.2と
なり、抗力係数は本発明の制振ケーブルまたは平滑な表
面を持つ無対策ケーブルの約2倍以上となる。従って、
このような断面形状では制振ケーブル設計風荷重が過大
となる恐れがあり、レインバイブレーションの制振効果
は得られても合理的な橋梁の設計とならない。
On the other hand, the conventional damping cable No. 1 having a cross section as shown in FIG. In 3,
Since the shape change is large, the limit Reynolds number is reached at 4 to 5 × 10 4 , the drag coefficient C D is 1.2 at a wind speed of 50 m / s, and the drag coefficient is the damping cable of the present invention or no countermeasure with a smooth surface. It is about twice as much as the cable. Therefore,
With such a cross-sectional shape, there is a risk that the design wind load of the vibration damping cable will become excessive, and even if the vibration damping effect of the rain vibration can be obtained, it will not be a rational bridge design.

【0028】以上、ケーブルの防食被覆がポリエチレン
樹脂からなる場合についての実施例を示したが、ケーブ
ルの表面がフッ素樹脂で被覆された場合本発明を適用し
ても、同様の効果が得られる。
Although the embodiment in which the anticorrosive coating of the cable is made of polyethylene resin has been described above, the same effect can be obtained by applying the present invention when the surface of the cable is coated with fluororesin.

【0029】なお、本発明における凹の形状は円形、楕
円形の他6角形、4角、5角形等の多角形でもまた、凸
状でも同様の効果が得られる。
The concave shape in the present invention may be circular, elliptical, polygonal such as hexagonal, quadrilateral, pentagonal, or convex, and the same effect can be obtained.

【0030】[0030]

【発明の効果】本発明によれば、ケーブル1の表面の防
食被覆2に、複数の円形状あるいは多角形状の凹または
凸状の集合部をケーブルの単位表面積に対応する凹また
は凸状の加工面積の和が3%〜10%未満の範囲になる
よう多数形成し配置することにより、少い加工量により
防食ケーブル表面上に雨と風の相互作用によって生じる
水路の形成を阻止し、レインバイブレーション発生を抑
制することができ、かつケーブル表面形状の変化に伴う
抗力係数の増加を招くことがなく、平滑な円断面とほぼ
同程度の抗力係数に抑えることができしかも美観を損な
うことがない。これにより、従来の制振ケーブルと比べ
るとケーブルへの風荷重を大幅に低減でき、橋梁の合理
的な設計が可能となる。特に、長大斜張橋の場合、多数
のケーブルが密に配置されるため、桁の橋軸直角方向の
耐荷力はケーブルに生じる風荷重に支配されるため、ケ
ーブルの低抗力化は橋梁の設計上きわめて有効である。
According to the present invention, the anticorrosion coating 2 on the surface of the cable 1 is provided with a plurality of concave or convex aggregates of circular or polygonal shape, which are processed into a concave or convex shape corresponding to the unit surface area of the cable. By forming and arranging a large number of areas so that the sum of the areas is in the range of 3% to less than 10%, it is possible to prevent the formation of water channels caused by the interaction of rain and wind on the surface of the anticorrosion cable with a small amount of processing, and to prevent rain vibration. It is possible to suppress the occurrence of the stress, to prevent an increase in the drag coefficient due to the change of the cable surface shape, to suppress the drag coefficient to a level almost equal to that of a smooth circular cross section, and to not impair the appearance. As a result, the wind load on the cable can be significantly reduced compared to the conventional damping cable, and the rational design of the bridge becomes possible. In particular, in the case of a long cable-stayed bridge, many cables are densely arranged, and the wind-bearing capacity of the girder is governed by the wind load generated on the cable. Very effective above.

【0031】また、橋梁が長大化するとケーブル長も長
くなるため、減衰装置の取り付けによる効果は少なくな
り、空力的な対策が有効となる。本発明による空力的な
対策を用いれば減衰装置のように付属構造物を付加する
必要もなく、美観を損なうこともない。
Further, as the length of the bridge becomes longer, the cable length also becomes longer, so that the effect of mounting the damping device is reduced and the aerodynamic countermeasure becomes effective. If the aerodynamic measures according to the present invention are used, it is not necessary to add an additional structure like a damping device and the appearance is not spoiled.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は本発明の第1実施例でケーブ
ル表面に楕円形の凹部を4ケ集合配置した制振ケーブル
の説明図。
1A and 1B are explanatory views of a vibration damping cable according to a first embodiment of the present invention, in which four elliptical recesses are collectively arranged on a cable surface.

【図2】本発明の第1実施例の凹部の形状詳細を示す
図。
FIG. 2 is a diagram showing details of the shape of a recess according to the first embodiment of the present invention.

【図3】(a),(b)は本発明の第2実施例でケーブ
ル表面に楕円形の凹部を5ケ集合配置した制振ケーブル
の説明図。
3 (a) and 3 (b) are explanatory views of a vibration damping cable according to the second embodiment of the present invention, in which five elliptical concave portions are arranged on the cable surface.

【図4】本発明の第2実施例の凹部の形状詳細を示す
図。
FIG. 4 is a diagram showing details of the shape of a recess according to a second embodiment of the present invention.

【図5】(a),(b)は凹部の面積のケーブル単位表
面積に対応する比を3%未満にした比較例1の説明図。
5 (a) and 5 (b) are explanatory views of Comparative Example 1 in which the ratio of the area of the recess to the cable unit surface area is less than 3%.

【図6】図5の凹部の形状詳細を示す図。FIG. 6 is a diagram showing the detailed shape of a recess in FIG. 5;

【図7】従来制振ケーブルの表面凹の形状詳細を示す
図。
FIG. 7 is a view showing details of a shape of a surface recess of a conventional vibration damping cable.

【図8】レインバイブレーション風洞実験結果を示す
図。
FIG. 8 is a diagram showing a result of a rain vibration wind tunnel experiment.

【図9】ケーブル表面加工面積と抗力係数の関係を示す
グラフ。
FIG. 9 is a graph showing the relationship between the cable surface processing area and the drag coefficient.

【図10】本発明と従来例の制振ケーブルにおけるレイ
ノルズ数と抗力係数の関係を示すグラフ。
FIG. 10 is a graph showing the relationship between Reynolds number and drag coefficient in the vibration damping cables of the present invention and the conventional example.

【図11】従来例の制振ケーブル断面を示す図で(a)
は斜視図、(b)は一部拡大図、(c)は他の例の斜視
図、(d)は一部拡大図。
FIG. 11 is a view showing a cross section of a vibration damping cable of a conventional example (a).
Is a perspective view, (b) is a partially enlarged view, (c) is a perspective view of another example, and (d) is a partially enlarged view.

【図12】ワイヤロープ張り渡しによる制振法の従来技
術を示す図。
FIG. 12 is a diagram showing a conventional technique of a vibration damping method by stretching a wire rope.

【図13】減衰装置取り付けによる制振法の従来技術を
示す図。
FIG. 13 is a diagram showing a conventional technique of a vibration damping method by mounting a damping device.

【符号の説明】[Explanation of symbols]

1…ケーブル素線 2…防食被覆 3…ケーブル 4…凹部集合部 4a…凹部 5…凹状集合部 5a…凹部 6…溝 7…突起 8…ワイヤーロ
ープ 9…桁 10…減衰装置
DESCRIPTION OF SYMBOLS 1 ... Cable strand 2 ... Anticorrosion coating 3 ... Cable 4 ... Recessed assembly part 4a ... Recessed part 5 ... Recessed assembly part 5a ... Recessed part 6 ... Groove 7 ... Projection 8 ... Wire rope 9 ... Girder 10 ... Damping device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面の防食被覆に凹または凸状の加工が
施されている空中懸架ケーブルにおいて、防食被覆表面
に複数の円形または多角形状の凹または凸の集合部を、
ケーブルの単位表面積に対応する凹または凸の面積の和
が3%〜10%未満の範囲になるように多数形成したこ
とを特徴とする制振ケーブル。
1. An air-suspended cable in which a surface of an anticorrosion coating is processed to have a concave or convex shape, and a plurality of circular or polygonal concave or convex aggregates are formed on the surface of the anticorrosion coating.
A vibration-damping cable characterized in that a large number of concave or convex areas corresponding to a unit surface area of the cable are formed in a range of 3% to less than 10%.
JP6206479A 1994-08-31 1994-08-31 Damping cable Expired - Lifetime JP2898205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6206479A JP2898205B2 (en) 1994-08-31 1994-08-31 Damping cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6206479A JP2898205B2 (en) 1994-08-31 1994-08-31 Damping cable

Publications (2)

Publication Number Publication Date
JPH0868011A true JPH0868011A (en) 1996-03-12
JP2898205B2 JP2898205B2 (en) 1999-05-31

Family

ID=16524061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6206479A Expired - Lifetime JP2898205B2 (en) 1994-08-31 1994-08-31 Damping cable

Country Status (1)

Country Link
JP (1) JP2898205B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486785B1 (en) * 2002-10-28 2005-05-03 한국전력공사 Aircraft warning sphere for overhead line
WO2020144489A1 (en) * 2019-01-07 2020-07-16 Soletanche Freyssinet A sheath for a structural cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486785B1 (en) * 2002-10-28 2005-05-03 한국전력공사 Aircraft warning sphere for overhead line
WO2020144489A1 (en) * 2019-01-07 2020-07-16 Soletanche Freyssinet A sheath for a structural cable
KR20210110871A (en) * 2019-01-07 2021-09-09 소레탄체 프레씨네트 sheath for rescue cables

Also Published As

Publication number Publication date
JP2898205B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
CN109869438B (en) Sling vibration damping method
TWI620851B (en) A construction and a tension element comprising a cable and a plurality of strakes, and a method for reducing rain and wind induced vibrations in a cable
CN112227180B (en) Stay cable combined vibration reduction device and method
JP3476198B2 (en) Suspension method of bridge girder in suspension bridge
TW201422872A (en) A construction and a tension element comprising a cable and one or more strakes
JPH0849215A (en) Cable structure of suspension bridge
JP2898205B2 (en) Damping cable
KR20100076140A (en) Magnetorheological fluid cable and system thereof
JP2923186B2 (en) Damping cable
CN111963618B (en) Inhaul cable multi-order modal vibration control method based on double dampers
JP2922079B2 (en) Damping cable
JP6723805B2 (en) Cable damping material and cable damping method
JP2001193013A (en) Edge box girder bridge
CN110649551A (en) Inertia amplification type transmission line vibration damping cable
JPS6260512B2 (en)
JPH11350420A (en) Wind-resistant vibration damping method for cable and its device
JPH04202870A (en) Corrosionproof cable having suppressed generation of rain vibration
JPH01146006A (en) Obliquely stretched bridge cable aerodynamic unstable vibration overall vibration damper
CN220503659U (en) Bridge cable structure wire rope net damping shock absorber
JP2000328811A (en) Vibrational energy absorber using wire bundle
JP2936087B2 (en) Bridge cables
Kim et al. An Experimental Study on the Galloping of Inclined Cables
JPS5842318B2 (en) twist cable
JP2005314921A (en) Suspended bridge
JPH0718627A (en) Damping type diagonal built bridge cable

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990202

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term