JPH0867695A - Glycate poly-l-lysine obtained from polylysine and methyl glucose - Google Patents

Glycate poly-l-lysine obtained from polylysine and methyl glucose

Info

Publication number
JPH0867695A
JPH0867695A JP22736094A JP22736094A JPH0867695A JP H0867695 A JPH0867695 A JP H0867695A JP 22736094 A JP22736094 A JP 22736094A JP 22736094 A JP22736094 A JP 22736094A JP H0867695 A JPH0867695 A JP H0867695A
Authority
JP
Japan
Prior art keywords
poly
lysine
polylysine
glycate
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22736094A
Other languages
Japanese (ja)
Inventor
Naoki Kashiwamura
直樹 柏村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22736094A priority Critical patent/JPH0867695A/en
Publication of JPH0867695A publication Critical patent/JPH0867695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PURPOSE: To obtain a new glycate poly-L-lysine having active oxygen forming ability and cleaving action on nucleic acid, by reacting ε-poly-L-lysine or α-poly- L-lysine with 3-O-methyl-D-glucose under physiological conditions. CONSTITUTION: An ε-poly-L-lysine of formula I ((n) is degree of polymerization) or α-poly-L-lysine of formula II is reacted with 3-O-methyl-D-glucose of formula III under physiological conditions to give a new glycate poly-L-lysine having active oxygen forming ability and cleaving action on nucleic acid. The glycate poly-L-lysine is obtained by incubating ε-poly-L-lysine or α-poly-L-lysine produced by Streptomyces albulus subsp. lysinopolymerus No.436-D strain (FERM P-3,834) with 3-O-methyl-D-glucose in a phosphoric acid buffer solution at 37 deg.C for 7 days.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術の分野】本発明はε−ポリ−L−リジン或いはα
−ポリ−L−リジンと3−O−メチル−D−グルコース
とを、生理的条件下で反応させることによって得られる
グリケートポリ−L−リジンに関する。
TECHNICAL FIELD The present invention relates to ε-poly-L-lysine or α
-Poly-L-lysine and glycan poly-L-lysine obtained by reacting 3-O-methyl-D-glucose under physiological conditions.

【0002】[0002]

【従来の技術】タンパク質のグリケーション反応は食品
成分のアミノカルボニル反応の一つとして、又分子レベ
ルのタンパク質の非酵素的反応の代表的なものとして知
られている。グリケーション反応は、還元糖が生理的条
件下でタンパク質のアミノ基と反応しグルコシルアミン
を経て、アマドリ転位物(1−置換アミノ−2−ケトー
ス)を生成し、さらにこれが酸化分解、重合などの複雑
な反応を経て、色素、蛍光性物質、二量体、三量体、低
分子ペプチド等を生成する。
2. Description of the Related Art The glycation reaction of proteins is known as one of the aminocarbonyl reactions of food ingredients and as a typical non-enzymatic reaction of proteins at the molecular level. In the glycation reaction, a reducing sugar reacts with an amino group of a protein under physiological conditions to generate an Amadori rearrangement product (1-substituted amino-2-ketose) via glucosylamine, which further undergoes oxidative decomposition, polymerization, etc. Dyes, fluorescent substances, dimers, trimers, low-molecular peptides and the like are produced through complicated reactions.

【0003】[0003]

【発明が解決しようとする課題】ポリリジンはL−リジ
ンが直鎖状につながったポリペプタイドである。ポリリ
ジンはポリアミンの一種と考えられ、食品保存料や生理
活性アミンとして、反応や基礎的研究が行われている。
本発明者はポリリジンをタンパク質のモデルとして取り
上げ、ポリリジンと各種還元糖を生理的条件下で反応さ
せ、その生成物を調べる過程で新規な生成物として本物
質を見出だした。以上の記述から明らかなように、本発
明の目的は、新規な高分子化合物であるグリケートポリ
−L−リジンを提供することである。
Polylysine is a polypeptide in which L-lysine is linearly linked. Polylysine is considered as a kind of polyamine, and its reaction and basic research have been conducted as a food preservative and a bioactive amine.
The present inventor has taken polylysine as a model of protein, and discovered this substance as a novel product in the process of reacting polylysine and various reducing sugars under physiological conditions and examining the product. As is clear from the above description, an object of the present invention is to provide a novel polymer compound, glycate poly-L-lysine.

【0004】[0004]

【課題を解決するための手段】本発明は、下記(1)の
構成を有する。 (1) 一般式(I)
The present invention has the following constitution (1). (1) General formula (I)

【化4】 又は、一般式(II)[Chemical 4] Or general formula (II)

【化5】 で表される重合体と、一般式(III)[Chemical 5] A polymer represented by the general formula (III)

【化6】 で表される単量体とを、生理的条件下で反応させてなる
グリケートポリ−L−リジン。
[Chemical 6] Glycate poly-L-lysine obtained by reacting the monomer represented by

【0005】本発明の構成と効果につき以下に詳述す
る。本発明に係るポリリジンは1分子中に2つのアミノ
基を有するアミノ酸であるリジンが縮合した構造を有
し、一般にリジンのα−位のアミノ基とカルボキシル基
とが縮合したα−ポリリジンとε−位のアミノ基とカル
ボキシル基とが縮合したε−ポリリジンの2種が存在す
る。
The structure and effect of the present invention will be described in detail below. The polylysine according to the present invention has a structure in which lysine, which is an amino acid having two amino groups in one molecule, is condensed, and in general, α-polylysine and ε-in which an amino group at the α-position of lysine is condensed with a carboxyl group. There are two types of ε-polylysine in which the amino group at the position and the carboxyl group are condensed.

【0006】ε−ポリリジンは必須アミノ酸であるL−
リジンのε−位のアミノ基が縮合したポリペプタイド
で、厳密にはε−ポリ−L−リジンと呼ばれる。本発明
に係る反応原料として用いるε−ポリリジンはポリリジ
ン生産菌であるストレプトマイセス・アルブラス(St
oreptomyces arbulus)又はストレ
プトマイセス・ヌールセイ(Storeptomyce
s noursei)が生産する物質であり、L−リジ
ンの25〜30の残基がε−結合したポリリジンであ
る。
Ε-Polylysine is an essential amino acid L-
It is a polypeptide in which the amino group at the ε-position of lysine is condensed, and is strictly called ε-poly-L-lysine. The ε-polylysine used as the reaction raw material according to the present invention is Streptomyces albulus (St
oreptomyces arbulus or Streptomyces noorusii
s noursei) is a substance produced, and is a polylysine in which 25 to 30 residues of L-lysine are ε-bonded.

【0007】このε−ポリリジンは例えば特公昭59−
20359号公報に記載されているように、ストレプト
マイセス・アルブラス・サブスピーシーズ・リシノポリ
メラス(Storeptomyces arbulus
subspecies lysinopolymer
us)No.346−D株(微工研菌寄第3834号)
を培地に培養し、得られる培養物から分離、精製する方
法によって得ることが出来る。
This ε-polylysine is, for example, Japanese Patent Publication No. 59-
As described in Japanese Patent No. 20359, Streptomyces arbus subspecies lisinopolymeris (Streptomyces arbulus).
subspecies lysinopolymer
us) No. Strain 346-D (Ministry of Microbiology Research No. 3834)
Can be obtained by a method of culturing in a medium and separating and purifying from the obtained culture.

【0008】α−ポリリジンは必須アミノ酸であるL−
リジンのα−位のアミノ基が縮合したポリペプタイド
で、厳密にはα−ポリ−L−リジンと呼ばれる。本発明
に用いるα−ポリリジンは通常の化学的合成法で容易に
得られるが、市販品(メルク社製品)としても容易に入
手することが出来る。
Α-Polylysine is an essential amino acid L-
It is a polypeptide in which the amino group at the α-position of lysine is condensed, and is strictly called α-poly-L-lysine. The α-polylysine used in the present invention can be easily obtained by a usual chemical synthesis method, but can also be easily obtained as a commercial product (product of Merck & Co., Inc.).

【0009】本発明に用いる3−O−メチル−D−グル
コースは通常の化学的合成で容易に入手することが出来
るが、Aldrich Chemical Co.から
発売されている試薬を用いることも出来る。
The 3-O-methyl-D-glucose used in the present invention can be easily obtained by a conventional chemical synthesis, but it can be obtained from Aldrich Chemical Co. It is also possible to use the reagents sold by.

【0010】ポリリジンのグリケーションの反応は次の
ように行う。(ε−,α−)ポリリジン10mgと0.
1Mの3−O−メチル−D−グルコースを0.1M、p
H7.2のリン酸緩衝液1.0mlに溶かした。防腐剤
として0.1%のゲンタマイシンを加え、脱気し、窒素
置換した後、37℃で7日間インキュベートする。な
お、緩衝液の調製、ゲル濾過などに用いた水はFent
on反応によって水酸ラジカルが発生するのを防ぐため
に、すべて超純水を脱気し、窒素置換したものを用いる
のが望ましい。
The glycation reaction of polylysine is carried out as follows. (Ε-, α-) polylysine 10 mg and 0.
1M 3-O-methyl-D-glucose at 0.1M, p
It was dissolved in 1.0 ml of H7.2 phosphate buffer. After adding 0.1% gentamicin as a preservative, degassing and nitrogen substitution, incubate at 37 ° C. for 7 days. The water used for preparing the buffer solution and gel filtration was Fent.
In order to prevent generation of hydroxyl radicals due to the on reaction, it is desirable to use ultrapure water that has been degassed and replaced with nitrogen.

【0011】上記方法によって得られた3−O−メチル
グリケートポリリジンは光学活性物質で特有の旋光度を
持つ。しかし特有の融点は持たない。
The 3-O-methylglycate polylysine obtained by the above method is an optically active substance and has a specific optical rotation. However, it has no unique melting point.

【0012】3−O−メチルグリケートポリリジンは活
性酸素を生成させる能力を持つ。チトクロークCは1電
子を受けとると、550nmに強い吸収を持つ還元型に
変わる。この性質を利用して、グリケート化ポリリジン
の酸素ラジカル生成能を調べることが出来るが、3−O
−メチルグリケートポリリジンとチトクロークCとを混
合すると混合液の550nmにおける吸光度は経時的に
増加する。又、本物質は核酸切断作用を有する。
3-O-methyl glycate polylysine has the ability to generate active oxygen. When cytochrome C receives one electron, it changes to a reduced form with strong absorption at 550 nm. This property can be used to investigate the ability of glycated polylysine to generate oxygen radicals.
-Mixing methyl glycate polylysine and cytocloque C increases the absorbance of the mixed solution at 550 nm over time. In addition, this substance has a nucleic acid cleaving action.

【0013】以下、実施例により本発明を更に詳細に説
明するが本発明はこれ等の実施例に限定されるものでは
ない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0014】実施例1 TBA(Thiobarbituric Acid)は
3−O−メチル−D−グリケートε−ポリリジンと反応
し、443nmに吸収を持つ黄色に呈色する物質を生成
することから3−O−メチル−D−グリケートε−ポリ
リジンの定量法として用いられる。
Example 1 TBA (Thiobarbituric Acid) reacts with 3-O-methyl-D-glycate ε-polylysine to form a yellow-colored substance having absorption at 443 nm. Used as a method for quantifying D-glycate ε-polylysine.

【0015】ε−ポリリジン100mgと0.1Mの3
−O−メチル−D−グルコースを0.1M、pH7.2
のリン酸緩衝液10.0mlに溶かした。防腐剤として
0.1%のゲンタマイシンを加え、脱気し、窒素置換し
た後、37℃で7日間インキュベートした。コントロー
ルとして、ε−ポリリジンのみで3−O−メチル−D−
グルコースを加えないものを同様の条件でインキュベー
トした。なお、緩衝液の調製、ゲル濾過などに用いた水
はFenton反応によって水酸ラジカルが発生するの
を防ぐために、すべて超純粋を脱気し、窒素置換したも
のを用いた。インキュベーション中の3−O−メチル−
D−グリケートε−ポリリジンの生成状況をTBA法で
測定したところ図1のごとき結果が得られた。図1から
分かるように、4日以降は吸光度の増加があまり認めら
れないことから、ε−ポリリジンのグリケーションは4
日目でピークに達する。又、コントロールとしてε−ポ
リリジンのみで3−O−メチル−D−グルコースを加え
ない条件でインキュベートしたものについては、TBA
法によって全く吸収が認められなかった。
100 mg of ε-polylysine and 0.1 M of 3
-O-methyl-D-glucose 0.1M, pH 7.2
It was dissolved in 10.0 ml of the phosphate buffer solution. 0.1% gentamicin was added as a preservative, the mixture was degassed, replaced with nitrogen, and then incubated at 37 ° C for 7 days. As a control, 3-O-methyl-D-only with ε-polylysine
Those without glucose were incubated under similar conditions. The water used for preparing the buffer solution, gel filtration, etc. was degassed from ultrapure water and replaced with nitrogen in order to prevent generation of hydroxyl radicals by the Fenton reaction. 3-O-methyl-during incubation
When the production state of D-glycate ε-polylysine was measured by the TBA method, the results shown in FIG. 1 were obtained. As can be seen from FIG. 1, after 4 days, an increase in absorbance was not observed so much that glycation of ε-polylysine was 4
Peak on day one. As a control, TBA was prepared by incubating only ε-polylysine without adding 3-O-methyl-D-glucose.
No absorption was observed by law.

【0016】この反応によって、3−O−メチル−D−
グリケートε−ポリリジンが120mg得られた。
By this reaction, 3-O-methyl-D-
120 mg of glycate ε-polylysine was obtained.

【0017】この反応によって得られた3−O−メチル
−D−グリケートε−ポリリジンを日本分光DIP36
0(デジタルポーラリーメーター)にて測定した旋光度
The 3-O-methyl-D-glycate ε-polylysine obtained by this reaction was analyzed by JASCO DIP36.
The optical rotation measured with 0 (digital polarimeter)

【化7】 であった。[Chemical 7] Met.

【0018】セイコー電子SSC−5020(示差走査
熱量計)で測定した結果、図2に示すように融点は無か
った。
As a result of measurement by Seiko Denshi SSC-5020 (differential scanning calorimeter), there was no melting point as shown in FIG.

【0019】赤外分析については、日本分光FT/IR
−300(KBr法)にて測定した結果、図3の如きチ
ャートが得られた。
For infrared analysis, JASCO FT / IR
As a result of measurement by −300 (KBr method), a chart as shown in FIG. 3 was obtained.

【0020】実施例2 チトクロークCは1電子を受けとると、550nmに強
い吸収を持つ還元型に変わる。活性酸素によるチトクロ
ームCの還元反応速度は早いとはいえないが、測定が容
易なこと、連鎖反応がないことから活性酸素の検出法と
しては広く用いられている。この性質を利用して、グリ
ケート化ポリリジン酸素ラジカル生成能を調べた。 (サンプルの調製)実施例1で得られた反応溶液0.1
mlをゲル濾過し、目的物であるグリケート化ポリリジ
ンと未反応の糖等の低分子化合物を分離した。すなわ
ち、反応液0.1mlを分取し、PD−10脱塩用Se
phadex G−25Mプレパックドカラムを用いて
ゲル濾過した。このゲル濾過において、溶液は0.5m
lづつ分取したが、溶出液の初めの2.0mlにはグリ
ケート化ポリリジンは認められなかったので、これは捨
て、続く1.5mlを回収して酸素ラジカル生成能測定
に用いた。 (チトクロームCの還元反応速度の測定)前記の方法で
調製したサンプル1.5mlをチトクロームCの還元反
応速度測定に用いた。サンプル溶液1.5mlにリン酸
緩衝液で調製したチトクロームC溶液1.0mlを加
え、550nmの吸光度増加を経時的に測定した。この
結果は図4に示した。ラジカル生成能を示す還元力は、
単位時間あたりの吸光度の増加率(△550nm)で表
した。グリケート化ポリリジンが酸素ラジカルを生成し
ていることが示された。
Example 2 Cytocloak C changes to a reduced form having strong absorption at 550 nm when receiving one electron. Although the rate of reduction reaction of cytochrome C by active oxygen is not fast, it is widely used as a method for detecting active oxygen because it is easy to measure and there is no chain reaction. Utilizing this property, the ability to generate glycated polylysine oxygen radicals was investigated. (Preparation of sample) 0.1 reaction solution obtained in Example 1
The ml was subjected to gel filtration to separate the target glycated polylysine and unreacted low molecular weight compounds such as sugars. That is, 0.1 ml of the reaction solution was collected, and PD-10 for desalting Se was used.
Gel filtration was performed using a phadex G-25M prepacked column. In this gel filtration, the solution is 0.5m
Glycated polylysine was not detected in the first 2.0 ml of the eluate, but it was discarded and the subsequent 1.5 ml was collected and used for the measurement of oxygen radical generation ability. (Measurement of reduction reaction rate of cytochrome C) 1.5 ml of the sample prepared by the above method was used for measurement of reduction reaction rate of cytochrome C. To 1.5 ml of the sample solution, 1.0 ml of a cytochrome C solution prepared with a phosphate buffer was added, and the increase in absorbance at 550 nm was measured over time. The result is shown in FIG. The reducing power, which shows the ability to generate radicals, is
It was expressed by the rate of increase in absorbance (Δ550 nm) per unit time. It was shown that the glycated polylysine produced oxygen radicals.

【0021】実施例3 α−ポリリジン100mgと0.1Mの3−O−メチル
−D−グルコースを0.1M、pH7.2のリン酸緩衝
液10.0mlに溶かした。防腐剤として0.1%のゲ
ンタマイシンを加え、脱気し、窒素置換した後、37℃
で7日間インキュベートした。コントロールとして、α
−ポリリジンのみで3−O−メチル−D−グルコースを
加えないものを同様の条件でインキュベートした。な
お、緩衝液の調製、ゲル濾過などに用いた水はFent
on反応によって水酸ラジカルが発生するのを防ぐため
に、すべて超純水を脱気し、窒素置換したものを用い
た。インキュベーション中の3−O−メチル−D−グリ
ケートα−ポリリジンの生成状況をTBA法で測定した
ところ図5のごとき結果が得られた。図5から分かるよ
うに、4日以降は吸光度の増加があまり認められないこ
とから、ε−ポリリジンのグリケーションは4日目でピ
ークに達する。又、コントロールとしてε−ポリリジン
のみで3−O−メチル−D−グルコースを加えない条件
でインキュベートしたものについては、TBA法によっ
て全く吸収が認められたかった。
Example 3 100 mg of α-polylysine and 0.1 M of 3-O-methyl-D-glucose were dissolved in 10.0 ml of 0.1 M phosphate buffer of pH 7.2. Add 0.1% gentamicin as a preservative, degas, replace with nitrogen, then 37 ℃
And incubated for 7 days. As a control
-Polylysine alone without the addition of 3-O-methyl-D-glucose was incubated under similar conditions. The water used for preparing the buffer solution and gel filtration was Fent.
In order to prevent hydroxyl radicals from being generated by the on reaction, ultrapure water was deaerated and replaced with nitrogen. When the production state of 3-O-methyl-D-glycate α-polylysine during the incubation was measured by the TBA method, the results shown in FIG. 5 were obtained. As can be seen from FIG. 5, the increase in absorbance was not observed much after 4 days, so that the glycation of ε-polylysine reaches a peak on the 4th day. As a control, it was not desired that absorption was observed by the TBA method in the case of incubation with ε-polylysine alone without the addition of 3-O-methyl-D-glucose.

【0022】この反応によって、3−O−メチル−D−
グリケートα−ポリリジンが118mg得られた。
By this reaction, 3-O-methyl-D-
118 mg of glycated α-polylysine was obtained.

【0023】この反応によって得られた3−O−メチル
−D−グリケートα−ポリリジンを日本分光DIP36
0(デジタルポーラリーメーター)にて測定した旋光度
The 3-O-methyl-D-glycate α-polylysine obtained by this reaction was analyzed by JASCO DIP36.
The optical rotation measured with 0 (digital polarimeter)

【化8】 であった。Embedded image Met.

【0024】セイコー電子SSC−5020(示差走査
熱量計)で測定した結果、図6に示すように融点は認め
られなかった。
As a result of measurement by Seiko Denshi SSC-5020 (differential scanning calorimeter), no melting point was recognized as shown in FIG.

【0025】赤外分析については、日本分光FT/IR
−300(KBr法)にて測定した結果図7の如きチャ
ートが得られた。
For infrared analysis, JASCO FT / IR
As a result of measurement by −300 (KBr method), a chart as shown in FIG. 7 was obtained.

【0026】実施例4 3−O−メチル−D−グリケートε−ポリリジンをリン
酸緩衝液(pH7.2)中、二重鎖のφ×175DNA
200ng、糖1nM、Cu2+10μMを37℃で3時
間処理し、1本鎖の1箇所切断(FormII)及び直鎖
状DNA(FormII)の生成を調べたところ、8.4
%;84.3であった。
Example 4 3-O-methyl-D-glycate ε-polylysine was added to a double-stranded φ × 175 DNA in a phosphate buffer (pH 7.2).
When 200 ng, sugar 1 nM, and Cu 2+ 10 μM were treated at 37 ° C. for 3 hours, single-strand single cleavage (FormII) and generation of linear DNA (FormII) were examined.
%; 84.3.

【図面の簡単な説明】[Brief description of drawings]

【図1】3−O−メチルグルコースとε−ポリリジンの
グリケーション反応を示す。
FIG. 1 shows a glycation reaction of 3-O-methyl glucose and ε-polylysine.

【図2】3−O−メチルグリケート−ε−ポリリジンの
融点を示す。
FIG. 2 shows the melting point of 3-O-methylglycate-ε-polylysine.

【図3】3−O−メチルグリケート−ε−ポリリジンの
赤外吸収チャートを示す。
FIG. 3 shows an infrared absorption chart of 3-O-methylglycate-ε-polylysine.

【図4】3−O−メチルグリケート−ε−ポリリジンの
時間経過による活性酸素生成能の変化を示す。
FIG. 4 shows changes in active oxygen-producing ability of 3-O-methylglycate-ε-polylysine over time.

【図5】3−O−メチルグルコースとα−ポリリジンの
グリケーション反応を示す。
FIG. 5 shows a glycation reaction of 3-O-methyl glucose and α-polylysine.

【図6】3−O−メチルグリケート−α−ポリリジンの
融点を示す。
FIG. 6 shows the melting point of 3-O-methylglycate-α-polylysine.

【図7】3−O−メチルグリケート−α−ポリリジンの
赤外吸収チャートを示す。
FIG. 7 shows an infrared absorption chart of 3-O-methylglycate-α-polylysine.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I) 【化1】 又は、一般式(II) 【化2】 で表される重合体と、一般式(III) 【化3】 で表される単量体とを、生理的条件下で反応させてなる
グリケートポリ−L−リジン。
1. A compound of the general formula (I) Alternatively, the compound represented by the general formula (II): And a polymer represented by the general formula (III): Glycate poly-L-lysine obtained by reacting the monomer represented by
JP22736094A 1994-08-29 1994-08-29 Glycate poly-l-lysine obtained from polylysine and methyl glucose Pending JPH0867695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22736094A JPH0867695A (en) 1994-08-29 1994-08-29 Glycate poly-l-lysine obtained from polylysine and methyl glucose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22736094A JPH0867695A (en) 1994-08-29 1994-08-29 Glycate poly-l-lysine obtained from polylysine and methyl glucose

Publications (1)

Publication Number Publication Date
JPH0867695A true JPH0867695A (en) 1996-03-12

Family

ID=16859584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22736094A Pending JPH0867695A (en) 1994-08-29 1994-08-29 Glycate poly-l-lysine obtained from polylysine and methyl glucose

Country Status (1)

Country Link
JP (1) JPH0867695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403820B1 (en) 1999-06-09 2002-06-11 Asahi Denka Kogyo Kabushiki Kaisha Process for preparing low-acid-value phosphoric esters
CN109021242A (en) * 2018-06-20 2018-12-18 西安交通大学 A kind of PCE polymer and preparation method thereof and the method for preparing antibacterial nano fiber material using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403820B1 (en) 1999-06-09 2002-06-11 Asahi Denka Kogyo Kabushiki Kaisha Process for preparing low-acid-value phosphoric esters
CN109021242A (en) * 2018-06-20 2018-12-18 西安交通大学 A kind of PCE polymer and preparation method thereof and the method for preparing antibacterial nano fiber material using it

Similar Documents

Publication Publication Date Title
US9675681B2 (en) Shortened purification process for the production of capsular Streptococcus pneumoniae polysaccharides
Hebeler et al. Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae
Wientjes et al. On the role of the high molecular weight penicillin-binding proteins in the cell cycle of Escherichia coli
CN1661044A (en) DDS compound and method for measurement thereof
FR2540516A1 (en) PROCESS FOR THE PRODUCTION OF PROTEINS CORRESPONDING TO DIPHTERIC TOXIN
Bayer et al. Preparation of deglycosylated egg white avidin
JPH0251594B2 (en)
JPH0867695A (en) Glycate poly-l-lysine obtained from polylysine and methyl glucose
JP2904687B2 (en) New oligosaccharide
JP2819312B2 (en) Method for producing N-acetyllactosamine
JPH0889268A (en) Glycate poly-l-lysine derived from polylysine and methylglucose
JPS6236040B2 (en)
US4632917A (en) Pseudooligosaccharides with an α-glucosidase-inhibiting action, their use and pharmaceutical products
JPH02252701A (en) Novel cyclic inulooligosaccharide and its production
JPH0759587A (en) Production of saccharide and complex saccharide
JPH0632742A (en) Production of calcium ion solubilization agent
CN118308329B (en) Beta-N-acetaminophen hexosaminidase D297K and application thereof
JP7368804B2 (en) L-β-lysine homopolymer and its production method, and antibacterial agent containing the polymer
JPH11155564A (en) Production of beta-dfa and enzyme for use
FI73738C (en) FOERFARANDE FOER FRAMSTAELLNING AV ETT STAFYLOCIDINANTIBIOTIKUM, VILKET AER BUNDET TILL CELLMUREINET OCH HAR EN SELEKTIV ANTIMIKROBIELL AKTIVITET MOT STAFYLOKOCKER.
EP0704202A1 (en) Anti-cariogenic agent
JP2003226697A (en) Sugar compound
JPH078276A (en) Synthetase for new cyclic isomaltooligo sugar and productions of the synthetase and the sugar
JPS6113719B2 (en)
JPH08225588A (en) 2-phenoxyethyl-beta-d-galactopyranoside and its production