JPH0867502A - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JPH0867502A
JPH0867502A JP6205246A JP20524694A JPH0867502A JP H0867502 A JPH0867502 A JP H0867502A JP 6205246 A JP6205246 A JP 6205246A JP 20524694 A JP20524694 A JP 20524694A JP H0867502 A JPH0867502 A JP H0867502A
Authority
JP
Japan
Prior art keywords
catalyst
gas
temperature
fuel reformer
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6205246A
Other languages
Japanese (ja)
Other versions
JP3432298B2 (en
Inventor
Hidenobu Misawa
英延 三澤
Ichiro Matsuura
市朗 松浦
Yoshimi Ezaki
義美 江崎
Masatoshi Hattori
雅俊 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Chubu Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Chubu Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP20524694A priority Critical patent/JP3432298B2/en
Publication of JPH0867502A publication Critical patent/JPH0867502A/en
Application granted granted Critical
Publication of JP3432298B2 publication Critical patent/JP3432298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE: To provide a fuel reformer having small volume of a catalytic layer and small catalytic amount, capable of attaining cost down and carrying out reforming reaction in high efficiency and miniaturizing. CONSTITUTION: A gas which flows into a reacting tube 1 is discharged from the outlet of the first catalyst part 12 before lowering to a carbon deposition temperature Tc in the first catalyst part 12 and the gas is heated by a heating furnace 2 in a heat transfer promoting part 5 on the downstream side of the first catalyst part to raise the temperature of the gas. Then, the gas is fed into the second catalyst part 13 and reforming reaction of the gas by the second catalyst part 13 is promoted and the gas is discharged before the temperature of the gas is lowered to a temperature lower than a carbon deposition temperature Tc also in the second catalyst part 13. Since the gas alternately flows into catalytic parts 12, 13, 14, 15 and 16 and heat transfer promoting parts 5, 6, 7 and 8, reaction temperature is always retained to a temperature exceeding the carbon deposition temperature Tc. As a result, deposition of carbon is suppressed and operation having low S/C value is made possible and efficiency of a fuel cell system can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料改質装置に関する
もので、詳細には、燃料電池システム、水素発生装置等
の燃料改質装置に配設される触媒層部の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel reformer, and more particularly to a structure of a catalyst layer portion provided in a fuel reformer such as a fuel cell system or a hydrogen generator.

【0002】[0002]

【従来の技術】火力発電や原子力発電等は化石燃料の化
学エネルギーを熱エネルギーや核エネルギーに変えてか
ら電気エネルギーを得るのに対し、燃料電池は化学エネ
ルギーから直接電気エネルギーを得る。この燃料電池
は、反応物が外部から連続的に供給される化学電池であ
り、燃料電池本体、燃料改質装置、電力変換装置が主な
構成要素であって、これらの構成要素に制御装置、排熱
回収装置等が加わり燃料電池システムを構成する。
2. Description of the Related Art In thermal power generation, nuclear power generation, etc., electric energy is obtained after converting chemical energy of fossil fuel into heat energy or nuclear energy, whereas a fuel cell directly obtains electric energy from chemical energy. This fuel cell is a chemical cell in which reactants are continuously supplied from the outside, and a fuel cell main body, a fuel reformer, and a power converter are main constituent elements, and a control device is added to these constituent elements. A fuel cell system is constructed by adding an exhaust heat recovery device.

【0003】このうち燃料改質装置は、メタン等の燃料
ガスと水蒸気とを主成分とする原料ガスを水素リッチの
改質ガスへ改質する装置であり、原料ガスを水素と炭酸
ガスと一酸化炭素にする改質器と、改質ガス中の一酸化
炭素を許容濃度以下にするCO変成器とから構成され
る。改質器の触媒としては、ペレット状触媒、ハニカム
状触媒等が知られている。
Of these, the fuel reforming apparatus is an apparatus for reforming a raw material gas containing a fuel gas such as methane and steam as main components into a hydrogen-rich reformed gas. The raw material gas is mixed with hydrogen and carbon dioxide gas. It is composed of a reformer for converting carbon oxides and a CO shifter for converting carbon monoxide in the reformed gas to an allowable concentration or less. Known catalysts for the reformer include pellet catalysts and honeycomb catalysts.

【0004】改質器では、反応管内に充たされた触媒層
を原料ガスが通過するとき、原料ガスが改質され、CO
変成器に供給される。このとき、水蒸気改質法であるか
ら、加熱器で加熱されることにより反応管内での改質反
応が促進され、原料ガスが水素と炭酸ガスと一酸化炭素
を含む改質ガスに変換される。 (改質反応) CH4 +H2 O → 3H2 +CO −吸熱反応 (シフト反応) CO+H2 O → CO2 +H2 −発熱反応
In the reformer, when the raw material gas passes through the catalyst layer filled in the reaction tube, the raw material gas is reformed and CO
Supplied to the transformer. At this time, since it is the steam reforming method, the reforming reaction in the reaction tube is promoted by being heated by the heater, and the raw material gas is converted into the reformed gas containing hydrogen, carbon dioxide gas and carbon monoxide. . (Reforming reaction) CH 4 + H 2 O → 3H 2 + CO − Endothermic reaction (shift reaction) CO + H 2 O → CO 2 + H 2 − Exothermic reaction

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記改
質反応は吸熱反応であるため、従来の燃料改質装置は反
応進行中触媒内に大きな温度降下が起こり、それに伴い
反応性も低下する。上記改質反応は、温度500℃以上
において進行するが、このとき、改質反応の際にカーボ
ンCの析出を防止するため、反応ガスのH2 O/CH4
の値(この比をS/C値という)を例えば3〜4の値に
している。改質反応のS/C値の理論比は1(S/C=
1)である。
However, since the above-mentioned reforming reaction is an endothermic reaction, in the conventional fuel reforming apparatus, a large temperature drop occurs in the catalyst during the progress of the reaction, and the reactivity also decreases accordingly. The reforming reaction proceeds at a temperature of 500 ° C. or higher. At this time, in order to prevent the precipitation of carbon C during the reforming reaction, H 2 O / CH 4 of the reaction gas is used.
Value (this ratio is called S / C value) is set to a value of 3 to 4, for example. The theoretical ratio of S / C value of the reforming reaction is 1 (S / C =
1).

【0006】しかし、このS/C値を大きくすると、一
般には、燃料電池のシステム効率が低下する。これは、
過剰水蒸気の加熱に必要な熱量が増加するためである。
一般に、反応管においては、図10に示すように、反応
管1の外周部に加熱炉2を設置し、反応管1の内部には
触媒部3を設け、上流側からメタン等の燃料ガスと水蒸
気を矢印方向に流すと、そのとき触媒部3では触媒部の
入口側から下流側に行くに従い改質反応の吸熱により温
度が低下する。この温度が低下するとカーボンが析出し
やすくなる。このカーボン析出反応を起きにくくするた
めには水蒸気の量を比較的多くする。
However, increasing the S / C value generally lowers the system efficiency of the fuel cell. this is,
This is because the amount of heat required to heat the excess steam increases.
Generally, in the reaction tube, as shown in FIG. 10, a heating furnace 2 is installed on the outer peripheral portion of the reaction tube 1, a catalyst part 3 is provided inside the reaction tube 1, and a fuel gas such as methane is supplied from the upstream side. When steam is caused to flow in the direction of the arrow, at that time, the temperature of the catalyst portion 3 decreases due to the heat absorption of the reforming reaction from the inlet side of the catalyst portion toward the downstream side. When this temperature is lowered, carbon is likely to be deposited. In order to make this carbon precipitation reaction less likely to occur, the amount of water vapor is made relatively large.

【0007】次に、触媒部に触媒を担持するハニカム担
持体を用いた場合のハニカム中心部の温度とハニカム外
周部の温度分布を図9に示す。ここで実験条件は、反応
管外壁温度:900℃、ガス流量SV=5000hr -1
とした。反応転化率は90%であった。この図9から判
るように、ハニカム状触媒においては外周部から中心部
への加熱炉による伝熱効果が低いためつまり中心方向へ
の熱伝導性が悪いため、中心部における温度低下量はか
なり大きく、中心部においては熱の供給が不足し、原料
ガスの供給量によっては触媒中心部で反応に必要な温度
に到達できなくなるという問題がある。
Next, a honeycomb support for supporting the catalyst on the catalyst portion
Temperature of the central part of the honeycomb and the outside of the honeycomb when using a holder
The temperature distribution of the peripheral portion is shown in FIG. The experimental conditions here are the reaction
Tube outer wall temperature: 900 ° C., gas flow rate SV = 5000 hr -1
And The reaction conversion rate was 90%. From this figure 9
As in the case of honeycomb-shaped catalyst,
The heat transfer effect of the heating furnace to the
Since the heat conductivity of the
It is very large, the heat supply is insufficient in the center,
Temperature required for reaction at the center of the catalyst depending on the amount of gas supplied
There is a problem that can not be reached.

【0008】本発明の目的は、燃料電池のシステム効率
を高めるためにS/C値を小さくすることが可能な燃料
改質装置を提供することにある。また本発明の他の目的
は、低いS/C値で運転が可能な燃料改質装置を提供す
ることにある。さらに本発明の別の目的は、触媒層の体
積が小さく触媒量が少なくてコストダウンでき、効率よ
く改質反応を行うことが可能な小型化可能な燃料改質装
置を提供することにある。
An object of the present invention is to provide a fuel reformer capable of reducing the S / C value in order to improve the system efficiency of the fuel cell. Another object of the present invention is to provide a fuel reformer capable of operating at a low S / C value. Still another object of the present invention is to provide a fuel reformer capable of downsizing, which has a small catalyst layer volume, a small amount of catalyst, can reduce costs, and can efficiently perform a reforming reaction.

【0009】[0009]

【課題を解決するための手段】本発明の燃料改質装置で
は、請求項1では、原料ガスを流通させる反応管と、こ
の反応管内に配置される第1の触媒部と、この第1の触
媒部から間隔を置いて配置される第2の触媒部と、第1
の触媒部と第2の触媒部の間に外部から熱を与える伝熱
促進部とを備え、第1の触媒部と第2の触媒部における
温度がカーボン析出を回避する程度の温度に保たれるよ
うに前記触媒部の軸方向長さを設定したことを特徴とす
る。
In the fuel reforming apparatus of the present invention, in claim 1, a reaction tube for flowing a raw material gas, a first catalyst section arranged in the reaction tube, and a first catalyst section are provided. A second catalyst part spaced apart from the catalyst part;
And a heat transfer promoting section for applying heat from the outside between the catalyst section and the second catalyst section, and the temperatures in the first catalyst section and the second catalyst section are maintained at temperatures at which carbon deposition is avoided. The axial length of the catalyst portion is set so that

【0010】前記触媒部は、ハニカム構造体に担持され
る触媒、ペレット状触媒を使用することができる。ハニ
カム触媒を使用する場合、ガスと触媒との接触面積が相
対的に大きいため反応効率が向上する。前記触媒部が流
れ方向に所定の長さ以内の薄層であることが望ましい。
前記触媒層はドーナツ状または環状に形成する。この場
合、触媒層の径方向外側と径方向内側の両側から熱を受
けることができる。前記ドーナツ状の触媒層を一方向に
ガス流通させることができるし、前記ドーナツ状の触媒
層部分をガス流通させた後そのガスをドーナツ状の触媒
層の内穴部分を通過させることもできる。
The catalyst portion may be a catalyst supported on a honeycomb structure or a pellet catalyst. When a honeycomb catalyst is used, the reaction area is improved because the contact area between the gas and the catalyst is relatively large. It is desirable that the catalyst portion is a thin layer within a predetermined length in the flow direction.
The catalyst layer is formed in a donut shape or a ring shape. In this case, heat can be received from both the radially outer side and the radially inner side of the catalyst layer. The doughnut-shaped catalyst layer can be unidirectionally gas-circulated, or the gas can be passed through the donut-shaped catalyst layer portion and then the gas can be passed through the inner hole portion of the donut-shaped catalyst layer.

【0011】前記第2の触媒部は複数個設けることがで
きる。すなわち、触媒部と伝熱促進部とを交互に設ける
ことにより、反応管の軸長を相対的に短くして反応転化
率を向上することができる。隣り合う触媒部の間に伝熱
促進部を設け、この伝熱促進部の上流側に伝熱促進体を
設ける。この場合、伝熱促進部の上流側の触媒部出口か
ら排出されたガスの温度を迅速に昇温することができ
る。
A plurality of the second catalyst portions can be provided. That is, by alternately providing the catalyst section and the heat transfer promoting section, it is possible to relatively shorten the axial length of the reaction tube and improve the reaction conversion rate. A heat transfer promoting section is provided between adjacent catalyst sections, and a heat transfer promoting body is provided upstream of the heat transfer promoting section. In this case, the temperature of the gas discharged from the catalyst section outlet on the upstream side of the heat transfer promotion section can be quickly raised.

【0012】一個の触媒部につき入口側よりも出口側の
方が相対的に大きな加熱量を受けるように加熱器を設定
する。これは触媒部入口よりも出口近傍でガス温度が相
対的に低いため効果的にガス温度を上昇することができ
るためである。前記加熱器は、伝熱ヒータ、バーナ等を
使用することができる。
The heater is set so that the outlet side of each catalyst portion receives a relatively larger amount of heat than the inlet side. This is because the gas temperature can be effectively increased because the gas temperature is relatively lower near the outlet than at the catalyst portion inlet. A heat transfer heater, a burner, or the like can be used as the heater.

【0013】[0013]

【作用および発明の効果】本発明の燃料改質装置による
と、反応管に流入するガスが第1の触媒部においてカー
ボン析出温度Tc以下に降下する前に第1の触媒部出口
から排出され、その第1の触媒部下流側部分で加熱器か
ら熱を受けて温度上昇し、次いで第2の触媒部に入り第
2の触媒部による改質反応が促進され、この第2の触媒
部においてもカーボン析出温度Tc以下の温度に降下す
る前に第2の触媒部出口からガスが排出され、このよう
な触媒部と伝熱促進部を交互に流れて行くことにより、
常に反応温度がカーボン析出温度を超える温度に保持さ
れるようになっている。このため、カーボン析出が抑え
られ、S/C値の低い運転が可能となるので、燃料電池
システムの効率を向上することができる。
According to the fuel reforming apparatus of the present invention, the gas flowing into the reaction tube is discharged from the outlet of the first catalyst portion before the temperature falls below the carbon deposition temperature Tc in the first catalyst portion, The downstream portion of the first catalyst portion receives heat from the heater to increase the temperature, then enters the second catalyst portion, and the reforming reaction by the second catalyst portion is promoted, and also in the second catalyst portion. The gas is discharged from the outlet of the second catalyst portion before the temperature falls below the carbon deposition temperature Tc, and by alternately flowing through such a catalyst portion and the heat transfer promoting portion,
The reaction temperature is always kept above the carbon deposition temperature. For this reason, carbon deposition is suppressed and operation with a low S / C value becomes possible, so that the efficiency of the fuel cell system can be improved.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明の基本的な原理を図1に基づいて説明す
る。燃料改質装置10は、主に原料ガス中の燃料ガスと
水蒸気とを改質するものである。この燃料改質装置10
を構成する反応管1の内部には、複数の触媒部12、1
3、14、15、16が間隔を置いて配置され、伝熱促
進部5、6、7、8と隣り合う触媒部12、13、1
4、15、16には周囲の加熱器2側から熱が伝達され
るようになっている。加熱器2は、反応管1の外壁面全
体を包むように配備されている。
Embodiments of the present invention will be described below with reference to the drawings. The basic principle of the present invention will be described with reference to FIG. The fuel reforming device 10 mainly reforms the fuel gas and steam in the raw material gas. This fuel reformer 10
Inside the reaction tube 1 constituting the
3, 14, 15, 16 are arranged at intervals, and the catalyst parts 12, 13, 1 adjacent to the heat transfer promoting parts 5, 6, 7, 8 are provided.
Heat is transmitted to the heaters 4, 15 and 16 from the surrounding heater 2. The heater 2 is arranged so as to wrap the entire outer wall surface of the reaction tube 1.

【0015】触媒部12、13、14、15、16は、
例えばハニカム状触媒あるいはペレット状触媒等を使用
する。ハニカム状触媒は、蜂の巣状のセルを形成するコ
ージェライトのハニカム状触媒担体の内壁面にアルミナ
層等を被膜し、さらにその上に含浸法によりニッケル層
等を担持したものである。反応管1は円筒状のステンレ
ス鋼により形成される。加熱炉2は、例えば燃焼バーナ
である。
The catalyst parts 12, 13, 14, 15, 16 are
For example, a honeycomb catalyst or a pellet catalyst is used. The honeycomb catalyst is obtained by coating the inner wall surface of a cordierite honeycomb catalyst carrier forming honeycomb cells with an alumina layer or the like, and further supporting a nickel layer or the like thereon by an impregnation method. The reaction tube 1 is made of cylindrical stainless steel. The heating furnace 2 is, for example, a combustion burner.

【0016】原料ガスは主成分がメタンと水蒸気であ
り、反応管1の入口から導入する。反応管1の外壁温度
を加熱炉2により例えば900±100℃に加熱する。
原料ガスは最初の第1の触媒部12を通過する間に、式
(1) に示す化学反応を起こす。 (改質反応) CH4 +H2 O → CO+3H2 (吸熱反応)…(1) この式(1) に示す反応は、吸熱反応であるため、最初の
触媒反応を起こす第1の触媒部12の温度が急降下す
る。第1の触媒部12を通過した原料ガスは、反応管1
の外周部からの熱の伝達により加熱されガス温度が次第
に上昇し、温度上昇した時点で次の第2の触媒部13に
流入する。この第2の触媒部では式(1) に示す吸熱反応
が再度進行し、ガス温度が降下する。この温度の上昇お
よび下降を伴う改質反応は常にカーボン析出温度Tcを
超える温度で行なわれるため、カーボン析出は発生しな
い。
The raw material gases, whose main components are methane and water vapor, are introduced from the inlet of the reaction tube 1. The outer wall temperature of the reaction tube 1 is heated to, for example, 900 ± 100 ° C. by the heating furnace 2.
While the raw material gas first passes through the first catalyst section 12,
The chemical reaction shown in (1) occurs. (Reforming reaction) CH 4 + H 2 O → CO + 3H 2 (Endothermic reaction) (1) Since the reaction represented by the formula (1) is an endothermic reaction, the first catalyst portion 12 that causes the first catalytic reaction is The temperature drops sharply. The raw material gas that has passed through the first catalyst portion 12 is the reaction tube 1
The gas temperature is gradually increased by heat transfer from the outer peripheral portion of the gas, and when the temperature rises, the gas flows into the next second catalyst portion 13. In the second catalyst section, the endothermic reaction represented by the formula (1) proceeds again and the gas temperature drops. Since the reforming reaction accompanied by the rise and fall of this temperature is always performed at a temperature exceeding the carbon deposition temperature Tc, carbon deposition does not occur.

【0017】このようにして原料ガスが触媒部12、1
3、14、15、16を通過するごとに改質反応が進行
し、反応管1を流出後には原料ガスの燃料改質が良好に
行なわれ、CO、H2 、CO2 、CH4 、H2 O等が排
出される。この排出ガスは、図示しないCO変成器に送
出される。次に、前述したようにカーボン析出温度Tc
温度を超える温度で改質反応を進行するのに適した燃料
改質装置の具体的な構成例を図2〜図4に示す。
In this way, the raw material gas is converted into the catalyst parts 12, 1
The reforming reaction progresses every time when the gas passes through 3, 14, 15 and 16, and the fuel reforming of the raw material gas is favorably performed after flowing out of the reaction tube 1, and CO, H 2 , CO 2 , CH 4 , H 2 O etc. are discharged. This exhaust gas is sent to a CO shift converter (not shown). Next, as described above, the carbon deposition temperature Tc
2 to 4 show specific configuration examples of the fuel reforming apparatus suitable for proceeding the reforming reaction at a temperature exceeding the temperature.

【0018】(第1実施例)図2に示す第1実施例は、
直状の反応管21の内部に円板状の第1の触媒部22を
設け、この第1の触媒部22から間隔を置いて第2の触
媒部23を配置した例である。原料ガスは白抜き矢印方
向に流れ、第1の触媒部22および第2の触媒部23を
通過する。このときに改質反応が進行する。
(First Embodiment) The first embodiment shown in FIG.
This is an example in which the disk-shaped first catalyst portion 22 is provided inside the straight reaction tube 21, and the second catalyst portion 23 is arranged at a distance from the first catalyst portion 22. The raw material gas flows in the direction of the white arrow and passes through the first catalyst portion 22 and the second catalyst portion 23. At this time, the reforming reaction proceeds.

【0019】(第2実施例)図3に示す第2実施例は、
反応管31を内管31aと外管31bの二重管で構成し
た例である。加熱手段は外管31bの外周部に加熱器を
設けこの外管31bの外周部に配置される図示しない加
熱源から矢印Q方向に外管31bの内部に熱を伝達す
る。また、内管31aには外管側に熱を伝達する熱交換
媒体を点線に示す矢印方向に流通させる。内管31aの
外側で外管31bの内側に形成される断面ドーナツ状の
流路には白抜き矢印で示す方向に原料ガスを流入させ
る。そしてこのドーナツ状の流路の途中に第1の触媒部
32とこの第1の触媒部32から間隔を置いた位置に第
2の触媒部33とが配置される。原料ガスは第1の触媒
部32を通過するときに改質反応を促進し、次に第1の
触媒部32と第2の触媒部33の間の部分で内側の熱交
換媒体からの熱を受けるとともに外側からも熱を受け、
加熱され次の第2の触媒部33に入り改質反応を進行
し、次いで排出されていく。この第2実施例では、原料
ガスの流路がドーナツ状に形成されるため、径方向内側
からと径方向外側からの両側から熱の供給を受けるた
め、伝熱作用が大であることから反応ガス温度を常にカ
ーボン析出温度を超える温度に保持しやすくなるという
利点がある。
(Second Embodiment) The second embodiment shown in FIG.
This is an example in which the reaction tube 31 is composed of a double tube of an inner tube 31a and an outer tube 31b. The heating means is provided with a heater on the outer peripheral portion of the outer tube 31b, and transfers heat from the heating source (not shown) arranged on the outer peripheral portion of the outer tube 31b to the inside of the outer tube 31b in the arrow Q direction. In addition, a heat exchange medium that transfers heat to the outer pipe side is circulated in the inner pipe 31a in the direction of the arrow indicated by the dotted line. A raw material gas is caused to flow in a doughnut-shaped flow path formed inside the outer pipe 31a on the outer side of the inner pipe 31a in a direction indicated by a white arrow. Then, the first catalyst portion 32 and the second catalyst portion 33 are arranged at a position spaced from the first catalyst portion 32 in the middle of the doughnut-shaped flow path. The raw material gas promotes the reforming reaction when passing through the first catalyst portion 32, and then the heat from the inner heat exchange medium is generated in the portion between the first catalyst portion 32 and the second catalyst portion 33. As well as receiving heat from the outside,
After being heated, it enters the second catalyst section 33, undergoes a reforming reaction, and is then discharged. In the second embodiment, since the flow path of the source gas is formed in a donut shape, heat is supplied from both sides from the radial inner side and the radial outer side, so that the heat transfer action is large, so that the reaction There is an advantage that it is easy to always keep the gas temperature above the carbon precipitation temperature.

【0020】(第3実施例)図4に示す第3実施例は、
反応管41を内管46と外管47で構成し、有底大径状
の外管47の内部に内管46を配置した例である。原料
ガスは白抜き矢印方向に流れる。すなわち内管46の外
側のドーナツ形状部分をこの図では下方に流れ、底部で
Uターンした後内側の内管46を上方向に白抜き矢印方
向に流れるようになっている。内管46の外側と外管4
7の内壁側には第1の触媒部42、第2の触媒部43、
第3の触媒部44、第4の触媒部45が間隔を置いて配
置されている。第1の触媒部42側から原料ガスが下方
に流れ第4の触媒部45を通過した後底部においてUタ
ーンして内管46を通って上方に流れる。一方外管47
の下方にはバーナ48等による加熱が行なわれる。従っ
て外管47に供給される熱は、矢印で示した方向に外部
からの燃焼ガスの上方向への対流現象による熱伝達と、
第4触媒部45を通過した後のガスが内管46を上方に
流れるときにこの内管46を流れるガスが熱交換媒体と
なってこの熱交換媒体から内管46の壁を通って径外方
向側の外管47の内側に熱伝達される。この例では熱効
率が極めて良好な構造となっている。
(Third Embodiment) The third embodiment shown in FIG.
This is an example in which the reaction tube 41 is composed of an inner tube 46 and an outer tube 47, and the inner tube 46 is arranged inside an outer tube 47 having a large diameter with a bottom. The raw material gas flows in the direction of the white arrow. That is, the donut-shaped portion on the outer side of the inner pipe 46 flows downward in this figure, and after making a U-turn at the bottom, the inner pipe 46 on the inner side flows upward in the direction of the white arrow. Outside of the inner pipe 46 and the outer pipe 4
On the inner wall side of 7, a first catalyst portion 42, a second catalyst portion 43,
The third catalyst portion 44 and the fourth catalyst portion 45 are arranged at intervals. The raw material gas flows downward from the first catalyst portion 42 side, passes through the fourth catalyst portion 45, and then makes a U-turn at the bottom portion to flow upward through the inner pipe 46. On the other hand, the outer tube 47
The heating by the burner 48 or the like is performed below. Therefore, the heat supplied to the outer pipe 47 is the heat transfer due to the convection phenomenon of the combustion gas from the outside in the direction indicated by the arrow,
When the gas that has passed through the fourth catalyst portion 45 flows upward in the inner pipe 46, the gas flowing in the inner pipe 46 becomes a heat exchange medium and passes through the wall of the inner pipe 46 from the outer diameter. Heat is transferred to the inside of the outer tube 47 on the direction side. In this example, the structure has a very good thermal efficiency.

【0021】この第3実施例においても、反応ガス温度
が常時カーボン析出温度を超える温度に保持されること
から、良好な改質反応が進行するという効果がある。次
に実験データを示す。 (1) 触媒部の長さテスト(その1) このテストは、触媒部の長さと反応転化率の関係を調査
する実験である。実験データを図5に示す。
Also in the third embodiment, since the reaction gas temperature is always maintained at a temperature higher than the carbon precipitation temperature, there is an effect that a good reforming reaction proceeds. Next, experimental data are shown. (1) Catalyst part length test (1) This test is an experiment to investigate the relationship between the catalyst part length and the reaction conversion rate. Experimental data are shown in FIG.

【0022】実験条件としては、これまでの実験で触媒
部の入口側で触媒反応の大部分が起こり触媒部の出口側
では温度低下にともない触媒反応が起こりにくくなるこ
とが判っている。このため、最も効率的な触媒部長さは
どのような範囲かを知ることが一つの目的である。ここ
では、ガス流量と、触媒部長さと、反応転化率の関係を
調査した。
As experimental conditions, it has been found in the experiments so far that most of the catalytic reaction occurs on the inlet side of the catalyst portion and the catalytic reaction does not easily occur on the outlet side of the catalytic portion as the temperature decreases. Therefore, one purpose is to know what range is the most efficient catalyst section length. Here, the relationship between the gas flow rate, the catalyst section length, and the reaction conversion rate was investigated.

【0023】実験条件は次のとおりである。 触媒部形状:ハニカム20mi160cpi2 、50mmφ×(10,20,3
0,40,50mmL) ガス流量:SV値 2000,5000,8000hr-1 (触媒層体積50
φ×200 換算) ガス組成:H2 O/CH4 =4 予熱炉温度:500℃ 反応管外壁温度:900℃ 反応転化率:ガスクロマトグラフィー分析結果より計算
した。
The experimental conditions are as follows. Catalyst shape: Honeycomb 20mi160cpi 2 , 50mmφ × (10,20,3
0,40,50mmL) Gas flow rate: SV value 2000,5000,8000hr -1 (catalyst layer volume 50
φ × 200 conversion) Gas composition: H 2 O / CH 4 = 4 Preheating furnace temperature: 500 ° C. Outer wall temperature of reaction tube: 900 ° C. Reaction conversion rate: Calculated from gas chromatography analysis results.

【0024】[0024]

【表1】 [Table 1]

【0025】実験結果は図5ならびに表1に示すとおり
であった。この実験結果から判るように、触媒部長さが
30、40、50mmでは、反応転化率の変化はほとん
ど見られなかった。触媒部長さが10、20mmの比較
的短い場合、反応転化率は触媒部長さが短いほど低くな
る傾向が判明した。 (2) 触媒部の長さテスト(その2) このテストは、反応管径と、ガス流量と、反応管の中心
部温度がカーボン析出温度Tcに降下するまでの触媒部
長さとの関係を調査する実験である。実験データを図1
3に示す。
The experimental results are shown in FIG. 5 and Table 1. As can be seen from the results of this experiment, there was almost no change in the reaction conversion rate when the catalyst portion length was 30, 40, or 50 mm. It has been found that when the length of the catalyst portion is relatively short such as 10 and 20 mm, the reaction conversion rate tends to decrease as the length of the catalyst portion decreases. (2) Catalyst Length Test (Part 2) This test investigates the relationship between the diameter of the reaction tube, the gas flow rate, and the length of the catalyst section until the temperature at the center of the reaction tube drops to the carbon deposition temperature Tc. It is an experiment. Figure 1 shows the experimental data
3 shows.

【0026】実験条件は次のとおりである。 反応管径:20mmφ、50mmφ ガス流量:SV値 5000,10000hr-1 (触媒層体積50φ×
200 換算) ガス組成:H2 O/CH4 =2.5 予熱炉温度:500℃ 反応管外壁温度:900℃
The experimental conditions are as follows. Reaction tube diameter: 20mmφ, 50mmφ Gas flow rate: SV value 5000, 10000hr -1 (catalyst layer volume 50φ x
200 conversion) Gas composition: H 2 O / CH 4 = 2.5 Preheating furnace temperature: 500 ° C Reaction tube outer wall temperature: 900 ° C

【0027】[0027]

【表2】 [Table 2]

【0028】実験結果は図13ならびに表2に示すとお
りであった。この実験結果から判るように、反応管の中
心部温度がカーボン析出温度Tcに降下するまでの触媒
部長さは、反応管径が小さい方が触媒部の入口からの距
離に対して反応管の中心部温度の低下が少なく、反応管
の中心部温度がTcに至るまでの触媒部長さが長くな
る。しかし、反応管径を小さくすると一定量のガスを処
理するための反応管数が増えるため、実用的な反応管径
は20mmφ以上である。また、SV値を大きくする
と、反応管の中心部温度の低下を防いで反応管の中心部
温度がカーボン析出温度Tcに降下するまでの触媒部長
さが長くなる。しかし、SV値を大きくすると反応転化
率は低くなる。H2 O/CH4 の比を大きくするとカー
ボン析出温度Tcは下がるが、過剰水蒸気の加熱に必要
な熱量が増加するため運転効率が低下する。
The experimental results are shown in FIG. 13 and Table 2. As can be seen from the results of this experiment, the length of the catalyst portion until the temperature of the central portion of the reaction tube falls to the carbon deposition temperature Tc is such that the smaller the diameter of the reaction tube, the center of the reaction tube relative to the distance from the inlet of the catalyst portion. The lowering of the part temperature is small, and the length of the catalyst part until the temperature of the central part of the reaction tube reaches Tc becomes long. However, when the diameter of the reaction tube is reduced, the number of reaction tubes for treating a certain amount of gas increases, so that the practical reaction tube diameter is 20 mmφ or more. When the SV value is increased, the temperature of the central portion of the reaction tube is prevented from lowering, and the length of the catalyst portion until the temperature of the central portion of the reaction tube falls to the carbon deposition temperature Tc becomes long. However, when the SV value is increased, the reaction conversion rate becomes low. When the ratio of H 2 O / CH 4 is increased, the carbon deposition temperature Tc decreases, but the amount of heat required to heat the excess steam increases, so that the operating efficiency decreases.

【0029】一方、反応管径20mmφ、SV値100
00hr-1の条件では、触媒部長さを100mm以下と
すれば反応管の中心部温度をカーボン析出温度Tc以下
に低下させることなく改質反応を行うことができる。上
記の結果より、カーボン℃析出を防止する方法として
は、触媒層長さを短くすることが実用的であることが判
る。
On the other hand, the reaction tube diameter is 20 mm and the SV value is 100.
Under the condition of 00 hr -1 , if the catalyst portion length is 100 mm or less, the reforming reaction can be performed without lowering the temperature of the central portion of the reaction tube to the carbon deposition temperature Tc or less. From the above results, it can be understood that shortening the catalyst layer length is a practical method for preventing carbon ℃ precipitation.

【0030】(3) 触媒部の温度分布テスト 触媒部長さが10mmと40mmのものについて、触媒
部の温度変化を観察した。その結果を図6に示す。ガス
流量はSV=5000hr-1とした。この図6から判る
ように、触媒部長さが10mmの場合も40mmの場合
も、触媒部入口から10mmの軸方向距離の間に中心部
温度は約300℃もの急激な温度低下があることが判
る。触媒部長さが10mmの場合、この触媒部出口すな
わち触媒部長さが10mm以後温度が上昇する。これに
対し触媒部長さが40mmの場合、さらに温度が降下し
続け触媒出口面すなわち触媒部長さが40mmの位置か
ら以降において温度が上昇している。しかも触媒部出口
直後はいずれの場合も温度上昇が急激なものとなってい
る。従って、第1の触媒部の出口面と第2の触媒部の入
口面との間隔は、ガス温度が十分に高い温度すなわちカ
ーボン析出が発生しにくい温度に到達する程度の距離が
十分あればよいと考えられる。
(3) Temperature distribution test of the catalyst part The temperature change of the catalyst part was observed for the catalyst part lengths of 10 mm and 40 mm. The result is shown in FIG. The gas flow rate was SV = 5000 hr −1 . As can be seen from FIG. 6, whether the catalyst portion length is 10 mm or 40 mm, there is a rapid temperature drop of about 300 ° C. in the central portion temperature within the axial distance of 10 mm from the catalyst portion inlet. . When the catalyst portion length is 10 mm, the temperature rises after the catalyst portion outlet, that is, the catalyst portion length is 10 mm. On the other hand, when the catalyst portion length is 40 mm, the temperature further continues to drop, and the temperature rises from the catalyst outlet surface, that is, the position where the catalyst portion length is 40 mm. Moreover, immediately after the outlet of the catalyst section, the temperature rises rapidly in all cases. Therefore, the distance between the outlet surface of the first catalyst portion and the inlet surface of the second catalyst portion should be long enough to reach a temperature at which the gas temperature is sufficiently high, that is, a temperature at which carbon precipitation is unlikely to occur. it is conceivable that.

【0031】(4) 反応管の温度分布(その1) 次に、反応管内の中心部温度分布について実験した結果
を図7に示す。この実験条件は、反応管外壁温度:90
0℃、SV=5000hr-1(触媒層長さ200mm換
算)とした。反応転化率は84%であった。その実験結
果は図7に示すとおりである。
(4) Temperature Distribution in Reaction Tube (No. 1) Next, FIG. 7 shows the results of experiments on the temperature distribution in the central portion of the reaction tube. This experimental condition is that the temperature of the outer wall of the reaction tube: 90
It was set to 0 ° C. and SV = 5000 hr −1 (catalyst layer length 200 mm conversion). The reaction conversion rate was 84%. The experimental results are shown in FIG. 7.

【0032】図7から判るように、第1の触媒部12の
入口部分と出口部分とでは大きな温度差があることが判
る。また第2の触媒部13においても入口部分と出口部
分とで温度差があることが判る。しかし、第1の触媒部
12においての温度降下が顕著なものであるということ
が判別される。 (5) 反応管の温度分布(その2) 次に図7に示す実験で用いた装置にさらに第1の触媒部
12の下流側に伝熱促進体18を設けた装置について実
験を行なった結果を図8に示す。
As can be seen from FIG. 7, there is a large temperature difference between the inlet portion and the outlet portion of the first catalyst portion 12. Further, it can be seen that also in the second catalyst portion 13, there is a temperature difference between the inlet portion and the outlet portion. However, it is determined that the temperature drop in the first catalyst section 12 is remarkable. (5) Temperature Distribution of Reaction Tube (Part 2) Next, the result of the experiment conducted on the apparatus used in the experiment shown in FIG. 7 and further provided with the heat transfer promoter 18 downstream of the first catalyst section 12 Is shown in FIG.

【0033】ここで伝熱促進体として用いた装置は、具
体的には混合器つまりガスの流れによってガスの混合を
促進する形状をもつスタティックミキサーの一種であ
る。図8に示す伝熱促進体18を設けた燃料改質器にお
ける反応管の中心部温度分布は、図8に示すとおりであ
る。ここで実験条件は、反応管外壁温度:900℃、S
V=5000hr-1(触媒層長さ200mm換算)とし
た。反応転化率は88%であった。
The apparatus used as the heat transfer accelerator here is specifically a kind of mixer, that is, a static mixer having a shape for promoting gas mixing by the flow of gas. The temperature distribution in the central portion of the reaction tube in the fuel reformer provided with the heat transfer promoter 18 shown in FIG. 8 is as shown in FIG. Here, the experimental conditions are the outer wall temperature of the reaction tube: 900 ° C., S
V = 5000 hr −1 (catalyst layer length 200 mm conversion). The reaction conversion rate was 88%.

【0034】図8から判るように、伝熱促進体18を設
けたことにより加熱炉2からの熱が原料ガスに効率よく
伝えられ、第2の触媒部13の入口部分における原料ガ
スの温度が図7に比べて120℃ほど高くなっている。
このため、第2の触媒部13内での改質反応が促進され
て反応転化率が向上したものと考えられる。 (6) 反応管の温度分布(その3) 次に、図8に示す実験で用いた装置を発展させた例を図
11に示す。図11に示す実験で用いた装置では、第1
の触媒部12と第2の触媒部13との間に第1の伝熱促
進体18を設け、さらに第2の触媒部13と第3の触媒
部14との間に第2の伝熱促進体19を設けた。伝熱促
進体としては、図8に示す実験と同じものを用いた。
As can be seen from FIG. 8, by providing the heat transfer promoter 18, the heat from the heating furnace 2 is efficiently transferred to the raw material gas, and the temperature of the raw material gas at the inlet portion of the second catalyst portion 13 is increased. It is about 120 ° C. higher than in FIG. 7.
Therefore, it is considered that the reforming reaction in the second catalyst portion 13 is promoted and the reaction conversion rate is improved. (6) Temperature distribution of reaction tube (No. 3) Next, FIG. 11 shows an example in which the apparatus used in the experiment shown in FIG. 8 is developed. In the device used in the experiment shown in FIG. 11, the first
The first heat transfer promoting body 18 is provided between the catalyst section 12 and the second catalyst section 13, and the second heat transfer promoting section is provided between the second catalyst section 13 and the third catalyst section 14. Body 19 was provided. As the heat transfer accelerator, the same one as in the experiment shown in FIG. 8 was used.

【0035】図11に示す燃料改質器における反応管の
中心部温度分布は、図11に示すとおりである。ここで
実験条件は、反応管外壁温度:900℃、SV=500
0hr-1(触媒層長さ200mm換算)とした。反応転
化率は89%であった。図11から判るように、複数の
触媒部と複数の伝熱促進部とを交互に設けることによ
り、原料ガスの温度をTc以下に降下させることなく良
好な反応転化率が得られた。また、図11から、第1の
触媒部12の入口部分と出口部分との温度差に比べて、
第2の触媒部13、第3の触媒部14と次第に温度差が
少なくなっていることが判る。これは、反応転化率が上
がるにつれて触媒部内で進行する改質反応が少なくなり
吸熱量が減少するためと考えられる。
The temperature distribution at the center of the reaction tube in the fuel reformer shown in FIG. 11 is as shown in FIG. Here, the experimental conditions are: outer wall temperature of reaction tube: 900 ° C., SV = 500
It was set to 0 hr −1 (converted to a catalyst layer length of 200 mm). The reaction conversion rate was 89%. As can be seen from FIG. 11, by alternately providing the plurality of catalyst parts and the plurality of heat transfer promoting parts, a good reaction conversion rate was obtained without lowering the temperature of the raw material gas to Tc or lower. Further, from FIG. 11, as compared with the temperature difference between the inlet portion and the outlet portion of the first catalyst portion 12,
It can be seen that the temperature difference between the second catalyst portion 13 and the third catalyst portion 14 is gradually decreasing. It is considered that this is because as the reaction conversion rate increases, the number of reforming reactions that proceed in the catalyst portion decreases and the heat absorption amount decreases.

【0036】(7) 反応管の温度分布(その4) 図11に示す実験の結果から、原料ガス流れの下流側に
なるほど触媒部の長さあたりの原料ガスの温度低下が少
なくなることが判る。したがって、原料ガス流れの下流
側になるほどカーボンを析出させることなく触媒部の軸
方向長さを長くできることが予想される。
(7) Temperature distribution in reaction tube (Part 4) From the results of the experiment shown in FIG. 11, it is understood that the temperature decrease of the raw material gas per length of the catalyst portion becomes smaller toward the downstream side of the raw material gas flow. . Therefore, it is expected that the axial length of the catalyst portion can be increased without depositing carbon toward the downstream side of the raw material gas flow.

【0037】図11に示す実験で用いた装置において、
原料ガス流れの下流側の触媒部の軸方向長さを上流側の
触媒部の軸方向長さに比べて長くした例を図12に示
す。図12に示す装置では、触媒部の軸方向長さは、第
1の触媒部12では20mm、第2の触媒部13では2
5mm、第3の触媒部14では30mmである。図12
に示す燃料改質器における反応管の中心部温度分布は、
図12に示すとおりである。
In the apparatus used in the experiment shown in FIG. 11,
FIG. 12 shows an example in which the axial length of the catalyst portion on the downstream side of the raw material gas flow is made longer than the axial length of the catalyst portion on the upstream side. In the apparatus shown in FIG. 12, the axial length of the catalyst portion is 20 mm in the first catalyst portion 12 and 2 in the second catalyst portion 13.
5 mm, and 30 mm in the third catalyst portion 14. 12
The temperature distribution in the center of the reaction tube in the fuel reformer shown in
This is as shown in FIG.

【0038】ここで実験条件は、反応管外壁温度:90
0℃、SV=5000hr-1(触媒層長さ200mm換
算)とした。反応転化率は93%であった。図12に示
す実験の結果から、図11に示す実験に比べて第2の触
媒部13および第3の触媒部14の長さを長くしても、
原料ガスの反応管全体における最低温度は図11に示す
実験と変わらないことが判る。また、触媒部の長さを長
くしたため93%という良好な反応転化率が得られた。
Here, the experimental conditions are as follows: outer wall temperature of reaction tube: 90
It was set to 0 ° C. and SV = 5000 hr −1 (catalyst layer length 200 mm conversion). The reaction conversion rate was 93%. From the results of the experiment shown in FIG. 12, even if the lengths of the second catalyst portion 13 and the third catalyst portion 14 are made longer than those of the experiment shown in FIG.
It can be seen that the minimum temperature of the raw material gas in the entire reaction tube is the same as in the experiment shown in FIG. Further, since the length of the catalyst portion was increased, a good reaction conversion rate of 93% was obtained.

【0039】以上説明したように、本発明によると、第
1の触媒部と第2の触媒部を間隔を設けて触媒部の長さ
を小さくすることで反応ガスの吸熱反応による温度降下
量を低減し、反応ガスがカーボン析出温度に低下する前
に触媒部出口から排出するようにし、この操作を繰り返
すことにより燃料の改質を促進し、カーボン析出を抑え
て、燃料電池システムの効率を向上することができる。
As described above, according to the present invention, the temperature drop amount due to the endothermic reaction of the reaction gas can be reduced by providing the first catalyst portion and the second catalyst portion with a space to reduce the length of the catalyst portion. The reaction gas is discharged from the outlet of the catalyst section before it falls to the carbon deposition temperature, and by repeating this operation, reforming of the fuel is promoted, carbon deposition is suppressed, and the efficiency of the fuel cell system is improved. can do.

【0040】なお、本発明は、燃料電池システム以外の
装置、例えば水素発生装置にも適用することができる。
The present invention can be applied to a device other than the fuel cell system, for example, a hydrogen generator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料改質装置の原理を説明する説明図
である。
FIG. 1 is an explanatory diagram illustrating the principle of a fuel reformer of the present invention.

【図2】本発明の第1実施例による反応管構造の具体例
を示す模式的斜視図である。
FIG. 2 is a schematic perspective view showing a specific example of the reaction tube structure according to the first embodiment of the present invention.

【図3】本発明の第2実施例による反応管構造の具体例
を示す模式的斜視図である。
FIG. 3 is a schematic perspective view showing a specific example of a reaction tube structure according to a second embodiment of the present invention.

【図4】本発明の第3実施例による反応管構造の具体例
を示す模式的斜視図である。
FIG. 4 is a schematic perspective view showing a specific example of a reaction tube structure according to a third embodiment of the present invention.

【図5】本発明の実験データを示すデータ図である。FIG. 5 is a data diagram showing experimental data of the present invention.

【図6】本発明の実験データを示すデータ図である。FIG. 6 is a data diagram showing experimental data of the present invention.

【図7】本発明の実験データを示すデータ図である。FIG. 7 is a data diagram showing experimental data of the present invention.

【図8】本発明の実験データを示すデータ図である。FIG. 8 is a data diagram showing experimental data of the present invention.

【図9】従来例の実験データを示すデータ図である。FIG. 9 is a data diagram showing experimental data of a conventional example.

【図10】従来例の反応管内の温度分布を示す図であ
る。
FIG. 10 is a diagram showing a temperature distribution in a reaction tube of a conventional example.

【図11】本発明の実験データを示すデータ図である。FIG. 11 is a data diagram showing experimental data of the present invention.

【図12】本発明の実験データを示すデータ図である。FIG. 12 is a data diagram showing experimental data of the present invention.

【図13】本発明の実験データを示すデータ図である。FIG. 13 is a data diagram showing experimental data of the present invention.

【符号の説明】[Explanation of symbols]

1 反応管 2 加熱炉(加熱器) 5、6、7、8 伝熱促進部 12、13、14、15、16 触媒部 18、19 伝熱促進体 21 反応管 22、23 触媒部 31 反応管 32、33 触媒部 41 反応管 42、43、44、45 触媒部 46 内管 47 外管 DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Heating furnace (heater) 5, 6, 7, 8 Heat transfer promotion section 12, 13, 14, 15, 16 Catalyst section 18, 19 Heat transfer promotion body 21 Reaction tube 22, 23 Catalyst section 31 Reaction tube 32, 33 catalyst section 41 reaction tube 42, 43, 44, 45 catalyst section 46 inner tube 47 outer tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江崎 義美 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 (72)発明者 服部 雅俊 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshimi Ezaki, 1 20-20 Kitakanyama, Odaka-cho, Midori-ku, Nagoya-shi, Aichi Chubu Electric Power Co., Inc. Electric Power Research Laboratory (72) Inventor Masatoshi Hattori Midori, Nagoya, Aichi 20, Kitakanyama, Otakacho, Tokyo

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 原料ガスを流通させる反応管と、 この反応管内に配置される第1の触媒部と、 この第1の触媒部から間隔を置いて配置される第2の触
媒部と、 前記反応管を加熱するための加熱器とを備え、 前記第1の触媒部と第2の触媒部における温度がカーボ
ン析出を回避する程度の温度に保たれるように前記触媒
部の軸方向長さを設定した触媒層を有することを特徴と
する燃料改質装置。
1. A reaction tube through which a raw material gas flows, a first catalyst section arranged in the reaction tube, a second catalyst section spaced apart from the first catalyst section, A heater for heating the reaction tube, and an axial length of the catalyst part so that the temperatures in the first catalyst part and the second catalyst part are maintained at a temperature at which carbon deposition is avoided. A fuel reforming device having a catalyst layer in which is set.
【請求項2】 前記触媒部がハニカム状触媒であること
を特徴とする請求項1記載の燃料改質装置。
2. The fuel reformer according to claim 1, wherein the catalyst portion is a honeycomb catalyst.
【請求項3】 前記触媒部が流れ方向に所定の長さ以内
の薄層であることを特徴とする請求項1記載の燃料改質
装置。
3. The fuel reformer according to claim 1, wherein the catalyst portion is a thin layer within a predetermined length in the flow direction.
【請求項4】 前記触媒部がドーナツ状であることを特
徴とする請求項1記載の燃料改質装置。
4. The fuel reformer according to claim 1, wherein the catalyst portion has a donut shape.
【請求項5】 前記ドーナツ状の触媒部を一方向にガス
流通させることを特徴とする請求項4記載の燃料改質装
置。
5. The fuel reformer according to claim 4, wherein the donut-shaped catalyst portion is unidirectionally gas-circulated.
【請求項6】 前記ドーナツ状の触媒部をガス流通させ
た後そのガスをドーナツ状の触媒部の内穴部分を通過さ
せることを特徴とする請求項4記載の燃料改質装置。
6. The fuel reformer according to claim 4, wherein the gas is allowed to flow through the donut-shaped catalyst portion and then the gas is passed through the inner hole portion of the donut-shaped catalyst portion.
【請求項7】 前記触媒層において、前記触媒部と、互
いに隣合う前記触媒部の間の伝熱促進部とが複数個ある
ことを特徴とする請求項1記載の燃料改質装置。
7. The fuel reformer according to claim 1, wherein the catalyst layer has a plurality of the catalyst parts and a plurality of heat transfer promoting parts between the catalyst parts adjacent to each other.
【請求項8】 前記触媒部の軸方向長さは下流側の触媒
部の軸方向長さが相対的に長いことを特徴とする請求項
1記載の燃料改質装置。
8. The fuel reformer according to claim 1, wherein the axial length of the catalyst portion is relatively long in the axial length of the downstream catalyst portion.
【請求項9】 隣り合う触媒部の間の伝熱促進部に伝熱
促進体を設けたことを特徴とする請求項1記載の燃料改
質装置。
9. The fuel reformer according to claim 1, wherein a heat transfer promoting member is provided in a heat transfer promoting unit between adjacent catalyst units.
【請求項10】 一個の触媒部につき入口側よりも出口
側の方が相対的に大きな加熱量を受けるように加熱器を
設定したことを特徴とする請求項1記載の燃料改質装
置。
10. The fuel reformer according to claim 1, wherein the heater is set so that the outlet side of each catalyst portion receives a relatively larger amount of heat than the inlet side.
【請求項11】 前記加熱器は、伝熱ヒータ、バーナの
いずれか1個または2個以上のヒータであることを特徴
とする請求項10記載の燃料改質装置。
11. The fuel reformer according to claim 10, wherein the heater is one or more heaters of a heat transfer heater and a burner.
JP20524694A 1994-08-30 1994-08-30 Fuel reformer Expired - Lifetime JP3432298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20524694A JP3432298B2 (en) 1994-08-30 1994-08-30 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20524694A JP3432298B2 (en) 1994-08-30 1994-08-30 Fuel reformer

Publications (2)

Publication Number Publication Date
JPH0867502A true JPH0867502A (en) 1996-03-12
JP3432298B2 JP3432298B2 (en) 2003-08-04

Family

ID=16503818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20524694A Expired - Lifetime JP3432298B2 (en) 1994-08-30 1994-08-30 Fuel reformer

Country Status (1)

Country Link
JP (1) JP3432298B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509738A (en) * 2000-09-26 2004-04-02 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Rod inserts in reaction tubes
WO2005115912A1 (en) * 2004-05-25 2005-12-08 Matsushita Electric Industrial Co., Ltd. Hydrogen production apparatus and fuel cell system using the same
JP2006049277A (en) * 2004-08-05 2006-02-16 Sofco Efs Holdings Llc Reformed gas treatment at latter stage of reforming device
US7410929B2 (en) 2002-03-28 2008-08-12 Ngk Insulators, Ltd. Cell structural body, method of manufacturing cell structural body, and catalyst structural body
JP2012009205A (en) * 2010-06-23 2012-01-12 Rinnai Corp Power generator
JP2017039631A (en) * 2015-08-21 2017-02-23 Jfeスチール株式会社 Method for producing mixed gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509738A (en) * 2000-09-26 2004-04-02 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Rod inserts in reaction tubes
US7410929B2 (en) 2002-03-28 2008-08-12 Ngk Insulators, Ltd. Cell structural body, method of manufacturing cell structural body, and catalyst structural body
WO2005115912A1 (en) * 2004-05-25 2005-12-08 Matsushita Electric Industrial Co., Ltd. Hydrogen production apparatus and fuel cell system using the same
JP2006049277A (en) * 2004-08-05 2006-02-16 Sofco Efs Holdings Llc Reformed gas treatment at latter stage of reforming device
JP2012009205A (en) * 2010-06-23 2012-01-12 Rinnai Corp Power generator
JP2017039631A (en) * 2015-08-21 2017-02-23 Jfeスチール株式会社 Method for producing mixed gas

Also Published As

Publication number Publication date
JP3432298B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
JP4145785B2 (en) Cylindrical steam reformer
JP4335535B2 (en) Single chamber compact fuel processor
US7524343B2 (en) Dual stack compact fuel processor for producing a hydrogen rich gas
KR100891928B1 (en) Single chamber compact fuel processor
EP0600621B1 (en) A combined reformer and shift reactor
EP1345679B1 (en) Reactor module for use in a compact fuel processor
JP4718069B2 (en) Compact, lightweight methanol fuel gas autothermal reformer
JP5015590B2 (en) Method and apparatus for rapid heating of fuel reforming reactants
JP4643027B2 (en) Compact and lightweight self-heating reformer
AU2002231020A1 (en) Dual stack compact fuel processor for producing a hydrogen rich gas
EP1272798A1 (en) Integrated reactor
JP2010513834A (en) Heat transfer unit for steam generation and gas preheating
WO2007000243A2 (en) Compact reforming reactor
JP2001155756A (en) Vapor-reforming reactor for fuel cell
JP4937076B2 (en) Reaction vessel and reactor
JP3432298B2 (en) Fuel reformer
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
JP2817236B2 (en) Methanol reforming reactor
JP2002104808A (en) Method of reforming fuel
JPS5823168A (en) Fuel cell power generating system
JPH06287003A (en) Device for reforming fuel
KR20240040401A (en) Fuel reformer
JPH06287002A (en) Device for reforming fuel
JP2733308B2 (en) Apparatus and method for producing reformed gas containing hydrogen as a main component

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

EXPY Cancellation because of completion of term