JPH0866058A - Electrostatic four-phase electric-field rotating machine and electric-field phase control apparatus - Google Patents

Electrostatic four-phase electric-field rotating machine and electric-field phase control apparatus

Info

Publication number
JPH0866058A
JPH0866058A JP22240294A JP22240294A JPH0866058A JP H0866058 A JPH0866058 A JP H0866058A JP 22240294 A JP22240294 A JP 22240294A JP 22240294 A JP22240294 A JP 22240294A JP H0866058 A JPH0866058 A JP H0866058A
Authority
JP
Japan
Prior art keywords
electric field
electrode
phase
circuit
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22240294A
Other languages
Japanese (ja)
Inventor
Kanichiro Sugano
寛一郎 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22240294A priority Critical patent/JPH0866058A/en
Publication of JPH0866058A publication Critical patent/JPH0866058A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an electrostatic four-phase electric-field rotating machine which establishes the electrostatic rotation control method of a non-dielectric material and to provide an electric- field phase control apparatus. CONSTITUTION: A rotor electrode 10 is sandwiched between dielectric-material disks, and this assembly is sealed up so as to leave an electrode connection part. Nonconnective outside pole plates 11 are mounted on, and attached to, both side faces in the same position of the electrode, a charging capacitor is constituted, and indirect electrode faces are formed. When a high-voltage positive potential and a high-voltage negative potential are electrified to the rotor electrode 10, the outside electrode plates 11 are set to inverted potentials, and a rotation mechanism can be constituted of fixed electrode 30 and of an electrostatic electric field. In the fixed electrodes 30, respective electrodes are brought into continuity with both faces of an insulating fixation plate, slit cut grooves are formed between multicoupled fixed electrodes in which four polaes are formed as one group, and an interpolar coupling capacitance is made small. In a high-speed electric-field phase-reversible rotation and electric-field phase control apparatus, a high-voltage positive potential and a high-voltage negative potential are electrified to the fixed electrodes via a first system circuit and a second system circuit, a DC high-potential and negative-potential short-circuit current collection circuit is constituted of a forward-rotation electric-field phase pattern signal and a reverse-rotation electric-field phase pattern signal, and an electrostatic electric field repulsive force and an electrostatic field attractive force are generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静電4相電界回転機並
びに電界相制御装置に用いる回転機構及びその電界相制
御回路構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic four-phase electric field rotating machine, a rotating mechanism used in an electric field phase controller, and an electric field phase control circuit configuration thereof.

【0002】[0002]

【従来来の技術】従来の静電気機構は、高電圧電極を露
出する方式が多用されており、実用面で放電の電撃など
の危険があり電波障害も付随した。電極の帯電除去に難
点があり、限定された範囲のみに利用され、高速回転に
向かず、低速駆動に限定された。
2. Description of the Related Art A conventional electrostatic mechanism is often used in which a high-voltage electrode is exposed, which poses a danger of electric shock due to electric discharge and is accompanied by radio interference. There is a problem in removing the electrostatic charge of the electrode, and it was used only in a limited range, was not suitable for high speed rotation, and was limited to low speed driving.

【0003】[0003]

【発明が解決しようとする課題】静電気による電極電荷
は、正電位または負電位に帯電する状態になり、帯電々
荷は、コンデンサーに蓄電されたに等しく、電界電位転
換を高速化可能が課題であった。静電気理論の持つ得意
性を回転機及び電界相制御装置に活用を進め、電力消耗
の少ない経済性と、回転効率の良いトルク性能を得ると
共に、電界電位転換の問題点を解決し、静電気回転制御
方法を確立した静電4相電界回転機並びに電界相制御装
置を、提供する事を目的としている。
The electrode charge due to static electricity is in a state of being charged to a positive potential or a negative potential, and the charged charge is equal to that stored in the capacitor, and the electric field potential conversion can be speeded up. there were. Utilizing the special characteristics of the electrostatic theory in rotating machines and electric field phase control devices, we obtained economical efficiency with less power consumption and torque performance with good rotation efficiency, solved the problems of electric field potential conversion, and controlled electrostatic rotation. It is an object of the present invention to provide an electrostatic four-phase electric field rotating machine and an electric field phase control device whose method has been established.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明の回転機構において、回転子電極を誘電材円
盤間に挟み、電極接続部を残し密封する。電極と同じ位
置両側面に無接続の外側極板を取り付け、間接的な電極
面としている。回転子電極に正電位及び負電位を通電す
れば、外側極板は反転の電位となり固定電極と対応す
る。
In order to achieve the above object, in the rotating mechanism of the present invention, the rotor electrode is sandwiched between the disks of the dielectric material and the electrode connecting portion is left and sealed. Indirect electrode surfaces are provided by attaching unconnected outer electrode plates to both side surfaces at the same position as the electrodes. When a positive potential and a negative potential are applied to the rotor electrode, the outer electrode plate has an inverted potential and corresponds to the fixed electrode.

【0005】固定電極を、絶縁固定板両面に取り付け、
各電極を両面導通にし、4極一群とする三群連結の固定
電極間に切削溝を設け、極間容量結合を小さくする。
Fixed electrodes are attached to both sides of the insulating fixed plate,
Each electrode is electrically connected on both sides, and a cutting groove is provided between the fixed electrodes of three groups connected to form a group of four poles to reduce capacitive coupling between the poles.

【0006】固定電極の電界相面積及び電極電荷が小さ
いため、電極第1系統回路と第2系統回路各端子間に高
耐圧コンデンサーを接続し、電荷増容量と電界相電位転
換効率向上と共に、高速電界転換に役立てる。負電位短
絡電流回収回路の放電々流を、正電位電極え戻す反転ル
ープ状回収の回路構成の目的がある。
Since the electric field phase area and the electrode charge of the fixed electrode are small, a high withstand voltage capacitor is connected between each terminal of the electrode first system circuit and the second system circuit to improve the charge increasing capacity and the electric field phase potential conversion efficiency and to achieve high speed. Useful for electric field conversion. The purpose of the circuit configuration is to recover the discharge current of the negative potential short-circuit current recovery circuit by returning it to the positive potential electrode.

【0007】電界相パターンの開始点を確立するため
に、回転子電極位置角に同期する構成に、位置角スリッ
ト符号円盤の光検出リセット信号を正回転及び逆回転用
にクリヤパルスを2ケ設ける。逆回転の電界相は、電界
の反発回転開始位置を正回転位置より15度差にする
為、クリヤパルスを15度遅れに開始する。電界相の開
始点は、回転子電極と電界反発より開始し、反発面積差
の回転トルクを起生させ、電界相パターンによる回転方
向が確立される。電界相パターン転相後は、電界反発よ
り電界吸引の電界回転を継続する。この構成は、正回転
と逆回転の電界相パターン開始クリヤパルス角位置を異
にする目的がある。
In order to establish the starting point of the electric field phase pattern, two clear pulses are provided for the normal rotation and the reverse rotation of the photodetection reset signal of the position angle slit code disk in the structure synchronized with the rotor electrode position angle. The reverse rotation electric field phase causes the repulsive rotation start position of the electric field to differ from the normal rotation position by 15 degrees, so that the clear pulse starts with a delay of 15 degrees. The starting point of the electric field phase starts from the rotor electrode and the electric field repulsion, and the rotational torque of the repulsion area difference is generated, and the rotation direction by the electric field phase pattern is established. After the phase shift of the electric field phase pattern, the electric field rotation for attracting the electric field is continued due to the repulsion of the electric field. This configuration has the purpose of making the electric field phase pattern start clear pulse angle positions for forward rotation and reverse rotation different.

【0008】固定電極の第1系統回路。第2系統回路を
接続する電源の高周波交流トランス(FBT)回路に並
行するダイオード結合に中性点を取り、回路内接地に接
続する。(FBT)回路出力に、半波倍電圧整流及び負
電位短絡電流回収回路の第1系統と第2系統を対組み構
成を、(FBT)回路の出力両側にそれぞれ構成する。
固定電極端子の1と2。3との4対組みに、制御電界相
パターンの正電位高電圧及び負電位短絡電流回路の負電
位交互動作に構成する。回転子の電界回転により位置角
スリット符号円盤の全角パルス信号及び角リセットパル
スを正回転電界相及び逆回転電界相の選定で、第1系統
回路。第2系統回路の各ゲートを開閉し、固定電極え電
界相パターン制御の、正電位高電圧及び負電位の電界回
転回路構成にする。
A first system circuit of fixed electrodes. A neutral point is taken for the diode coupling in parallel with the high frequency alternating current transformer (FBT) circuit of the power supply that connects the second system circuit, and it is connected to the circuit ground. The output of the (FBT) circuit is paired with the first system and the second system of the half-wave voltage doubler rectification and negative potential short-circuit current recovery circuit, which are respectively configured on both sides of the output of the (FBT) circuit.
The four pairs of fixed electrode terminals 1 and 2.3 are configured to alternately operate the positive potential high voltage and the negative potential short-circuit current circuit of the control electric field phase pattern. The first system circuit, in which the full-angle pulse signal and the angle reset pulse of the position angle slit code disk are selected by the electric field rotation of the rotor between the positive rotating electric field phase and the reverse rotating electric field phase. Each gate of the second system circuit is opened and closed to form a positive potential high voltage and negative potential electric field rotation circuit configuration for controlling the fixed electrode and electric field phase pattern.

【0009】正回転。逆回転を手動選択切り替え構成に
する。回転速度制御を手動(自動制御も可)で、回転域
切り替え及び発信パルス列の可変パルスを制御シフト回
路に入力し、回転同期に至る迄可変の速度制御を構成す
る。正回転及び逆同転の他に、発信パルス列をロックす
る事により一時停止に出来る。電界相制御は、実施例に
方式に準拠しているが、プログラム化された電子回路制
御を応用する事も容易である。
Forward rotation. Reverse rotation is a manual selection switching configuration. Rotation speed control is manual (automatic control is also possible), variable region switching and transmission pulse train variable pulses are input to the control shift circuit, and variable speed control is configured until rotation synchronization. In addition to forward rotation and reverse rotation, it can be temporarily stopped by locking the transmission pulse train. The electric field phase control is based on the method in the embodiment, but it is also easy to apply the programmed electronic circuit control.

【0010】回転子電極は、The rotor electrode is

【0004】に示す機構で、回転軸に高耐電圧スリップ
リング及び給電ブラッシュを経て、直流高電圧(DC2
5KV)の電源回路に接続する。直流高電圧の耐電圧以
上の上昇に、自己放電安定回路を組み込み、絶縁破壊を
防止る。高電圧回路及び制御回路の接地を、外部匡体、
電源(AC100V)より分離する。
In the mechanism shown in (1), the rotary shaft is passed through a high withstand voltage slip ring and a power supply brush, and a direct current high voltage (DC2
5KV) power circuit. Prevents dielectric breakdown by incorporating a self-discharge stabilizing circuit when the DC high voltage exceeds the withstand voltage. Ground the high voltage circuit and the control circuit with an external enclosure,
Separated from the power supply (AC100V).

【0011】[0011]

【作用】上記のように構成された静電4相電界回転機並
びに電界相制御装置は、回転子電極の、直流高電位電荷
を間接的な、回転子電極コンデンサーの外側極板を経
て、固定電極の回転電界相電位に対向し加速する高電位
電界の回転に働き、高速域電界相パターンの電界反発及
び吸引トルクの加速加重に作用する。回転速度は、可変
発信パルス列により、制御発信パルス同期に働く正回
転。逆回転の電界回転の構成にする。
In the electrostatic four-phase electric field rotating machine and the electric field phase controller configured as described above, the DC high potential charges of the rotor electrode are indirectly fixed via the outer electrode plate of the rotor electrode capacitor. The rotating electric field of the electrode opposes the rotating electric field phase potential and acts on the rotation of the accelerated high potential electric field, and acts on the electric field repulsion of the high speed electric field phase pattern and the acceleration load of the suction torque. The rotation speed is a positive rotation that is synchronized with the control transmission pulse by the variable transmission pulse train. A reverse rotation electric field rotation is used.

【0012】回転電界相による固定電極の高電圧及び負
電圧の2系統二重交互の倍電圧整流高電圧回路を、二重
ループ交互に電圧印加及び短絡回収する。固定電極は、
正回転。逆回転。一時停止制御回路の電界相パターン及
び回転速度可変同期シフトの制御構成により電界電位が
与えられる。
A two-system double-alternate double-voltage rectification high-voltage circuit of high voltage and negative voltage of a fixed electrode due to a rotating electric field phase is applied in a double loop alternately to recover a short circuit. The fixed electrode is
Positive rotation. back reverse. The electric field potential is given by the electric field phase pattern of the suspension control circuit and the control configuration of the rotational speed variable synchronous shift.

【0013】上記の理由から、回転機構は、軽量の固定
電極の平板及び回転子を平円盤構成の為、多積層組みに
設計仕様の応用が出来、回転電界相トルクの大幅向上の
余裕がある。回転子電極。固定電極の消費電力 が少な
い為、省資源及び省電力化の技術に貢献出来る。静電4
相電界回転機の静電電界の回転トルクは、電磁方式の電
動回転機にあった回転トルク節、ワウ、フラッター等が
無く、平滑な安定加速の効率良い回転トルクを発揮でき
る。
For the above reason, since the rotating mechanism has the flat plate structure of the light-weight fixed electrode and the rotor as the flat disk structure, the design specification can be applied to the multi-layered assembly, and there is a margin for a significant improvement of the rotating electric field phase torque. . Rotor electrode. Since the fixed electrode consumes little power, it can contribute to resource-saving and power-saving technologies. Electrostatic 4
The rotating torque of the electrostatic electric field of the phase electric field rotating machine can exhibit smooth rotating acceleration and efficient rotating torque without the rotating torque node, wow, flutter, etc. which were present in the electromagnetic type electric rotating machine.

【0014】[0014]

【実施例】実施例について図面を参照して説明すると、
図1の横断面図、回転子電極10構成は回転子電極10
を誘電材円盤12間に挟み、電極接続部を残し密封す
る。電極と同位置に、円盤両側面に無接続の外側極板1
1を装着し、電極毎の帯電コンデンサーを円盤の両側に
形成する。回転子電極10の接続を高耐圧スリップリン
グ14に導入、位置角スリット符号円盤2と共に回転軸
16に締結、回転子を構成する。絶縁固定板3の両面に
固定電極30を、回転子電極10の倍数で絶縁固定板3
の電極30を両面導通に装着する。固定電極30の1番
極。3番極。2番極。4番極の電極並び順を一群とす
る、三群組みにし、図6に図示の端子5より電極を連結
接続する。固定電極30の1番極と2番極を第1系統回
路端子5。1及び2に接続する。固定電極30の3番極
及び4番極を第2系統回路端子5。3及び4に接続し、
電極三群全極を、電界相パターンにより、直流高電圧の
正電位及び負電位電界の反発及び電界吸引の正方向回
転。逆方向回転及び回転停止の電界相制御の固定電極に
構成する。
EXAMPLES Examples will be described with reference to the drawings.
The cross-sectional view of FIG. 1, the rotor electrode 10 configuration is the rotor electrode 10
Is sandwiched between the dielectric material disks 12 and sealed, leaving the electrode connection portion. Outer electrode plate 1 at the same position as the electrode, with no connection on both sides of the disk
1 is mounted, and a charging capacitor for each electrode is formed on both sides of the disk. The rotor electrode 10 is connected to the high-voltage slip ring 14 and fastened to the rotary shaft 16 together with the position angle slit code disc 2 to form the rotor. The fixed electrodes 30 are provided on both sides of the insulating fixed plate 3 in multiples of the rotor electrode 10.
The electrode 30 is mounted on both sides so as to be conductive. The 1st pole of the fixed electrode 30. 3rd pole. 2nd pole. The electrode arrangement order of the No. 4 pole is made into one group, and the three groups are combined, and the electrodes are connected and connected from the terminal 5 shown in FIG. The first and second poles of the fixed electrode 30 are connected to the first system circuit terminals 5.1 and 2. Connect the third and fourth poles of the fixed electrode 30 to the second system circuit terminals 5.3 and 4.
Reversal of positive and negative electric fields of DC high voltage and positive direction rotation of electric field attraction by the electric field phase pattern of all electrodes of the third group of electrodes. It is configured as a fixed electrode for electric field phase control of reverse rotation and rotation stop.

【0015】図2の回転子電極を、正高電位極及び負電
位極10順交互にし、計6極の構成にする。回転軸に連
結ブッシユ13で、回転子1を回転軸16に組み複数回
転子の電極接続を、引き出し接続19を経て、高耐圧ス
リップリング14より高電圧を供給する。固定電極板
3。回転子1の顧に積層する。回転子電極10に高電圧
電位および負電位を印加すると、回転子1の円盤外側極
面は、反転電位になり、固定電極との電界に、高速対応
の電界反発及び電界吸引の回転機構にする。
The rotor electrodes in FIG. 2 are alternately arranged in the order of positive high potential poles and negative potential poles 10 to form a total of 6 poles. The rotor 1 is connected to the rotary shaft 16 by the connecting bush 13 connected to the rotary shaft, the electrode connection of the plurality of rotors is connected, and the high voltage slip ring 14 supplies a high voltage through the lead-out connection 19. Fixed electrode plate 3. It is laminated on the rotor 1. When a high voltage potential and a negative potential are applied to the rotor electrode 10, the disk outer polar surface of the rotor 1 becomes an inversion potential, and the electric field with the fixed electrode becomes a rotation mechanism of electric field repulsion and electric field suction corresponding to high speed. .

【0016】図3の位置角スリット符号円盤2に外径ス
リット孔20及び内径スリット孔21を設け、外径スリ
ット孔20を15度ピッチで24孔。同角で、内径スリ
ット孔21を、120度角に3個を設け、角リセット検
出信号用にする。外径スリット孔20を全角パルス信号
にし、後記の分周回路で30度角の全角シフト回路えク
ロックパルスで入力する。角リセット信号21を、正回
転。逆回転の手動切り替えによる15度差の逆回転のク
リヤパルス信号と正回転の0度クリヤパルス信号に構成
する。
An outer diameter slit hole 20 and an inner diameter slit hole 21 are provided in the position angle slit code disk 2 of FIG. 3, and the outer diameter slit holes 20 are 24 holes at a pitch of 15 degrees. Three inner-diameter slit holes 21 having the same angle are provided at a 120-degree angle to be used for an angle reset detection signal. The outer diameter slit hole 20 is converted into a full-width pulse signal, which is input by a clock pulse of a full-angle shift circuit of 30 degrees in a frequency dividing circuit described later. Rotate the angle reset signal 21 forward. A reverse rotation clear pulse signal with a difference of 15 degrees and a normal rotation 0 degree clear pulse signal are formed by manual switching of the reverse rotation.

【0017】図4は、図3の信号検出系統回路を示す。
遠赤外投光28を位置角スリット符号円盤2に照射し、
透過光29の受光検出26で、全角パルス信号及び角リ
セットパルス信号を各々出力する。位置角スリット符号
円盤2は、回転子電極10を固定電極30の電界相開始
点に位置角合わせマーク18に合わせ、回転軸に締結す
る。遠赤外投光器28と受光検出器29を対組みに構成
し、図5の固定極板3に示す120度62に装着、光軸
を調整後、固定装着する。位置角スリット符号円盤2の
全角パルス信号及び角リセット信号を検出し、電界相制
御回路に入力の構成にする。
FIG. 4 shows the signal detection system circuit of FIG.
Far infrared projection 28 is irradiated to the position angle slit code disk 2,
Upon detection 26 of the transmitted light 29, a full-angle pulse signal and an angle reset pulse signal are output. The position angle slit code disk 2 aligns the rotor electrode 10 with the position angle alignment mark 18 at the electric field phase start point of the fixed electrode 30, and fastens it to the rotating shaft. The far-infrared projector 28 and the light-reception detector 29 are configured as a pair and mounted on the fixed electrode plate 3 shown in FIG. 5 at 120 degrees 62. After adjusting the optical axis, they are fixedly mounted. The full-angle pulse signal and the angle reset signal of the position angle slit code disk 2 are detected, and input to the electric field phase control circuit.

【0018】図7は、電界相制御回路の系統図を示す。
全角パルス信号29を整形回路65に入力し、全角パル
ス信号65より分岐、全角分周回路64及び全角パルス
信号65をリセットシフト回路71に入力する。分周パ
ルス回路64に入れ、全角15度信号を30度のクロッ
クパルスに直し、全角シフト回路73え、30度毎のク
ロックパルスを入力する。角リセット信号29を整形回
路70より、リセットシフト同路71に入力し、全角パ
ルス信号65入力の、リセットシフト回路71の15度
クロックパルスを共に、入力する。正回転。逆回転切り
替えの、手動操作で、0度及び15度差のクリヤパルス
の変換72より、全角シフト回路73と速度制御シフト
回路74に、リセットパルスを入力する。速度制御シフ
ト回路74に、手動速度域可変47により、発振制御パ
ルス回路75の発振クロックを入力し、全角シフト回路
73及び速度制御シフト回路74出力を電界相信号に
し、正回転相及び逆回転相切り替え回路59を経て、ダ
イオードマトリックス回路の出力分岐より、固定電極電
位のSCR回路58のゲート開閉をする。SCR回路5
8の、高電圧電源は、高周波交流を、発振回路76より
電力増幅回路77FBTより受け入れ、図5の端子T及
び端子6に接続し、SCR回路58に入力する。SCR
回路58の直流高電圧電位及び負電位短絡電流回収回路
を、マトリック回路分岐配分のゲート信号開閉により、
固定電極の第1系統回路端子5。1−2及び第2系統回
路端子5。3−4より、固定電極に回転電界相パターン
の、高電圧電位通電を構成する。
FIG. 7 shows a system diagram of the electric field phase control circuit.
The full-width pulse signal 29 is input to the shaping circuit 65, branched from the full-width pulse signal 65, and the full-width frequency dividing circuit 64 and the full-width pulse signal 65 are input to the reset shift circuit 71. It is put in the frequency dividing pulse circuit 64, the full-width 15 degree signal is converted into a 30-degree clock pulse, the full-angle shift circuit 73 is inputted, and the clock pulse is input every 30 degrees. The angle reset signal 29 is input from the shaping circuit 70 to the reset shift common path 71, and the 15-degree clock pulse of the reset shift circuit 71, which receives the full-angle pulse signal 65, is also input. Positive rotation. A reset pulse is input to the full-angle shift circuit 73 and the speed control shift circuit 74 by the conversion 72 of the clear pulse having a difference of 0 degree and 15 degrees by the reverse rotation switching manual operation. The oscillation clock of the oscillation control pulse circuit 75 is input to the speed control shift circuit 74 by the manual speed range variable 47, the full-angle shift circuit 73 and the output of the speed control shift circuit 74 are converted into electric field phase signals, and the normal rotation phase and the reverse rotation phase are input. The gate of the SCR circuit 58 having the fixed electrode potential is opened and closed by the output branch of the diode matrix circuit through the switching circuit 59. SCR circuit 5
The high-voltage power supply 8 receives the high-frequency alternating current from the oscillation circuit 76 from the power amplification circuit 77FBT, connects it to the terminals T and 6 in FIG. 5, and inputs it to the SCR circuit 58. SCR
The DC high voltage potential and negative potential short-circuit current recovery circuit of the circuit 58 is opened and closed by opening and closing the gate signal of the matrix circuit branch distribution.
From the first system circuit terminal 5.1-2 and the second system circuit terminal 5.3-4 of the fixed electrode, a high voltage potential energization of the rotating electric field phase pattern is configured on the fixed electrode.

【0019】図8は、電界相制御回路に関する4相制御
のタイムチャート図を説明する。上段より下段え、1段
目は、全角検出パルス信号(パルス角15度)波形を図
示する。2段目に角リセットパルス検出信号を120度
毎に出力する。3段目の全角検出パルス信号15度角パ
ルスを分周回路で、2倍の30度角に変換し、電界相シ
フト回路73えクロックパルスにして、入力する。4段
目は、角リセット検出信号をリセットパルスに整形し、
3段目の全角検出パルスよりパルス幅を短くする。リセ
ットシフト71にクリヤパルスを入力、正回転時のクリ
ヤパルスを示し、電界相の開始より4相目でクリヤす
る。7段目は、逆回転時の電界相シフトを表し、正回転
時より15度差の30度ピッチのクロックパルスで電界
相をシフトする。スタートは、15度前より開始する。
クリヤパルスは、正回転時と同じ検出角になる。8段目
は、逆回転時のクリヤパルスで、逆回転用のクロックパ
ルスを30度毎に電界相シフトし、逆回転用クリヤパル
スで、開始の逆回転相パターン進相シフトに構成する。
FIG. 8 illustrates a time chart of four-phase control for the electric field phase control circuit. The lower and upper stages show the full-angle detection pulse signal (pulse angle 15 degrees) waveform in the first stage. The angle reset pulse detection signal is output to the second stage every 120 degrees. A 15-degree angle pulse of the full-angle detection pulse signal of the third stage is converted into a 30-degree angle that is doubled by a frequency dividing circuit, and is converted into a clock pulse for the electric field phase shift circuit 73 and input. The fourth step shapes the angle reset detection signal into a reset pulse,
The pulse width is made shorter than the full-angle detection pulse in the third step. A clear pulse is input to the reset shift 71 to indicate a clear pulse at the time of forward rotation, and the clear pulse is cleared at the fourth phase from the start of the electric field phase. The seventh stage shows the electric field phase shift at the time of reverse rotation, and the electric field phase is shifted by a clock pulse with a pitch of 30 degrees, which is 15 degrees different from that at the time of normal rotation. The start will start 15 degrees before.
The clear pulse has the same detection angle as during normal rotation. The eighth stage is a clear pulse at the time of reverse rotation, in which the clock pulse for reverse rotation is phase-shifted by the electric field every 30 degrees, and the clear pulse for reverse rotation is configured to start the reverse rotation phase pattern phase shift.

【0020】図9は、固定電極え直流高電圧電位を半波
倍電圧整流より、電界相パターンの高電圧電位供給の回
路接続を図示する。電源の高周波交流(T)及び(6)
より、SCRとダイオード倍電圧整流系統を経て、固定
電極端子に接続する。端子(T)より並列のSCR及び
ダイオード倍電圧整流の直流高電圧を、固定電極端子1
及び3に分けて接続する。端子(6)より並列にSCE
及びダイオード倍電圧整流系統を経て、固定電極端子2
及び4に分けてそれぞれ接続する。固定電極端子1と
2。3と4に高耐圧コンデンサーを接続し、固定電極電
荷増容量及び負電位短絡電流回収の構成にする。電源の
高周波交流端子(T)及び(6)間に、高耐圧ダイオー
ドを通電方向に接地(GND)を中心とし、接続する。
固定電極端子1及び2を、第1系統回路。固定電極端子
3及び4を、第2系統回路に為し、固定電極の各端子よ
り固定電極端子3及び4を第2系統回路とし、正回転及
び逆回転電界相パターンによるSCRゲートをONに為
す。第1系統及び第2系統の固定電極及び端子電圧を正
電位又は負電位を与え、電界相パターンの電界相電位を
構成する。
FIG. 9 illustrates a circuit connection for supplying a high voltage potential of an electric field phase pattern by rectifying a DC high voltage potential of a fixed electrode by half-wave voltage doubler rectification. High frequency alternating current (T) and (6) of power source
Then, it is connected to the fixed electrode terminal through the SCR and the diode voltage doubler rectification system. From the terminal (T), the DC high voltage for parallel SCR and diode voltage doubler rectification is applied to the fixed electrode terminal 1.
And 3 and connect. SCE in parallel from terminal (6)
And via the diode voltage doubler rectification system, fixed electrode terminal 2
And 4 and connect respectively. High voltage capacitors are connected to the fixed electrode terminals 1 and 2, and 3 and 4, so that the fixed electrode charge increasing capacity and the negative potential short-circuit current are recovered. A high breakdown voltage diode is connected between the high frequency AC terminals (T) and (6) of the power source in the energizing direction centering on the ground (GND).
Fixed electrode terminals 1 and 2 are the first system circuit. The fixed electrode terminals 3 and 4 are used as the second system circuit, the fixed electrode terminals 3 and 4 are used as the second system circuit from each terminal of the fixed electrode, and the SCR gate is turned on by the forward and reverse rotating electric field phase pattern. . A fixed potential and a negative potential are applied to the fixed electrodes and the terminal voltages of the first system and the second system to form the electric field phase potential of the electric field phase pattern.

【0021】第1系統回路端子1を正電位に、端子2を
負電位の対組みに、SCRゲートをONする。電界の転
換相で、端子1及び2の電位を反転に構成し、交互電位
転換を、第2系統回路端子3及び4に、第1系統回路端
子電位と同様に交互反転電位に構成する。第1系統回路
及び第2系統回路を重ね、SCRゲートの交互開閉によ
り、電界相パターンの電界電位を、回路内でループ状の
電圧電流循環回路に働かせ、固定電極の電界反発及び電
界吸引の高速回転力推進に構成する。回転子電極の外側
極板と固定電極間に、空隙を設ける構造は、高電圧電荷
の滞留と、電界相パターン転換時に、素早い電界変換の
構成が出来る。空隙に誘電材を挿入した場合に、誘電材
に電荷を留どめる作用に働く為、電界転換に支障が起き
ない、誘電材排除の方式に構成する。
The first system circuit terminal 1 is set to a positive potential, the terminal 2 is set to a negative potential pair, and the SCR gate is turned on. In the conversion phase of the electric field, the potentials of the terminals 1 and 2 are configured to be inverted, and the alternate potential conversion is configured to the second system circuit terminals 3 and 4 to the alternate inverted potential in the same manner as the first system circuit terminal potential. By stacking the first system circuit and the second system circuit and alternately opening and closing the SCR gate, the electric field potential of the electric field phase pattern is made to act on the loop-shaped voltage-current circulating circuit in the circuit, and the electric field repulsion of the fixed electrode and the high-speed electric field attraction are performed. Configured for rotational force propulsion. The structure in which the air gap is provided between the outer electrode plate of the rotor electrode and the fixed electrode can provide a structure for high-voltage charge retention and quick electric field conversion at the time of electric field phase pattern conversion. When a dielectric material is inserted into the void, it acts to retain electric charges in the dielectric material, so that the method of eliminating the dielectric material does not hinder electric field conversion.

【0022】図10は、電界相による静電々界反発及び
吸引回転の基本構成を展開図示する。固定電極端子1及
び電極1番極。端子3及び3番極。端子2及び2番極。
端子4及び4番極の並び極順を一群とする電極構成と、
回転子電極の外側極板の負電位極。正電位極との電界相
第一相開始時の電界展開を図示する。回転子軸と同回転
の位置角スリット符号円盤の光検出孔位置を併せて示
す。正回転時の電界相スタートは、固定電極の3番極と
2番極間に相当する120度角(図3は360度)位置
に光検出器を装着し、光検出信号の、全角パルス検出信
号及び角リセットパルス検出信号で、回転電界相の第一
相を開始する。回転電界相は、第1系統回路及び第2系
統回路より、固定全電極同時に電界電位の印加に働き、
第2相。第3相。第4相を、図11及び図12に示す電
位転換による電界の、正回転及び逆回転方向に構成され
る。逆回転は、光検出信号をリセットシフト回路の手動
切り替えで、同位置角のリセット角度を15度遅らせる
クリヤパルス信号転換を全角シフト回路に与え、逆回転
電界相パターンを開始する。図12に示す逆方向回転電
界を構成する。回転停止(一時的な停止)は、全角クロ
ック信号及び角リセットパルスを、手動切り替えによ
り、電界吸引域にロックされる。他の停止行動は、電源
停止の操作にすると、回転子はフリーになる。
FIG. 10 is an expanded view of the basic structure of electrostatic field repulsion and suction rotation due to the electric field phase. Fixed electrode terminal 1 and electrode No. 1 pole. Terminal 3 and pole 3. Terminal 2 and pole 2.
An electrode configuration in which the terminals 4 and the 4th pole are arranged in a group in the order of poles;
Negative potential pole on the outer plate of the rotor electrode. The electric field expansion at the start of the first electric field phase with the positive potential pole is illustrated. The photodetection hole position of the position angle slit code disk that is the same as the rotor shaft is also shown. To start the electric field phase during positive rotation, mount a photodetector at the 120 degree angle (360 degrees in Fig. 3) position corresponding to the 3rd and 2nd poles of the fixed electrode, and detect the full-angle pulse of the photodetection signal. The first phase of the rotating electric field phase is started by the signal and the angle reset pulse detection signal. The rotating electric field phase works from the first system circuit and the second system circuit to apply the electric field potential at the same time to all fixed electrodes,
Second phase. Third phase. The fourth phase is configured in the forward rotation and reverse rotation directions of the electric field by the potential conversion shown in FIGS. 11 and 12. In the reverse rotation, the light detection signal is manually switched in the reset shift circuit, and a clear pulse signal conversion for delaying the reset angle of the same position angle by 15 degrees is given to the full-angle shift circuit to start the reverse rotation electric field phase pattern. The reverse rotating electric field shown in FIG. 12 is formed. The rotation stop (temporary stop) is locked in the electric field suction area by manually switching the full-width clock signal and the angle reset pulse. The other stopping action is to turn off the power, and the rotor becomes free.

【0023】[0023]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0024】回転子電極を誘電材円盤間に挟み、電極端
子を除き密封に為し、直接の高電圧放電及び電撃防止に
構成し、電極面と同位置面に無接続の外側極板を円盤両
面に装着する。回転子電極毎に帯電コンデンサーを構成
し、静電々界相の反発及び電界吸引の高速回転に効果を
発揮出来る。
The rotor electrode is sandwiched between the disks of the dielectric material, and the electrodes are sealed except for the electrode terminals to prevent direct high-voltage discharge and electric shock. Attach to both sides. By constructing a charging capacitor for each rotor electrode, it is possible to exert an effect on repulsion of the electrostatic field phase and high-speed rotation of electric field attraction.

【0025】回転子軸に同装の位置角スリット符号円盤
で、静電4相電界転換角を光透過検出信号により、全角
クロックパルス信号及び角リセットパルス信号の制御
で、正方向回転及び逆方向回転の電界相パターンによる
可逆制御の回転機構に出来る。
The position angle slit code disk mounted on the rotor shaft controls the electrostatic four-phase electric field conversion angle by the light transmission detection signal to control the full-angle clock pulse signal and the angle reset pulse signal. The rotation mechanism can be reversibly controlled by the electric field phase pattern of rotation.

【0026】固定電極数を、回転子電極の倍数極にし、
絶縁固定板の両面に装着、各電極を両面導通に接続す
る。固定電極間にスリットの切り溝を設け、電極間容量
結合を少なく出来る。組み立て積層方式の機構に、固定
電極板を一種類の形式になり、製作に於ける経済効果が
ある。
The fixed electrode number is set to a multiple pole of the rotor electrode,
It is attached to both sides of the insulation fixing plate, and each electrode is connected in a double-sided manner. By providing slit slits between the fixed electrodes, capacitive coupling between the electrodes can be reduced. Assembling and laminating mechanism has one type of fixed electrode plate, which has economical effect in manufacturing.

【0027】回転子電極に、直流高電圧(DC24K
V)を、回転子軸の高耐電圧スリップリングにより、正
電位及び負電位の静電々界機構に出来る。
A DC high voltage (DC24K) is applied to the rotor electrode.
V) can be an electrostatic field mechanism of positive potential and negative potential by the high withstand voltage slip ring of the rotor shaft.

【0028】固定電極の並び順を一群とする三群組み連
結接続端子に、第1系統回路。第2系統回路による電源
構成を電界相の正電位及び負電位と、中性点接地の電界
電圧を回路内ループ状の電圧電流を電位転換構成にし、
電界相パターンの高速働作の電界反発及び吸引で、回転
速度、可逆回転、回転トルクに、全極回転電界に構成が
出来る。
The first system circuit is connected to the three-group combined connection terminal in which the fixed electrodes are arranged in one group. The power supply configuration by the second system circuit is configured such that the positive and negative potentials of the electric field phase, the electric field voltage of the neutral point grounding, and the loop-shaped voltage current in the circuit are converted into potentials.
High-speed electric field repulsion and suction of the electric field phase pattern can be used to configure a rotational speed, reversible rotation, rotational torque, and an all-pole rotating electric field.

【0029】固定電極端子間に、高耐圧コンデンサー接
続により、電極電荷増容量及び負電位の電圧電流回収を
為し、電界相転換移相の電位効率を改善出来る。
A high withstand voltage capacitor is connected between the fixed electrode terminals to increase the capacity of the electrode charge and to recover the voltage and current of the negative potential, thereby improving the potential efficiency of the electric field phase conversion phase shift.

【0030】電源の高周波交流を第1系統及び第2系統
により、半波倍電圧整流及び負電位短絡電流回収回路の
対組みを、高周波交流出力端子に、(片側に2組み)計
4組みを接続する。電界相パターン信号制御の固定電極
え、直流正高電圧及び負高電圧の電界相電位構成が出来
る。
The high frequency AC of the power source is paired by a first system and a second system with a half-wave voltage doubler rectifier and a negative potential short-circuit current recovery circuit, and a total of four sets (two sets on one side) at the high frequency AC output terminal. Connecting. A fixed electrode for electric field phase pattern signal control and an electric field phase potential configuration of DC positive high voltage and negative high voltage can be formed.

【0031】固定電極の電界相パターンによる正電位及
び負電位電荷極構成と回転子電極外側極の直流高電圧静
電々界反発及び電界吸引構成による、回転方向の選択が
出来る。回転子電極の外側極板と固定電極間に、空隙を
設ける構造は、高電圧電荷の滞留と、電界相パターン転
換時に、高速電界変換の構成が出来る。空隙に誘電材を
挿入した場合は、誘電材に電荷を留どめる作用に働く
為、電界転換に支障の無い、誘電材排除の方式に構成す
る。
The direction of rotation can be selected by the positive and negative potential charge pole structure by the electric field phase pattern of the fixed electrode and the DC high voltage electrostatic field repulsion and electric field suction structure of the outer pole of the rotor electrode. The structure in which the air gap is provided between the outer electrode plate of the rotor electrode and the fixed electrode can achieve a high-speed electric field conversion at the time of high voltage charge retention and electric field phase pattern conversion. When a dielectric material is inserted into the void, it acts to retain electric charges in the dielectric material, so that the method of eliminating the dielectric material does not hinder electric field conversion.

【0032】固定電極と回転子電極面の電界相開始点を
手動選択により、電界反発の面積差設定で、回転方向を
確立し、正方向回転及び逆方向回転の可逆回転が出来
る。
By manually selecting the electric field phase start points of the fixed electrode and rotor electrode surfaces, the direction of rotation can be established by setting the area difference of electric field repulsion, and reversible rotation of forward rotation and reverse rotation can be performed.

【0033】回転子主軸に同装する位置角スリット符号
円盤の、角リセット検出信号を、正回転及び逆回転のク
リヤパルスに変換し、電界相シフト回路え、0度クリヤ
パルス及び15度遅れのクリヤパルス構成で、回転方向
毎の電界相パターンシフトを転換出来る。
An angle reset detection signal of a position angle slit code disk mounted on the rotor main shaft is converted into a forward rotation and reverse rotation clear pulse, an electric field phase shift circuit, a 0 degree clear pulse and a 15 degree delayed clear pulse configuration. Thus, the electric field phase pattern shift for each rotation direction can be converted.

【0034】回転子主軸に同装する位置角スリット符号
円盤の、全角パルス検出信号を、分周回路により、15
度パルス信号を30度毎のパルス信号に変換し、全角相
シフト回路をクロックパルスで、電界相をシフト構成に
出来る。
The full-angle pulse detection signal of the position angle slit code disk mounted on the rotor main shaft is divided by 15 by a frequency dividing circuit.
The degree pulse signal can be converted into a pulse signal of every 30 degrees, and the full-angle phase shift circuit can be configured to shift the electric field phase with clock pulses.

【0035】発信パルス列のクロックで、制御シフト回
路と全角シフト回路の同期をとり、電界相パターンの回
転域を可変する。電界相転換の速さを制御し、固定電極
の電界を、速度可変及び安定な回転速度に調整が出来
る。
The control shift circuit and the full-angle shift circuit are synchronized with the clock of the transmission pulse train to change the rotation range of the electric field phase pattern. By controlling the speed of electric field phase conversion, the electric field of the fixed electrode can be adjusted to a variable speed and a stable rotation speed.

【0036】電界相制御信号を、正回転及び逆回転の選
択で、電界相同期出力信号をダイオードマトリックス回
路により、固定電極え直流高電圧を供給するSCRのゲ
ートに、正回転電界相パターン及び逆回転パターンの信
号を分岐し、配信号の制御が出来る。
The electric field phase control signal is selected between forward rotation and reverse rotation, and the electric field phase synchronization output signal is applied to the fixed electrode and the gate of the SCR which supplies a high DC voltage by the diode matrix circuit. The signal of the rotation pattern can be branched to control the distribution signal.

【0037】回転機構は、軽量の固定電極板及び平円盤
回転子電極構成の為、プリント印刷基板構造などの多積
層組みが出来る利便があり、電界回転トルクを大口径方
式に出来る設計仕様の余裕がある。回転子電界極、固定
電極共に消費電力が小さく、制御装置を加えても電力及
び省資源の静電4相電界回転機構は、実用化技術に大き
く貢献出来る。
Since the rotating mechanism is composed of a lightweight fixed electrode plate and a flat disk rotor electrode, it has the convenience of being able to form a multi-layer assembly of a printed circuit board structure, etc. There is. The power consumption of both the rotor electric field pole and the fixed electrode is small, and even if a control device is added, the electric power and resource-saving electrostatic four-phase electric field rotation mechanism can greatly contribute to the practical technology.

【0038】実施例に示す制御回路機構は、実験機に基
ずく設計の為、表示回路及び操作機構の一部を省略して
いる。基本回路系統以外の方法に代わるプログラム化さ
れた電子制御回路を応用する事も容易に出来る。
Since the control circuit mechanism shown in the embodiment is designed on the basis of an experimental machine, part of the display circuit and the operating mechanism are omitted. It is also possible to easily apply a programmed electronic control circuit that replaces the method other than the basic circuit system.

【図面の簡単な説明】[Brief description of drawings]

【図1】静電4相電界回転機の横断面図である。FIG. 1 is a cross-sectional view of an electrostatic four-phase electric field rotating machine.

【図2】回転子電極円盤の平面図である。FIG. 2 is a plan view of a rotor electrode disc.

【図3】位置角スリット符号円盤図である。FIG. 3 is a position angle slit code disc diagram.

【図4】符号円盤及び光検出系統回路図である。FIG. 4 is a circuit diagram of a code disk and a photodetection system.

【図5】固定電極板の組み立て構造平面図である。FIG. 5 is a plan view of an assembly structure of a fixed electrode plate.

【図6】固定電極番号及び並び順と電極連結線図であ
る。
FIG. 6 is a fixed electrode number, arrangement order, and electrode connection diagram.

【図7】電界相制御回路構成の系統図である。FIG. 7 is a system diagram of an electric field phase control circuit configuration.

【図8】電界制御パルス信号のタイムチャート図であ
る。
FIG. 8 is a time chart diagram of an electric field control pulse signal.

【図9】固定電極電界電位の電源回結線図である。FIG. 9 is a power supply connection diagram of a fixed electrode electric field potential.

【図10】回転電界相基本構成図である。FIG. 10 is a basic configuration diagram of a rotating electric field phase.

【図11】電界極の正回転電界相パターン電位推移図で
ある。
FIG. 11 is a diagram showing the transition of the positively rotating electric field phase pattern potential of the electric field pole.

【図12】電界極の逆回転電界相パターン電位推移図で
ある。
FIG. 12 is an electric field phase reverse rotation electric field phase pattern potential transition diagram.

【符号の説明】 (1) 回転子 10 回転子電極 15 スリップリング本体 11 円盤外側極板 16 回転軸 12 誘電材円盤 18 合わせマーク 13 回転円盤連結ボス 19 回転子電極接続線 14 スリップリング (2) 位置角スリット符号円盤 20 全角スリット孔 28 遠赤外投光器 21 角リセット孔 29 受光検出器 26 光検出信号 (3) 固定極 30 固定電極 34 第4電極 31 第1電極 35 固定電極取り付け板 32 第2電極 36 電極間スリット溝孔 33 第3電極 37 電極両面導通孔 (4) 電界相展開図 41 +電位 42 −電位 (5) 高電位2系統電源 50 4相接続ライン 55 FBT(6) 51 3相接続ライン 56 GND 52 2相接続ライン 57 高耐圧コンデンサー 53 1相接続ライン 58 SCRゲート 54 FBT(T) 59 電界相切り替え
(G/B) (6) 角度 60 360度 65 全角検出パルス 62 120度 66 全角分周 64 分周パルス 69 全角パルス (7) 70 リセットシフト 75 発信パルス 71 リセットシフト 76 発信及び増幅 72 正逆回転切り替え 77 高周波交流 73 全角シフト 78 高電圧(DC/24
KV) 74 速度制御シフト
[Explanation of symbols] (1) Rotor 10 Rotor electrode 15 Slip ring body 11 Disc outer electrode plate 16 Rotating shaft 12 Dielectric material disc 18 Alignment mark 13 Rotating disc connecting boss 19 Rotor electrode connecting wire 14 Slip ring (2) Position angle slit code disk 20 full-angle slit hole 28 far-infrared projector 21 angle reset hole 29 light receiving detector 26 light detection signal (3) fixed pole 30 fixed electrode 34 fourth electrode 31 first electrode 35 fixed electrode mounting plate 32 second Electrode 36 Inter-electrode slit groove 33 Third electrode 37 Electrode double-sided conduction hole (4) Electric field phase development diagram 41 + Potential 42 − Potential (5) High potential 2 system power supply 50 4 phase connection line 55 FBT (6) 51 3 phase Connection line 56 GND 52 Two-phase connection line 57 High voltage capacitor 53 1-phase connection line 58 SCR gate 54 FBT (T) 59 Electric field phase switching (G / B) (6) Angle 60 360 degrees 65 Full width detection pulse 62 120 degrees 66 Full width division 64 Division pulse 69 Full width pulse (7) 70 Reset shift 75 Transmission pulse 71 Reset shift 76 Transmission and amplification 72 Forward / reverse rotation switching 77 High-frequency AC 73 Full-width shift 78 High voltage (DC / 24
KV) 74 Speed control shift

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転子電極(10)を誘電材円盤(1
2)間に挟み密封する。回転子電極面と同位置に外側極
板(11)を円盤の両面に装着し、回転子電極毎の帯電
コンデンサーを形成する。回転子電極に直流高電圧受給
の高耐圧スリップリング(14)及び静電4相電界の位
置角スリット符号円盤(2)と回転軸に装着し、回転子
を構成する。回転子電極(10)数の倍数で、固定電極
(30)を絶縁固定板(3)の両面に、固定電極を両面
導通に構成する。固定電極間にスリット溝(36)を切
削し電極間の高耐電圧及び容量結合を小さくする機構の
静電4相電界回転機。
1. The rotor electrode (10) is connected to a dielectric material disk (1).
2) Insert and seal it. The outer electrode plates (11) are mounted on both sides of the disk at the same position as the rotor electrode surface to form a charging capacitor for each rotor electrode. The rotor electrode is attached to the high-voltage slip ring (14) for receiving a DC high voltage, the position angle slit code disk (2) of the electrostatic four-phase electric field, and the rotary shaft to form a rotor. The fixed electrodes (30) are formed on both sides of the insulating fixed plate (3) and the fixed electrodes are formed on both sides of the insulating fixed plate (3) in multiples of the number of rotor electrodes (10). An electrostatic four-phase electric field rotating machine having a mechanism for cutting a slit groove (36) between fixed electrodes to reduce high withstand voltage and capacitive coupling between the electrodes.
【請求項2】 回転子電極(10)に直流高電圧の、正
電位及び負電位各極交互に構成する。固定電極(30)
を(1。3。2。4)の並び順を一群とし、固定電極三
群連結構成に、直流高電圧の第1系統回路。第2系統回
路(5)の各電極系統回路間に、高耐電圧コンデンサー
(57)を接続し、電界相電極の静電々荷エネルギー増
容量と、電界相転換の負電位短絡電流回収及び高速電界
相転換強化の構成。請求項1記載の静電4相電界回転機
並びに電界相制御装置。
2. The rotor electrode (10) is constructed by alternately arranging positive and negative potentials of high DC voltage. Fixed electrode (30)
(1. 3. 2. 4) are arranged in one group, and the fixed electrode three groups are connected to each other. A high withstand voltage capacitor (57) is connected between the electrode system circuits of the second system circuit (5) to increase the electrostatic charge energy of the electric field phase electrode, and to recover the negative potential short-circuit current of the electric field phase conversion and the high-speed electric field. Structure of strengthening phase conversion. An electrostatic four-phase electric field rotating machine and an electric field phase controller according to claim 1.
【請求項3】 固定電極(30)の第1系統回路。第2
系統回路(5)の高周波交流回路(77)の中性点を回
路内接地機構にし、固定電極(30)に倍電圧整流の直
流高電圧と負電位短絡電流回収回路組みに、電界相パタ
ーン(正回転及び逆回転)の電界電圧を回路内で、ルー
プ状の電圧電流転換に構成し、電界相の高速転換に働か
せる。電界作用の反発及び電界吸引を回転推進の制御回
路構成(5)。回転子電極(10)に別回路倍電圧整流
の直流高電圧をブラッシュを経て供給する構成。請求項
2記載の静電4相電界回転機並びに電界相制御装置。
3. The first system circuit of the fixed electrode (30). Second
An electric field phase pattern ( Electric field voltage (forward rotation and reverse rotation) is configured in the circuit to form a loop-shaped voltage-current conversion, which works for high-speed conversion of the electric field phase. Control circuit configuration for repulsion of electric field action and electric field attraction (5). A structure in which a DC high voltage for another circuit voltage doubler rectification is supplied to the rotor electrode (10) through brushing. An electrostatic four-phase electric field rotating machine and an electric field phase control device according to claim 2.
【請求項4】 静電4相電界開始及び回転推移による同
期回転を、位置角スリット符号円盤(2)と固定電極電
界相位置角(60)の光検出パルス信号(8)、全角パ
ルス信号(8)及び角リセット(8)の信号を取り出
し、全角パルス信号(8)を分周回路(64。66)で
検出角度を倍のパルス信号に変換し、全角シフト回路
(71)に入力する。角リセット信号(8)を正回転及
び逆回転(手動選択切り替え)シフト回路(71)に入
力し、全角相シフト回路と速度可変シフト回路(74)
えクリヤパルス(8。6−8)を制御に入力する。2つ
のクリヤパルス(71)による電界相開始位置を正回転
及び逆回転の電界相パターン(8)選択設定の静電4相
電界回転機並びに電界相制御装置。
4. An electrostatic four-phase electric field start and a synchronous rotation by a transition of rotation are used to detect a position angle slit code disk (2) and a fixed electrode electric field phase position angle (60) with a light detection pulse signal (8) and a full-angle pulse signal (8). 8) and angle reset (8) signals are taken out, the full-width pulse signal (8) is converted into a pulse signal whose detection angle is doubled by the frequency dividing circuit (64.66), and is input to the full-angle shift circuit (71). The angle reset signal (8) is input to the forward rotation and reverse rotation (manual selection switching) shift circuit (71), and the full-angle phase shift circuit and the speed variable shift circuit (74) are input.
E Clear pulse (8.6-6) is input to the control. An electrostatic four-phase electric field rotating machine and an electric field phase control device in which an electric field phase starting position by two clear pulses (71) is set to forward and reverse electric field phase patterns (8) are selectively set.
JP22240294A 1994-08-11 1994-08-11 Electrostatic four-phase electric-field rotating machine and electric-field phase control apparatus Pending JPH0866058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22240294A JPH0866058A (en) 1994-08-11 1994-08-11 Electrostatic four-phase electric-field rotating machine and electric-field phase control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22240294A JPH0866058A (en) 1994-08-11 1994-08-11 Electrostatic four-phase electric-field rotating machine and electric-field phase control apparatus

Publications (1)

Publication Number Publication Date
JPH0866058A true JPH0866058A (en) 1996-03-08

Family

ID=16781818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22240294A Pending JPH0866058A (en) 1994-08-11 1994-08-11 Electrostatic four-phase electric-field rotating machine and electric-field phase control apparatus

Country Status (1)

Country Link
JP (1) JPH0866058A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353276B1 (en) * 1999-09-15 2002-03-05 Daniel Gendron High efficiency alternating and direct current electrostatic motor
EP2040366A1 (en) * 2006-06-16 2009-03-25 Shinsei Corporation Electrostatic motor
EP2845291A4 (en) * 2012-05-04 2016-01-20 Weston Johnson Electrostatic machine
WO2016187102A1 (en) * 2015-05-18 2016-11-24 Wisconsin Alumni Research Foundation Peg-style electrostatic rotating machine employing dielectric sleeves
CN106253738A (en) * 2016-08-12 2016-12-21 王海清 A kind of High Density Charge electric field generator
US20210242805A1 (en) * 2020-01-03 2021-08-05 C-Motive Technologies, Inc. Electrostatic motor
CN114362583A (en) * 2022-03-11 2022-04-15 东莞市元则电器有限公司 Relay driving motor based on electric field force and use method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353276B1 (en) * 1999-09-15 2002-03-05 Daniel Gendron High efficiency alternating and direct current electrostatic motor
EP2040366A1 (en) * 2006-06-16 2009-03-25 Shinsei Corporation Electrostatic motor
EP2040366A4 (en) * 2006-06-16 2012-07-04 Shinsei Corp Electrostatic motor
US8278797B2 (en) 2006-06-16 2012-10-02 Shinsei Corporation Electrostatic motor
US8779647B2 (en) 2006-06-16 2014-07-15 Shinsei Corporation Electrostatic motor
EP2845291A4 (en) * 2012-05-04 2016-01-20 Weston Johnson Electrostatic machine
WO2016187102A1 (en) * 2015-05-18 2016-11-24 Wisconsin Alumni Research Foundation Peg-style electrostatic rotating machine employing dielectric sleeves
US10243485B2 (en) 2015-05-18 2019-03-26 Wisconsin Alumni Research Foundation Peg-style electrostatic rotating machine employing dielectric sleeves
CN106253738A (en) * 2016-08-12 2016-12-21 王海清 A kind of High Density Charge electric field generator
US20210242805A1 (en) * 2020-01-03 2021-08-05 C-Motive Technologies, Inc. Electrostatic motor
US11811334B2 (en) 2020-01-03 2023-11-07 C-Motive Technologies, Inc. Electrostatic motor
US11870368B2 (en) * 2020-01-03 2024-01-09 C-Motive Technologies, Inc. Electrostatic motor
CN114362583A (en) * 2022-03-11 2022-04-15 东莞市元则电器有限公司 Relay driving motor based on electric field force and use method thereof

Similar Documents

Publication Publication Date Title
US10505487B2 (en) Motor/generator system and fault tolerant control method
US5381081A (en) Switched reluctance generator for generating AC power
EP0467517B1 (en) Dual-stator induction synchronous motor
US6384564B1 (en) Electrical machines
US5404091A (en) Switched reluctance generator system with self-excitation capability during load faults
JPH04331448A (en) Synchronous motor
JP4124425B2 (en) Electric motor and driving device thereof
CN108964392A (en) The harmonic field of a kind of double three-phase synchronous motors and the motor orients brushless excitation method
JPH0866058A (en) Electrostatic four-phase electric-field rotating machine and electric-field phase control apparatus
CN110311522A (en) A kind of four symmetrical electric excitation biconvex electrode electric machines
CN108880158A (en) The harmonic field of synchronous motor and the motor with discrete orthogonal harmonic winding orients brushless excitation method
CN101331674A (en) Electronic commutator circuits
US11146199B2 (en) Multi-phase motor system and control method
JPH08322289A (en) Power circuit device for two-phase asynchronous motor
CN104716808A (en) Multiphase electro-magnetic synchronous motor
Zadeh et al. New converter for switched reluctance motor drive with wide speed range operation
CN101364749A (en) Double-salient fault tolerant electricity generator of five phase 10k/8Nk construction
CN101453184B (en) Speed regulating system for switch reluctance motor
WO2020049719A1 (en) Motor drive device
Thong et al. Two phase switched reluctance drive with voltage doubler and low dc link capacitance
KR100259805B1 (en) Structure for single phase switched reluctance motor
JPS6387181A (en) Electrostatic 4-phase electric field rotating device
KR100304555B1 (en) Driving circuit for switched reluctance motor
CN201976057U (en) Starting circuit capable of controlling permanent magnet synchronous motor
JPH0633709Y2 (en) Pulse high voltage generator