JPH0866002A - Superconducting electric rotating machine - Google Patents

Superconducting electric rotating machine

Info

Publication number
JPH0866002A
JPH0866002A JP6189598A JP18959894A JPH0866002A JP H0866002 A JPH0866002 A JP H0866002A JP 6189598 A JP6189598 A JP 6189598A JP 18959894 A JP18959894 A JP 18959894A JP H0866002 A JPH0866002 A JP H0866002A
Authority
JP
Japan
Prior art keywords
air gap
superconducting
armature winding
axial length
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6189598A
Other languages
Japanese (ja)
Inventor
Toshikazu Matsumoto
壽和 松本
Tadashi Tokumasu
正 徳増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP6189598A priority Critical patent/JPH0866002A/en
Publication of JPH0866002A publication Critical patent/JPH0866002A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE: To design a small-sized, light-weight and low reactance machine by setting the axial length at the linear part of an air gap armature winding equal to or shorter than that of the coil of a superconducting field winding closest to the pole side. CONSTITUTION: The axial length ('A') at the linear part of a honeycomb air gap armature winding 5 is set shorter than that ('B') of the coil 2a of a saddle type superconducting field winding 2 closest to the pole side and set substantially equal to that of the coil 2a at the linear part thereof. This structure realizes a generator producing higher output with the same constitution and synchronous reactance. In other words, a small-sized, light-weight and low reactance machine can be designed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鞍型の超電導界磁巻線
を有する回転子と、亀甲型の空隙電機子巻線を有する固
定子とを備えて成る、例えば超電導発電機等の超電導回
転電機に係り、特に小型で軽量かつ低リアクタンス機が
設計できるようにした超電導回転電機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a rotor having a saddle type superconducting field winding and a stator having a hexagonal air gap armature winding. The present invention relates to a rotating electric machine, and more particularly to a superconducting rotating electric machine that enables designing a small, lightweight and low reactance machine.

【0002】[0002]

【従来の技術】最近、超電導回転電機の一つとして、回
転子に鞍型の超電導界磁巻線を用い、固定子に亀甲型の
空隙電機子巻線を用いた、超電導回転電機が開発されて
きている。
2. Description of the Related Art Recently, as one of superconducting rotating electric machines, a superconducting rotating electric machine using a saddle type superconducting field winding for a rotor and a hexagonal air gap armature winding for a stator has been developed. Is coming.

【0003】図6は、この種の従来の超電導発電機の構
成例を示す縦断面図である。図6において、回転子1
は、回転クライオスタットからなり、鞍型の超電導界磁
巻線2はクライオスタット内部で、巻線取付軸3により
支持されている。
FIG. 6 is a vertical cross-sectional view showing a structural example of a conventional superconducting generator of this type. In FIG. 6, the rotor 1
Is a rotary cryostat, and the saddle type superconducting field winding 2 is supported by a winding mounting shaft 3 inside the cryostat.

【0004】一方、固定子4は、主として亀甲型の空隙
電機子巻線5と磁気シールド6とからなり、空隙電機子
巻線5は磁気シールド6の内径側に、絶縁構造材7を介
して支持されている。
On the other hand, the stator 4 is mainly composed of a hexagonal type air gap armature winding 5 and a magnetic shield 6, and the air gap armature winding 5 is provided on the inner diameter side of the magnetic shield 6 with an insulating structure 7 interposed therebetween. It is supported.

【0005】図7は、軸に直角な面における超電導界磁
巻線2の構成例を示す横断面図である。図7に示すよう
に、超電導界磁巻線2は、通常1極当り数個のコイルよ
り形成され、ここでは磁極に近い方から順に2a,2
b,2c,2d,2eとしている。
FIG. 7 is a cross-sectional view showing an example of the structure of the superconducting field winding 2 on a plane perpendicular to the axis. As shown in FIG. 7, the superconducting field winding 2 is usually formed by several coils per pole, and here, 2a, 2 are arranged in order from the side closer to the magnetic pole.
b, 2c, 2d and 2e.

【0006】また、図8は、超電導界磁巻線2の構成例
を示す展開図である。図8に示すように、超電導界磁巻
線2は、軸に平行な直線部2sと、曲線からなる端部2
tとからなっている。
Further, FIG. 8 is a development view showing a structural example of the superconducting field winding 2. As shown in FIG. 8, the superconducting field winding 2 has a linear portion 2s parallel to the axis and an end portion 2 formed of a curved line.
It consists of t and.

【0007】さらに、図9は、空隙電機子巻線5の構成
例を示す展開図である。図9に示すように、空隙電機子
巻線5は、軸に平行な直線部5sと、接続のための曲線
からなる端部5tとからなっている。
Further, FIG. 9 is a development view showing a structural example of the air gap armature winding 5. As shown in FIG. 9, the air gap armature winding 5 includes a straight portion 5s parallel to the axis and an end portion 5t formed of a curved line for connection.

【0008】ところで、上述したような超電導回転電機
は、例えばその用途の一つである発電機として、効率の
向上と共に、大きな界磁起磁力に基づく小型・軽量化、
および低リアクタンスによる系統安定度の向上が期待さ
れてきている。従って、コンパクトな低リアクタンス機
を設計することは重要な課題であるが、これら超電導界
磁巻線2と空隙電機子巻線5の軸方向長さに関する寸法
関係については、現在のところ検討されていないのが実
情である。
By the way, the above-mentioned superconducting rotary electric machine, for example, as one of the applications thereof, is a generator, which is improved in efficiency and is reduced in size and weight based on a large field magnetomotive force.
Moreover, improvement of system stability due to low reactance is expected. Therefore, designing a compact low-reactance machine is an important issue, but the dimensional relationship of the superconducting field winding 2 and the air gap armature winding 5 with respect to the axial length is currently studied. The reality is that there is none.

【0009】[0009]

【発明が解決しようとする課題】以上のように、従来の
超電導回転電機においては、小型で軽量で低リアクタン
スな設計とすることが難しいという問題があった。本発
明の目的は、小型でかつ軽量しかも低リアクタンス機の
設計が可能な超電導回転電機を提供することにある。
As described above, the conventional superconducting rotating electric machine has a problem in that it is difficult to design a compact, lightweight and low reactance. An object of the present invention is to provide a superconducting rotating electric machine that is small in size, light in weight and capable of designing a low reactance machine.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、鞍型の超電導界磁巻線を有する回転子と、亀甲型
の空隙電機子巻線を有する固定子とを備えて成る超電導
回転電機において、まず、請求項1に係る発明では、空
隙電機子巻線の直線部軸方向長さ寸法を、超電導界磁巻
線の最も磁極側のコイルの軸方向長さ寸法以下とするよ
うにしている。
In order to achieve the above object, a superconducting device comprising a rotor having a saddle type superconducting field winding and a stator having a hexagonal air gap armature winding. In the rotating electric machine, first, in the invention according to claim 1, the axial length dimension of the linear portion of the air gap armature winding is set to be equal to or less than the axial length dimension of the coil on the most magnetic pole side of the superconducting field winding. I have to.

【0011】また、請求項2に係る発明では、空隙電機
子巻線の直線部軸方向長さ寸法を、超電導界磁巻線の最
も磁極側のコイルの軸方向長さ寸法よりも短くし、かつ
超電導界磁巻線の最も磁極側のコイルの直線部軸方向長
さ寸法とほぼ等しくするようにしている。
In the invention according to claim 2, the axial length of the air gap armature winding in the straight portion is made shorter than the axial length of the coil closest to the magnetic pole of the superconducting field winding. In addition, the length of the coil on the magnetic pole side of the superconducting field winding is set to be substantially equal to the axial length of the coil.

【0012】さらに、請求項3に係る発明では、空隙電
機子巻線の直線部軸方向長さ寸法を、超電導界磁巻線の
最も磁極側のコイルの軸方向長さ寸法とほぼ等しくする
ようにしている。
Further, in the invention according to claim 3, the axial length of the air gap armature winding is made substantially equal to the axial length of the coil closest to the magnetic pole of the superconducting field winding. I have to.

【0013】[0013]

【作用】従って、本発明の超電導回転電機においては、
空隙電機子巻線の直線部軸方向長さ寸法を、超電導界磁
巻線の最も磁極側のコイルの軸方向長さ寸法以下とする
ことにより、同一体格・同一同期リアクタンスで、出力
の大きな回転電機が得られる、すなわち小型で軽量で低
リアクタンス機の設計が可能となる。
Therefore, in the superconducting rotating electric machine of the present invention,
By setting the axial length of the air gap armature winding in the axial direction to be less than or equal to the axial length of the coil closest to the magnetic pole of the superconducting field winding, the same physical size, the same synchronous reactance, and large output rotation An electric machine can be obtained, that is, a small-sized, lightweight and low-reactance machine can be designed.

【0014】[0014]

【実施例】以下、本発明の一実施例について図面を参照
して詳細に説明する。図1は、本発明による超電導発電
機の構成例を示す縦断面模式図であり、図6ないし図9
と同一要素には同一符号を付してその説明を省略し、こ
こでは異なる部分についてのみ述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic vertical cross-sectional view showing a configuration example of a superconducting generator according to the present invention.
The same elements as those of are denoted by the same reference numerals, and the description thereof will be omitted. Only different portions will be described here.

【0015】すなわち、本実施例の超電導発電機は、図
1に示すように、亀甲型の空隙電機子巻線5の直線部軸
方向長さ寸法(図示“A”寸法)を、鞍型の超電導界磁
巻線2の最も磁極側のコイル2aの軸方向長さ寸法(図
示“B”寸法)よりも短くし、かつ超電導界磁巻線2の
最も磁極側のコイル2aの直線部軸方向長さ寸法とほぼ
等しくするようにしている。
That is, in the superconducting power generator of this embodiment, as shown in FIG. 1, the linear arm portion axial length dimension (dimension "A" dimension in the figure) of the hexagonal air gap armature winding 5 is set to the saddle type. It is shorter than the axial length dimension (dimension "B" dimension in the drawing) of the coil 2a closest to the magnetic pole of the superconducting field winding 2, and the axial direction of the straight portion of the coil 2a closest to the magnetic pole of the superconducting field winding 2 It is designed to be approximately equal to the length dimension.

【0016】次に、以上のように構成した本実施例の超
電導発電機においては、亀甲型の空隙電機子巻線5の直
線部軸方向長さ寸法“A”を、鞍型の超電導界磁巻線2
の最も磁極側のコイル2aの軸方向長さ寸法“B”より
も短くし、かつ超電導界磁巻線2の最も磁極側のコイル
2aの直線部軸方向長さ寸法とほぼ等しくしていること
により、同一体格・同一同期リアクタンスで出力の大き
な発電機機が得られる。換言すれば、小型で軽量で低リ
アクタンス機の設計が可能となる。
Next, in the superconducting generator of the present embodiment configured as described above, the length dimension "A" of the straight portion in the axial direction of the hexagonal air gap armature winding 5 is set to the saddle type superconducting field. Winding 2
Is shorter than the axial length dimension "B" of the coil 2a closest to the magnetic pole and is substantially equal to the axial length dimension of the linear portion of the coil 2a closest to the magnetic pole of the superconducting field winding 2. As a result, it is possible to obtain a generator having a large output with the same build and the same synchronous reactance. In other words, it is possible to design a compact, lightweight and low reactance machine.

【0017】以下に、この小型・軽量・低リアクタンス
機の設計のために上記のような寸法関係とする根拠につ
いて説明する。図2は、空隙電機子巻線5位置に超電導
界磁巻線2が作る磁束分布密度(実線)および空隙電機
子巻線鎖交磁束量(破線)の一例を示す図である。
The grounds for establishing the above-described dimensional relationship for the design of this small, lightweight and low reactance machine will be described below. FIG. 2 is a diagram showing an example of magnetic flux distribution density (solid line) and air gap armature winding interlinkage magnetic flux amount (broken line) created by the superconducting field winding 2 at the position of the air gap armature winding 5.

【0018】また、図3は、空隙電機子巻線5の構成例
を示す展開図であり、空隙電機子巻線5の磁束鎖交面積
を斜線部で示している。図3から、空隙電機子巻線5の
端部5tにおいては、空隙電機子巻線5の直線部5sに
比べて、磁束鎖交面積が小さくなることがわかる。
FIG. 3 is a development view showing an example of the structure of the air gap armature winding 5, and the magnetic flux linkage area of the air gap armature winding 5 is shown by the hatched portion. From FIG. 3, it can be seen that the magnetic flux linkage area at the end portion 5t of the air gap armature winding 5 is smaller than that at the straight portion 5s of the air gap armature winding 5.

【0019】空隙電機子巻線5の直線部軸方向長さが無
限大であれば、空隙電機子巻線5と鎖交する磁束量は、
図2に実線で示した曲線の下側で両軸と囲まれる部分の
面積に相当する。実際には、空隙電機子巻線5の直線部
軸方向長さは有限であるので、空隙電機子巻線5の端部
5tにおいて直線部5sと比べて磁束鎖交面積が小さい
分だけ鎖交磁束量が減少する。
If the length of the air gap armature winding 5 in the axial direction is infinite, the amount of magnetic flux interlinking with the air gap armature winding 5 is
It corresponds to the area of the portion surrounded by both axes below the curve shown by the solid line in FIG. In reality, since the axial length of the air gap armature winding 5 in the linear portion is finite, at the end portion 5t of the air gap armature winding 5, the magnetic flux linkage area is smaller than that of the linear portion 5s. The amount of magnetic flux decreases.

【0020】かかる様子を2つのケースについて図2に
示す。一つ(以下、ケースAと称する)は、本実施例に
よる一例として、空隙電機子巻線5の直線部軸方向長さ
寸法が、超電導界磁巻線2の最も磁極側のコイル2aの
直線部軸方向長さ寸法にほぼ等しい場合であり破線a
で、もう一つ(以下、ケースBと称する)は、本実施例
によらない一例として、空隙電機子巻線の直線部軸方向
長さ寸法が、超電導界磁巻線の最も磁極側のコイルの直
線部軸方向長さ寸法にほぼ等しい場合であり破線bでそ
れぞれ示す。
This situation is shown in FIG. 2 for two cases. One (hereinafter, referred to as case A) is, as an example according to the present embodiment, the linear length of the air gap armature winding 5 in the axial direction is the straight line of the coil 2a of the superconducting field winding 2 that is closest to the magnetic pole. This is the case where the length is approximately equal to the axial length of the part, and the broken line a
Another example (hereinafter referred to as case B) is, as an example not according to the present embodiment, a coil in which the linear length in the axial direction of the air gap armature winding is the most magnetic pole side coil of the superconducting field winding. Is substantially equal to the axial length dimension of the straight line portion, which is shown by a broken line b.

【0021】すなわち、各破線の下側で両軸と囲まれる
部分の面積が、それぞれ空隙電機子巻線鎖交磁束量を示
し、空隙電機子巻線誘起電圧に相当する。図2から、ケ
ースAはケースBに比べて、空隙電機子巻線鎖交磁束
量、つまり空隙電機子巻線誘起電圧は小さいが、その減
少分は大きくないことがわかる。この空隙電機子巻線誘
起電圧を図4の下部横軸にとり、それぞれVa,Vbと
して示す。
That is, the area of the portion surrounded by both axes below each broken line indicates the amount of interlinkage magnetic flux in the air gap armature winding, and corresponds to the air gap armature winding induced voltage. It can be seen from FIG. 2 that the case A has a smaller amount of air-gap armature winding interlinkage magnetic flux, that is, the air-gap armature winding induced voltage, but the amount of decrease is not large as compared with the case B. This void armature winding induced voltage is plotted on the lower horizontal axis of FIG. 4 and shown as Va and Vb, respectively.

【0022】一方、同期リアクタンスの絶対値は、空隙
電機子巻線の有効長さに比例して大きくなる。従って、
ケースAはケースBに比べて、空隙電機子巻線の直線部
軸方向長さが短いため、同期リアクタンスの絶対値は小
さくなる。各同期リアクタンスの絶対値を図4の上部横
軸にとり、それぞれXda,Xdbとして示す。
On the other hand, the absolute value of the synchronous reactance increases in proportion to the effective length of the air gap armature winding. Therefore,
In case A, the absolute value of the synchronous reactance is smaller than that in case B because the length of the air gap armature winding in the linear portion axial direction is shorter. The absolute value of each synchronous reactance is plotted on the upper horizontal axis of FIG. 4 and shown as Xda and Xdb, respectively.

【0023】図4において、電機子電流を縦軸にとり、
p.u.値で表わした同期リアクタンス一定の時の電機
子電流を上記各ケースについて求めると、電機子電流は
それぞれ、上記上部横軸上の点と原点を結ぶ直線と、上
記下部横軸上の点から当該軸に立てた垂線との交点か
ら、上記縦軸に下ろした垂線と、上記縦軸との交点で表
わされる。
In FIG. 4, the vertical axis represents the armature current,
p. u. When the armature current at a constant synchronous reactance expressed by a value is obtained for each of the above cases, the armature current is calculated from the straight line connecting the point on the upper horizontal axis and the origin and the point on the lower horizontal axis. It is represented by the intersection point of the vertical line drawn from the intersection point with the vertical line standing on the axis and the vertical axis.

【0024】従って、図4において発電機出力は、上記
各ケースについてそれぞれ、上記下部横軸上に示された
線分と上記立て軸上に示された線分を2辺とする長方形
の面積で表わされる。上記ケースAは、ケースBに比べ
て発電機出力が大きい。
Therefore, in FIG. 4, the generator output is a rectangular area having two sides of the line segment shown on the lower horizontal axis and the line segment shown on the vertical axis in each of the above cases. Represented. The case A has a larger generator output than the case B.

【0025】以上のことから、次のようなことがわか
る。すなわち、空隙電機子巻線5位置に超電導界磁巻線
2が作る磁束の軸方向分布は、超電導界磁巻線2の最も
磁極側のコイル2aの軸方向長さを越えると急激に減少
するため、空隙電機子巻線5の直線部軸方向長さを、超
電導界磁巻線2の最も磁極側のコイル2aの軸方向長さ
を越えて長くして、その磁束鎖交面積を大きくしても、
空隙電機子巻線5誘起電圧はそれほど大きくならない。
From the above, the following can be understood. That is, the axial distribution of the magnetic flux generated by the superconducting field winding 2 at the position of the air gap armature winding 5 sharply decreases when the axial length of the coil 2a closest to the magnetic pole of the superconducting field winding 2 is exceeded. Therefore, the length of the air gap armature winding 5 in the linear portion in the axial direction is made longer than the axial length of the coil 2a on the most magnetic pole side of the superconducting field winding 2 to increase the flux linkage area. Even
The induced voltage in the air gap armature winding 5 does not become so large.

【0026】一方、同期リアクタンスの絶対値は、空隙
電機子巻線5の有効長さに比例して大きくなるため、
p.u.値で表わした同期リアクタンス一定の時の電機
子電流は、空隙電機子巻線5の直線部軸方向長さを長く
すると、それにほぼ反比例して減少する。
On the other hand, since the absolute value of the synchronous reactance increases in proportion to the effective length of the air gap armature winding 5,
p. u. The armature current represented by the value when the synchronous reactance is constant decreases substantially in inverse proportion to the length of the air gap armature winding 5 in the axial direction of the straight portion.

【0027】従って、発電機出力は、空隙電機子巻線5
の直線部軸方向長さ寸法“A”を、超電導界磁巻線2の
最も磁極側のコイル2aの軸方向長さ寸法“B”よりも
短くした場合に最大となる。
Therefore, the generator output is the air gap armature winding 5
The maximum value is obtained when the axial length dimension "A" of the linear portion is shorter than the axial length dimension "B" of the coil 2a on the most magnetic pole side of the superconducting field winding 2.

【0028】上述したように、本実施例では、鞍型の超
電導界磁巻線を有する回転子と、亀甲型の空隙電機子巻
線を有する固定子とを備えて成る超電導発電機におい
て、亀甲型の空隙電機子巻線5の直線部軸方向長さ寸法
“A”を、鞍型の超電導界磁巻線2の最も磁極側のコイ
ル2aの軸方向長さ寸法“B”よりも短くし、かつ超電
導界磁巻線2の最も磁極側のコイル2aの直線部軸方向
長さ寸法とほぼ等しくするようにしたものである。
As described above, in the present embodiment, in the superconducting generator including the rotor having the saddle type superconducting field winding and the stator having the turtle shell type air gap armature winding, the turtle shell The axial length dimension "A" of the linear gap axial armature winding 5 is made shorter than the axial length dimension "B" of the coil 2a closest to the magnetic pole of the saddle type superconducting field winding 2. In addition, the length of the coil 2a on the most magnetic pole side of the superconducting field winding 2 is made substantially equal to the axial length of the coil.

【0029】従って、同一体格・同一同期リアクタンス
で、出力の大きな発電機が得られる、換言すれば、小型
で軽量で低リアクタンス機の設計が可能となる。これに
より、超電導発電機に期待されているコンパクト、高効
率、系統安定度向上のメリットを最大限に発揮すること
ができる。
Therefore, it is possible to obtain a generator having the same physical size and the same synchronous reactance and a large output. In other words, it is possible to design a small-sized, lightweight and low-reactance machine. As a result, the advantages of compactness, high efficiency, and improvement of system stability expected of the superconducting generator can be maximized.

【0030】尚、本発明は上記実施例に限定されるもの
ではなく、次のようにしても同様に実施できるものであ
る。上記実施例では、亀甲型の空隙電機子巻線5の直線
部軸方向長さ寸法“A”を、超電導界磁巻線2の最も磁
極側のコイル2aの直線部軸方向長さ寸法とほぼ等しく
する場合について説明したが、これに限らず、例えば図
5に縦断面模式図を示すように、亀甲型の空隙電機子巻
線5の直線部軸方向長さ寸法“A”を、鞍型の超電導界
磁巻線2の最も磁極側のコイル2aの軸方向長さ寸法
“B”とほぼ等しくするようにしてもよく、この場合に
も、前述と同様の作用効果が得られるものである。
The present invention is not limited to the above embodiment, but can be implemented in the same manner as described below. In the above-described embodiment, the straight-line axial length dimension “A” of the hexagonal air-gap armature winding 5 is approximately equal to the straight-line axial length dimension of the coil 2a closest to the magnetic pole of the superconducting field winding 2. Although the case where they are made equal has been described, the present invention is not limited to this and, for example, as shown in a schematic vertical cross-sectional view in FIG. The axial length dimension "B" of the coil 2a on the most magnetic pole side of the superconducting field winding 2 may be made substantially equal to this case, and in this case also, the same effect as described above can be obtained. .

【0031】すなわち、発電機出力が最大になる寸法関
係は、指定リアクタンスと超電導界磁巻線2の磁束分布
によって決まる。超電導界磁巻線2の最も磁極側のコイ
ル2aの軸方向長さより外側では、超電導界磁巻線2の
磁束分布が急激に減少することから、空隙電機子巻線5
の直線部軸方向長さ寸法“A”を、超電導界磁巻線2の
最も磁極側のコイル2aの軸方向長さ寸法“B”より大
きくしても、発電機出力の最大値は得られない。
That is, the dimensional relationship that maximizes the generator output is determined by the designated reactance and the magnetic flux distribution of the superconducting field winding 2. Since the magnetic flux distribution of the superconducting field winding 2 sharply decreases outside the axial length of the coil 2a on the most magnetic pole side of the superconducting field winding 2, the air gap armature winding 5
The maximum value of the generator output can be obtained even if the axial length dimension "A" of the above is larger than the axial length dimension "B" of the coil 2a on the most magnetic pole side of the superconducting field winding 2. Absent.

【0032】通常、超電導発電機に要求される低リアク
タンス値においては、空隙電機子巻線5の直線部軸方向
長さ寸法が、超電導界磁巻線2の磁束分布の減少が始ま
る超電導界磁巻線2の最も磁極側のコイル2aの直線部
軸方向長さ寸法の80%以上、コイル2aの軸方向長さ
寸法以下において、発電機出力の最大値が得られること
になる。
Usually, at the low reactance value required for a superconducting generator, the length dimension of the air gap armature winding 5 in the axial direction of the linear portion is such that the magnetic flux distribution of the superconducting field winding 2 begins to decrease. The maximum value of the generator output is obtained at 80% or more of the axial length dimension of the linear portion of the coil 2a closest to the magnetic pole of the winding 2 and not more than the axial length dimension of the coil 2a.

【0033】[0033]

【発明の効果】以上説明したように本発明によれば、鞍
型の超電導界磁巻線を有する回転子と、亀甲型の空隙電
機子巻線を有する固定子とを備えて成る超電導回転電機
において、空隙電機子巻線の直線部軸方向長さ寸法を、
超電導界磁巻線の最も磁極側のコイルの軸方向長さ寸法
以下とするようにしたので、小型でかつ軽量しかも低リ
アクタンス機の設計が可能な超電導回転電機が提供でき
る。
As described above, according to the present invention, a superconducting rotating electric machine comprising a rotor having a saddle type superconducting field winding and a stator having a hexagonal air gap armature winding. In, the linear dimension of the air gap armature winding in the axial direction is
Since the dimension is set to be equal to or less than the axial length of the coil on the most magnetic pole side of the superconducting field winding, it is possible to provide a superconducting rotating electric machine that is small in size, lightweight, and capable of designing a low reactance machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超電導発電機の一実施例を示す縦
断面模式図。
FIG. 1 is a schematic vertical sectional view showing an embodiment of a superconducting generator according to the present invention.

【図2】同実施例における空隙電機子巻線位置に超電導
界磁巻線が作る磁束分布密度および空隙電機子巻線鎖交
磁束量の一例を示す図。
FIG. 2 is a view showing an example of a magnetic flux distribution density and a gap armature winding interlinkage magnetic flux amount created by a superconducting field winding at a gap armature winding position in the embodiment.

【図3】同実施例における空隙電機子巻線の構成例を示
す展開図。
FIG. 3 is a development view showing a configuration example of an air gap armature winding in the same embodiment.

【図4】同実施例における空隙電機子巻線鎖交磁束量と
同期リアクタンスから発電機出力を求めるための一例を
示す特性図。
FIG. 4 is a characteristic diagram showing an example for obtaining a generator output from an air gap armature winding interlinkage magnetic flux amount and a synchronous reactance in the example.

【図5】本発明による超電導発電機の他の実施例を示す
縦断面模式図。
FIG. 5 is a schematic vertical sectional view showing another embodiment of the superconducting generator according to the present invention.

【図6】従来の超電導発電機の構成例を示す縦断面図。FIG. 6 is a vertical cross-sectional view showing a configuration example of a conventional superconducting generator.

【図7】軸に直角な面における超電導界磁巻線の構成例
を示す横断面図。
FIG. 7 is a transverse cross-sectional view showing a configuration example of a superconducting field winding in a plane perpendicular to the axis.

【図8】超電導界磁巻線の構成例を示す展開図。FIG. 8 is a development view showing a configuration example of a superconducting field winding.

【図9】空隙電機子巻線の構成例を示す展開図。FIG. 9 is a development view showing a configuration example of an air gap armature winding.

【符号の説明】[Explanation of symbols]

1…回転子、2…鞍型の超電導界磁巻線、2a,2b,
2c,2d,2e…コイル、2s…超電導界磁巻線直線
部、2t…超電導界磁巻線端部、3…巻線取付軸、4…
固定子、5…亀甲型の空隙電機子巻線、5s…空隙電機
子巻線直線部、5t…空隙電機子巻線端部、6…磁気シ
ールド、7…絶縁構造材。
1 ... Rotor, 2 ... Saddle-type superconducting field winding, 2a, 2b,
2c, 2d, 2e ... Coil, 2s ... Superconducting field winding straight line portion, 2t ... Superconducting field winding end portion, 3 ... Winding attachment axis, 4 ...
Stator, 5 ... Hexagonal type air gap armature winding, 5s ... Air gap armature winding straight portion, 5t ... Air gap armature winding end portion, 6 ... Magnetic shield, 7 ... Insulation structural material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鞍型の超電導界磁巻線を有する回転子
と、亀甲型の空隙電機子巻線を有する固定子とを備えて
成る超電導回転電機において、 前記空隙電機子巻線の直線部軸方向長さ寸法を、前記超
電導界磁巻線の最も磁極側のコイルの軸方向長さ寸法以
下とするようにしたことを特徴とする超電導回転電機。
1. A superconducting rotating electric machine comprising a rotor having a saddle type superconducting field winding and a stator having a hexagonal air gap armature winding, wherein a straight portion of the air gap armature winding is provided. A superconducting rotating electric machine, wherein an axial length dimension is set to be equal to or less than an axial length dimension of a coil closest to a magnetic pole of the superconducting field winding.
【請求項2】 鞍型の超電導界磁巻線を有する回転子
と、亀甲型の空隙電機子巻線を有する固定子とを備えて
成る超電導回転電機において、 前記空隙電機子巻線の直線部軸方向長さ寸法を、前記超
電導界磁巻線の最も磁極側のコイルの軸方向長さ寸法よ
りも短くし、かつ前記超電導界磁巻線の最も磁極側のコ
イルの直線部軸方向長さ寸法とほぼ等しくするようにし
たことを特徴とする超電導回転電機。
2. A superconducting rotating electric machine comprising a rotor having a saddle type superconducting field winding and a stator having a hexagonal air gap armature winding, wherein a straight portion of the air gap armature winding is provided. The axial length dimension is made shorter than the axial length dimension of the most magnetic pole side coil of the superconducting field winding, and the linear portion axial length of the most magnetic pole side coil of the superconducting field winding is also set. A superconducting rotating electric machine characterized by being made substantially equal in size.
【請求項3】 鞍型の超電導界磁巻線を有する回転子
と、亀甲型の空隙電機子巻線を有する固定子とを備えて
成る超電導回転電機において、 前記空隙電機子巻線の直線部軸方向長さ寸法を、前記超
電導界磁巻線の最も磁極側のコイルの軸方向長さ寸法と
ほぼ等しくするようにしたことを特徴とする超電導回転
電機。
3. A superconducting rotary electric machine comprising a rotor having a saddle type superconducting field winding and a stator having a hexagonal air gap armature winding, wherein a straight portion of the air gap armature winding is provided. A superconducting rotating electric machine, wherein an axial length dimension thereof is made substantially equal to an axial length dimension of a coil closest to a magnetic pole of the superconducting field winding.
JP6189598A 1994-08-11 1994-08-11 Superconducting electric rotating machine Pending JPH0866002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6189598A JPH0866002A (en) 1994-08-11 1994-08-11 Superconducting electric rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6189598A JPH0866002A (en) 1994-08-11 1994-08-11 Superconducting electric rotating machine

Publications (1)

Publication Number Publication Date
JPH0866002A true JPH0866002A (en) 1996-03-08

Family

ID=16243997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6189598A Pending JPH0866002A (en) 1994-08-11 1994-08-11 Superconducting electric rotating machine

Country Status (1)

Country Link
JP (1) JPH0866002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057087A (en) * 2013-11-05 2014-03-27 Sumitomo Electric Ind Ltd Rotary device
US8886266B2 (en) 2010-06-21 2014-11-11 Sumitomo Electric Industries, Ltd. Superconducting coil, rotating device, and superconducting coil manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8886266B2 (en) 2010-06-21 2014-11-11 Sumitomo Electric Industries, Ltd. Superconducting coil, rotating device, and superconducting coil manufacturing method
JP2014057087A (en) * 2013-11-05 2014-03-27 Sumitomo Electric Ind Ltd Rotary device

Similar Documents

Publication Publication Date Title
Aydin et al. Optimum design and 3D finite element analysis of nonslotted and slotted internal rotor type axial flux PM disc machines
WO2005112584A2 (en) Slotless ac induction motor
CN113300567B (en) Motor based on improve Halbach magnetization
JP2000209825A (en) Permanent magnet generator
Cheng et al. Design and analysis of a novel stator–doubly-fed doubly salient motor for electric vehicles
JP2006515501A (en) Rotor assembly
CN102005879A (en) Electric excitation part double stator brushless mixed excitation synchronous generator
Rallabandi et al. Axial-field vernier-type flux modulation machines for low-speed direct-drive applications
Li et al. Improvement of integrated-induction-based hybrid excitation brushless DC generator by employing novel consequent-pole rotor
JPH0866002A (en) Superconducting electric rotating machine
Köster et al. Electromagnetic design considerations on hts excited homopolar inductor alternators
US5739612A (en) Auxiliary power source
EP1601081A1 (en) Rotor for a turbine driven electrical machine
Oikawa et al. Development of high efficiency brushless DC motor with new manufacturing method of stator for compressors
US4476406A (en) Generator
CN201985720U (en) Electric excitation part double-stator brushless hybrid excitation synchronous generator
JPH0530137B2 (en)
CN114825725B (en) Low-cost axial permanent magnet motor and control system thereof
Yang et al. Design of Axial Flux Coreless PM Motors with the New Stator Configuration
JP3305002B2 (en) Brushless rotary electric machine
KR101139944B1 (en) Shading type single phase motor
JPH1023692A (en) Rotor for electric rotary machine
JP2007135290A (en) High-frequency generator
Wang et al. Design and analysis of in-wheel motor with sinusoidal permanent magnet shape for electrical vehicles
JPH0787716A (en) Motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070207