JPH0864045A - Highly foamed body covered electric wire and its manufacture - Google Patents

Highly foamed body covered electric wire and its manufacture

Info

Publication number
JPH0864045A
JPH0864045A JP6215326A JP21532694A JPH0864045A JP H0864045 A JPH0864045 A JP H0864045A JP 6215326 A JP6215326 A JP 6215326A JP 21532694 A JP21532694 A JP 21532694A JP H0864045 A JPH0864045 A JP H0864045A
Authority
JP
Japan
Prior art keywords
foam
electric wire
covered electric
conductor core
foamed body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6215326A
Other languages
Japanese (ja)
Other versions
JP3514835B2 (en
Inventor
Toshio Sakamoto
敏夫 坂本
Mamoru Yoshida
守 吉田
Satoru Hashimoto
哲 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NUC Corp
Original Assignee
Nippon Unicar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Unicar Co Ltd filed Critical Nippon Unicar Co Ltd
Priority to JP21532694A priority Critical patent/JP3514835B2/en
Publication of JPH0864045A publication Critical patent/JPH0864045A/en
Application granted granted Critical
Publication of JP3514835B2 publication Critical patent/JP3514835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Molding Of Porous Articles (AREA)
  • Organic Insulating Materials (AREA)
  • Communication Cables (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To provide the highly foamed body covered electric wire which has a highly foamed body kept at its center with respect to a conductor core, prevents moisture from being mixed with the highly foamed body to the utmost, and is excellent in dielectric characteristics suitable for a coaxial cable for high frequency signal transmission and the like. CONSTITUTION: A thermal plastic resin composition (resin in an ethylene system + chemical foaming agent/gas foaming agent) capable of foaming is extruded into a filament over a conductor core as a foamed body for covering a conductor, and a foamed body covered conductor core wire is gradually cooled down thereafter while being moved in olgano polysiloxane oil at the temperature of 100 to 20 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高発泡体被覆電線および
その製造方法に関し、より詳しくは被覆した発泡層が内
部導体に対して偏心することなく同心性を保ち、かつ高
品質である高周波信号伝送用の同軸ケーブル等に利用さ
れる誘電特性にすぐれた高発泡熱可塑性樹脂被覆電線お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-foam covered electric wire and a method for manufacturing the same, and more particularly to a high-frequency signal of high quality in which the covered foam layer is concentric with the inner conductor without being eccentric. The present invention relates to a highly foamed thermoplastic resin-coated electric wire having excellent dielectric properties, which is used for a transmission coaxial cable and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、高周波信号伝送に使用される同軸
ケーブル等において、導体心線を被覆する絶縁体の発泡
度を上げる(高発泡率とする)ことによって、誘電率や
tanδの低下を図り、これによりケーブルの漏洩減衰
量の低減を図り、画像や音声の鮮明化および中継器の数
の減少を図っている。このような高発泡率の絶縁電線を
製造する方法としては、いわゆる化学発泡法とガス発泡
法とがある。化学発泡法は、樹脂成分に化学発泡剤をそ
の分解温度以下で配合し、それを押出機に供給し、その
分解温度以上の温度で導体上に押出被覆し、次いでこれ
を空気中で発泡させた後、冷却固化する方法であり、ガ
ス発泡法に比べ、設備費が低く、操作も簡単であるの
で、発泡度の上限が約70%台とガス発泡の90%に比
較し低いにもかかわらず一定のシェアを獲得している。
ガス発泡法は、熱分解型の化学発泡剤を用いずに、発泡
剤として、ハロゲン化炭化水素、炭化水素、窒素ガス等
を押出機のバレルの中間部から溶融樹脂内に高圧で注入
し、導体上に押出被覆し、次いでこれを空気中で発泡さ
せた後、冷却固化させる方法であり、設備費は高いが、
高発泡であり、化学発泡剤の分解残渣の問題がないの
で、この方法もまた一定のシェアを獲得している。
2. Description of the Related Art In recent years, in coaxial cables and the like used for high frequency signal transmission, the dielectric constant and tan δ have been reduced by increasing the foaming degree of the insulator covering the conductor core wire (making it a high foaming rate). By doing so, the leakage attenuation of the cable is reduced, the image and sound are made clear, and the number of repeaters is reduced. As a method of manufacturing such an insulated wire having a high foaming rate, there are a so-called chemical foaming method and a gas foaming method. In the chemical foaming method, a resin composition is blended with a chemical foaming agent at a temperature not higher than its decomposition temperature, which is supplied to an extruder, extrusion-coated on a conductor at a temperature higher than the decomposition temperature, and then foamed in air. Since it is a method of cooling and solidifying after that, since the equipment cost is lower and the operation is easier than the gas foaming method, the upper limit of foaming degree is about 70%, which is lower than 90% of gas foaming. Instead, it has gained a certain share.
In the gas foaming method, halogenated hydrocarbons, hydrocarbons, nitrogen gas, etc. are injected as high pressure into the molten resin from the middle part of the extruder barrel as a foaming agent without using a pyrolytic chemical foaming agent. It is a method of extrusion coating on a conductor, then foaming this in the air, then cooling and solidifying, but the equipment cost is high,
This method also gains a certain market share because it has high foaming and there is no problem of decomposition residue of chemical foaming agent.

【0003】[0003]

【発明が解決しようとする課題】化学発泡法、ガス発泡
法のいずれの方法でも大気中に押出された導体心線上の
発泡体は冷却固化する必要がある。従来、冷却固化は、
発泡絶縁電線を冷却水槽中に通すことにより行われてい
るが、一般的には、発泡と固化のバランスをとりながら
均一なセル構造を有する発泡体を得るため、上流側より
下流側に向けて段階的に水温が低下する帯域に分けら
れ、最下流帯域が室温に設定されている冷却水槽を用
い、該水槽中に上流側から下流側に向けて発泡絶縁電線
を走行させている。しかしながら、従来のこの方法で
は、導体心線に対して発泡体が同心円状に被覆されない
で、偏心を起すことが多い。これは、冷却水槽の温度設
定に起因することもあるが、最大の原因は、冷却水中を
発泡体が通過する際、水の比重に対して発泡体の比重が
1/3〜1/4程度であるので、導体心線は一定の位置
にとどまっているのに対し、発泡体は水中で浮上し、導
体心線を中心とする同心円からはずれようとする力が作
用することである。また、冷却水中を発泡体が走行する
と、発泡粒子間に水が入ることがあり、これによりケー
ブルの減衰率が悪くなるという問題もある。
In both the chemical foaming method and the gas foaming method, the foam on the conductor core wire extruded in the atmosphere must be cooled and solidified. Conventionally, solidification by cooling is
This is done by passing the foam insulated wire through the cooling water tank, but in general, in order to obtain a foam with a uniform cell structure while balancing foaming and solidification, from the upstream side to the downstream side A cooling water tank is divided into zones in which the water temperature gradually decreases, and the most downstream zone is set to room temperature, and a foam insulated wire is run in the water vessel from the upstream side to the downstream side. However, in this conventional method, the conductor is not covered with the foam in a concentric pattern, which often causes eccentricity. This may be due to the temperature setting of the cooling water tank, but the biggest reason is that when the foam passes through the cooling water, the specific gravity of the foam is about 1/3 to 1/4 of the specific gravity of water. Therefore, while the conductor core wire remains at a fixed position, the foam floats in water and a force acts to deviate from a concentric circle centered on the conductor core wire. Further, when the foam runs through the cooling water, water may enter between the foam particles, which causes a problem that the attenuation rate of the cable deteriorates.

【0004】本発明は上記従来技術の問題点を解決する
ためになされたものであり、発泡体が導体心線に対して
偏心することなく、しかも発泡体中への水分混入が極力
抑えられた高品質の高発泡体被覆電線およびその製造方
法の提供を課題とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art, in which the foam is not eccentric with respect to the conductor core wire, and the mixing of water into the foam is suppressed as much as possible. An object of the present invention is to provide a high-quality high-foam covered electric wire and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】本発明者らは、高発泡体
層と導体の偏心は、高発泡体の比重と水の比重が異な
り、高発泡体の浮力が大きくなりすぎること、および高
発泡体内に残存する水分が高発泡体被覆電線の特性を悪
化させる原因であることとに着目し、水より比重が小さ
く、高発泡体被覆電線の製造環境や製造条件に悪影響を
及ぼさず、しかも製造された高発泡体被覆電線の特性に
悪影響を及ぼすことがない冷却媒体を求めて、数多くの
化合物を用いて実験を行ったところ、特定のシリコーン
化合物が良好な結果を与えることを見出し、さらに検討
を加え本発明を完成させた。
The present inventors have found that the eccentricity of the high foam layer and the conductor is such that the specific gravity of the high foam and the specific gravity of water are different, and the buoyancy of the high foam becomes too large. Focusing on the fact that the water remaining in the foam is a cause of deteriorating the characteristics of the high-foam covered electric wire, its specific gravity is smaller than water, and it does not adversely affect the manufacturing environment and manufacturing conditions of the high-foam covered electric wire. When a cooling medium that does not adversely affect the characteristics of the produced high-foam covered electric wire was sought, experiments were conducted using a large number of compounds, and it was found that a specific silicone compound gives good results. The present invention has been completed through studies.

【0006】すなわち、本発明は、発泡可能な熱可塑性
樹脂組成物を押出機から導体心線上に発泡体として被覆
させた後、この発泡体被覆導体心線をオルガノポリシロ
キサンオイル中に浸漬して徐冷することを特徴とする高
発泡体被覆電線の製造方法に関する。本明細書におい
て、高発泡体とは発泡度が60%以上であることを意味
する。また、本発明では発泡度が70%以上の高発泡体
を使用することが、被覆電線の高品質化のために好まし
い。さらに、本発明において導体心線としては、あらゆ
る導線を使用し得、例えば銅またはアルミニウム等から
なるものを挙げることができる。
That is, in the present invention, a foamable thermoplastic resin composition is coated on a conductor core wire as a foam from an extruder, and then the foam-covered conductor core wire is dipped in an organopolysiloxane oil. The present invention relates to a method for producing a high-foam covered electric wire, which is characterized by slow cooling. In the present specification, the high foamed material means that the foaming degree is 60% or more. Further, in the present invention, it is preferable to use a high foam having a foaming degree of 70% or more in order to improve the quality of the covered electric wire. Further, in the present invention, as the conductor core wire, any conductor wire can be used, and examples thereof include those made of copper or aluminum.

【0007】本発明における発泡可能な熱可塑性樹脂組
成物とは、熱可塑性樹脂100重量部に発泡剤を0.5
〜12重量部添加したものであり、導体心線上に公知方
法で押出被覆された後、冷却媒体であるオルガノポリシ
ロキサン中で冷却することにより、導体心線上に高発泡
体被覆層を形成し得るものである。なお、この熱可塑性
樹脂組成物には、その他の添加剤、例えば酸化防止剤や
難燃剤などを本発明の目的を損なわない範囲で加えても
よい。
The thermoplastic resin composition capable of being foamed in the present invention means that 100 parts by weight of the thermoplastic resin contains 0.5 parts of a foaming agent.
˜12 parts by weight is added, and a high foam coating layer can be formed on the conductor core wire by extrusion-coating on the conductor core wire by a known method and then cooling in organopolysiloxane as a cooling medium. It is a thing. In addition, other additives such as an antioxidant and a flame retardant may be added to the thermoplastic resin composition within a range not impairing the object of the present invention.

【0008】本発明において使用される熱可塑性樹脂と
は、例えば高圧法低密度ポリエチレン、中密度ポリエチ
レン、高密度ポリエチレン、ポリプロピレン、密度0.
910g/ml以上の直鎖状エチレン−α−オレフィン
共重合体、密度0.910g/ml以下の直鎖状超低密
度エチレン−α−オレフィン共重合体およびフッ素系樹
脂からなる群から選択される少なくとも1種である。
The thermoplastic resin used in the present invention is, for example, high-pressure low-density polyethylene, medium-density polyethylene, high-density polyethylene, polypropylene, density 0.
It is selected from the group consisting of a linear ethylene-α-olefin copolymer of 910 g / ml or more, a linear ultra-low density ethylene-α-olefin copolymer of a density of 0.910 g / ml or less, and a fluororesin. At least one kind.

【0009】本発明において使用される発泡剤として
は、いわゆる化学発泡剤およびガス発泡剤がある。化学
発泡剤は熱分解してNH3 、N2 、CO2 等の不活性ガ
スを発生してプラスチックの発泡作用を行うものであ
り、例えば、アゾジカルボンアミド、4,4′−オキシ
ビスベンゼンスルホニルヒドラジド、N,N′−ジニト
ロソペンタメチレンテトラミン、アゾビスイソブチロニ
トリル等が挙げられる。ガス発泡剤は、ハロゲン化炭化
水素、例えばメチレンクロライド、トリクロロフルオロ
メタン、ジクロロフルオロメタン、クロロジフルオロメ
タン、クロロトリフルオロメタン、ジクロロジフルオロ
メタン、1,1−ジフルオロエタン、1−クロロ−1,
1−ジフルオロエタン、1,2−ジクロロテトラフルオ
ロエタンまたはクロロペンタフルオロエタンなど、炭化
水素、例えばプロパン、ブタン、ペンタン、ペンラン、
ヘキサン、ヘキセン、ヘプテン、オクタン等、不活性ガ
ス、例えば窒素、アルゴン、ヘリウム、炭酸ガス等が挙
げられる。これら化学発泡剤およびガス発泡剤は単独
で、または化学発泡剤もしくはガス発泡剤どうしの混合
物、または化学発泡剤とガス発泡剤との混合物として用
いることができる。
The foaming agents used in the present invention include so-called chemical foaming agents and gas foaming agents. The chemical foaming agent thermally decomposes to generate an inert gas such as NH 3 , N 2 or CO 2 to foam the plastic, and examples thereof include azodicarbonamide and 4,4′-oxybisbenzenesulfonyl. Examples thereof include hydrazide, N, N'-dinitrosopentamethylenetetramine and azobisisobutyronitrile. Gas blowing agents include halogenated hydrocarbons such as methylene chloride, trichlorofluoromethane, dichlorofluoromethane, chlorodifluoromethane, chlorotrifluoromethane, dichlorodifluoromethane, 1,1-difluoroethane, 1-chloro-1,
Hydrocarbons such as 1-difluoroethane, 1,2-dichlorotetrafluoroethane or chloropentafluoroethane, such as propane, butane, pentane, penrane,
Hexane, hexene, heptene, octane and the like, and inert gases such as nitrogen, argon, helium, carbon dioxide and the like can be mentioned. These chemical foaming agents and gas foaming agents can be used alone or as a chemical foaming agent or a mixture of gas foaming agents or a mixture of a chemical foaming agent and a gas foaming agent.

【0010】化学発泡剤を用いる場合、この化学発泡剤
の発泡助剤を併用してもよく、これにはサリチル酸、ス
テアリン酸、フタル酸、ステアリン酸亜鉛、ステアリン
酸鉛、ステアリン酸マグネシウム、ステアリン酸カルシ
ウム、エチレングリコール、グリセリン、エタノールア
ミン、尿素、尿素誘導体、メラミン、二塩基性亜リン酸
鉛、三塩基性硫酸鉛、酸化亜鉛等が使用され、化学発泡
剤1重量部に対して、0.0003〜0.6重量部をV
型ブレンダー、リボンミキサー、ヘンシェルミキサー、
タンブラー等の混合機で20〜120℃、望ましくは3
0〜80℃で混合処理することにより化学発泡剤とされ
る。
When a chemical foaming agent is used, a foaming aid of this chemical foaming agent may be used in combination, which includes salicylic acid, stearic acid, phthalic acid, zinc stearate, lead stearate, magnesium stearate, calcium stearate. , Ethylene glycol, glycerin, ethanolamine, urea, urea derivatives, melamine, dibasic lead phosphite, tribasic lead sulfate, zinc oxide, etc. are used, and 0.0003 is added to 1 part by weight of the chemical foaming agent. ~ 0.6 parts by weight of V
Type blender, ribbon mixer, Henschel mixer,
20 ~ 120 ℃ with a mixer such as a tumbler, desirably 3
A chemical foaming agent is obtained by performing a mixing treatment at 0 to 80 ° C.

【0011】本発明において使用されるオルガノポリシ
ロキサンオイルとはオイル状のオルガノポリシロキサン
であれば特に限定されず、一般式
The organopolysiloxane oil used in the present invention is not particularly limited as long as it is an oily organopolysiloxane and can be represented by the general formula

【化2】 (式中、Rは互いに独立して1価の炭化水素基を表し、
そしてmは2〜500、nは0〜25、かつn/m≦
0.05の範囲の整数を表す)で表されるものである。
基Rの例としては、メチル基、エチル基、プロピル基、
ブチル基、オクチル基、デシル基等であり、これらは同
一分子内で同じであっても、異なっていてもよい。最も
望ましい例は、全部の基Rがメチル基であるジメチルポ
リシロキサンであり、その理由は密度が最も低く、これ
を冷却媒体とした場合、発泡体層の偏心率が小さいから
である。オルガノポリシロキサン分子中にフェニル基が
存在すると耐熱性、低蒸気圧等の利点があるが、密度が
やや上昇する。従って、オルガノポリシロキサンオイル
は用いられる樹脂組成物の発泡温度によって使いわける
ことが好ましい。本発明において、オルガノポリシロキ
サンオイルは単独で用いても、各種オルガノポリシロキ
サンオイルを組み合わせて用いてもよい。
Embedded image (In the formula, R's each independently represent a monovalent hydrocarbon group,
And m is 2 to 500, n is 0 to 25, and n / m ≦.
It represents an integer in the range of 0.05).
Examples of the group R include a methyl group, an ethyl group, a propyl group,
A butyl group, an octyl group, a decyl group and the like, which may be the same or different in the same molecule. The most desirable example is dimethylpolysiloxane in which all the groups R are methyl groups, because it has the lowest density, and when this is used as a cooling medium, the eccentricity of the foam layer is small. The presence of phenyl groups in the organopolysiloxane molecule has advantages such as heat resistance and low vapor pressure, but slightly increases the density. Therefore, it is preferable to use the organopolysiloxane oil depending on the foaming temperature of the resin composition used. In the present invention, the organopolysiloxane oil may be used alone or in combination with various organopolysiloxane oils.

【0012】ジオルガノポリシロキサンユニット数を表
すmは、2〜500であり、2未満であると蒸気圧が上
昇し、蒸発による損失と、作業環境が悪化するので望ま
しくなく、500を越えると粘度が高くなりすぎ、取扱
い性がよくなく、発泡体層表面からの除去に手間がかか
り望ましくない。フェニルシロキサンユニット数を表す
nは、0〜25であり、25を越えると、密度が上昇
し、発泡体層の偏心率が大きくなり望ましくない。さら
に、n/mの比率は0.05以下であり、0.05を越
えると、密度が上昇し、発泡体層の偏心率が大きくなり
望ましくない。
The m representing the number of diorganopolysiloxane units is from 2 to 500. If it is less than 2, vapor pressure rises, which is not desirable because it causes a loss due to evaporation and the working environment deteriorates. Is too high, the handleability is not good, and removal from the surface of the foam layer is troublesome, which is not desirable. N representing the number of phenylsiloxane units is 0 to 25, and if it exceeds 25, the density increases and the eccentricity of the foam layer increases, which is not desirable. Further, the ratio of n / m is 0.05 or less, and if it exceeds 0.05, the density increases and the eccentricity of the foam layer increases, which is not desirable.

【0013】本発明において、発泡可能な熱可塑性樹脂
組成物を導体心線上に発泡体として押出被覆させた後、
該発泡体被覆導体心線、特にその発泡体表面は冷却媒体
であるオルガノポリシロキサンオイル中に浸漬させるこ
とにより徐々に冷却される。この徐冷操作は、通常、約
100℃から約20℃までの温度に段階的に温度が低下
するように設定されたオルガノポリシロキサンオイル中
を順次通過させることにより行われるが、段階的でなく
連続的に温度が低下する冷却媒体中を通過させてもよい
ことはいうまでもない。本発明の好ましい態様におい
て、上記徐冷操作は、100〜20℃のオルガノポリシ
ロキサンオイル中で発泡体被覆導体心線を移動させるこ
とにより行われる。また、室温付近までオルガノポリシ
ロキサンオイル中で冷却した後は、風乾により冷却を行
ってもよい。
In the present invention, after the foamable thermoplastic resin composition is extrusion-coated on the conductor core wire as a foam,
The foam-coated conductor core, especially the surface of the foam, is gradually cooled by being immersed in an organopolysiloxane oil as a cooling medium. This gradual cooling operation is usually carried out by sequentially passing through an organopolysiloxane oil set so that the temperature gradually decreases from about 100 ° C. to about 20 ° C., but it is not stepwise. It goes without saying that it may be passed through a cooling medium whose temperature continuously decreases. In a preferred embodiment of the present invention, the slow cooling operation is performed by moving the foam-coated conductor core wire in organopolysiloxane oil at 100 to 20 ° C. Further, after cooling to near room temperature in the organopolysiloxane oil, cooling may be performed by air drying.

【0014】本発明において、発泡体被覆電線を製造す
る装置は、公知のものでよく、その一つの例を図1に示
す。押出機3内を通って巻き取られる導体心線1上に、
該押出機3から熱可塑性樹脂を発泡体2として押出被覆
した後、この発泡体被覆導体心線はオルガノポリシロキ
サンオイル5が満たされた冷却槽4に送られる。該冷却
槽4中のオルガノポリシロキサンオイル5は上流(押出
機側)から下流に向けて6つの冷却帯域S1 〜S6 (第
一セクション〜第六セクション)に仕切り6により分割
されており、第一セクションから第六セクションに向け
て段階的に温度が低下するように設定されており、発泡
体被覆導体心線は冷却帯域S1 〜S6 を順に通ることに
より徐冷される。
In the present invention, the apparatus for producing the foam-covered electric wire may be a known apparatus, one example of which is shown in FIG. On the conductor core wire 1 which is wound through the inside of the extruder 3,
After extrusion-coating a thermoplastic resin as a foam 2 from the extruder 3, the foam-coated conductor core wire is sent to a cooling tank 4 filled with an organopolysiloxane oil 5. The organopolysiloxane oil 5 in the cooling tank 4 is divided by partitions 6 into six cooling zones S 1 to S 6 (first section to sixth section) from the upstream (extruder side) to the downstream, The temperature is set to gradually decrease from the first section to the sixth section, and the foam-coated conductor core wire is gradually cooled by sequentially passing through the cooling zones S 1 to S 6 .

【0015】[0015]

【実施例】以下実施例を示し、本発明の効果を実証する
が、本発明はこの実施例に限定されるものではない。
EXAMPLES The following examples illustrate the effects of the present invention, but the present invention is not limited to these examples.

【0016】実施例1 メルトインデックス2.0g/10分、密度0.917
g/ml、スウェリング比60%の高圧法低密度ポリエ
チレン100重量部に対して、メルトインデックス3.
0g/10分、密度0.960g/ml、スウェリング
比45%、融点135℃の高密度ポリエチレン30重量
部、酸化防止剤ブチル化ヒドロキシトルエン0.2重量
部を配合し、バンバリミキサーで10分間140℃で混
練して融点124℃の混練物を得た。この混練物100
重量部に、p,p′−オキシビスベンゼンスルホニルヒ
ドラジド1.3重量部を添加し、127℃でバンバリミ
キサーを使って10分間混練し、予備発泡度4%のシー
トをつくり、シートカッターで切断し、厚さ3mm、長
さ5mm、幅4mmのペレットを得た。
Example 1 Melt index 2.0 g / 10 minutes, density 0.917
Melt index of 3. with respect to 100 parts by weight of high-pressure low-density polyethylene with g / ml and swelling ratio of 60%.
0 g / 10 min, density 0.960 g / ml, swelling ratio 45%, high-density polyethylene 30 parts by weight with a melting point of 135 ° C., and butylated hydroxytoluene 0.2 parts by weight are blended for 10 minutes with a Banbury mixer. The mixture was kneaded at 140 ° C to obtain a kneaded product having a melting point of 124 ° C. This kneaded product 100
1.3 parts by weight of p, p′-oxybisbenzenesulfonyl hydrazide was added to parts by weight, and the mixture was kneaded at 127 ° C. for 10 minutes using a Banbury mixer to prepare a sheet with a prefoaming degree of 4% and cut with a sheet cutter. Then, a pellet having a thickness of 3 mm, a length of 5 mm and a width of 4 mm was obtained.

【0017】次いで、50mmφの押出機(L/D=2
4)に前記ペレットを供給し、供給領域のシリンダー温
度を130℃、圧縮領域のシリンダー温度を140℃、
計量領域のシリンダー温度を147℃とし、50℃に予
熱した1.8mmφの銅心線上に線巻取り速度20m/
分で押出被覆し、冷却媒体であるジメチルポリシロキサ
ン(m=35,n=0,Rは全部メチル基,密度は90
℃にて0.91g/cm3 ,80℃にて0.92g/c
3 ,70℃にて0.928g/cm3 ,60℃にて
0.933g/cm3 ,50℃にて0.94g/c
3 ,40℃にて0.95g/cm3 ,30℃にて0.
96g/cm3 ,20℃にて0.97g/cm3 )を入
れた冷却槽(第一セクションは長さ3m、冷却媒体温度
90℃、第二セクションは長さ5m、冷却媒体温度75
℃、第三セクションは長さ5m、冷却媒体温度60℃、
第四セクションは長さ5m、冷却媒体温度40℃、第五
セクションは長さ5m、冷却媒体温度23℃、第六セク
ションは長さ2m、冷却媒体温度23℃でモニター設置
部分である)を順次通過させ、外径φ7.3mmの高発
泡ポリエチレン被覆同軸ケーブルコアを得た。
Next, a 50 mmφ extruder (L / D = 2
4) supplying the pellets, the cylinder temperature in the supply zone is 130 ° C, the cylinder temperature in the compression zone is 140 ° C,
Cylinder temperature in the measuring area was 147 ° C, and the wire winding speed was 20m / on a copper core wire of 1.8mmφ preheated to 50 ° C.
Extrusion coating in minutes, cooling medium dimethylpolysiloxane (m = 35, n = 0, R are all methyl groups, density 90
0.91 g / cm 3 at ℃, 0.92 g / c at 80 ℃
m 3 , 70 ° C., 0.928 g / cm 3 , 60 ° C., 0.933 g / cm 3 , 50 ° C., 0.94 g / c
m 3, 0 at 0.95g / cm 3, 30 ℃ at 40 ° C..
96 g / cm 3 , 0.97 g / cm 3 at 20 ° C) in a cooling tank (first section 3 m long, cooling medium temperature 90 ° C, second section 5 m long, cooling medium temperature 75
℃, the third section is 5m long, the cooling medium temperature is 60 ℃,
The fourth section has a length of 5 m, the cooling medium temperature is 40 ° C, the fifth section has a length of 5 m, the cooling medium temperature is 23 ° C, the sixth section has a length of 2 m, and the cooling medium temperature is 23 ° C. After passing through, a high-foaming polyethylene-coated coaxial cable core having an outer diameter of φ7.3 mm was obtained.

【0018】得られた発泡体は、発泡度71.0%、気
泡径100〜150μを有し、長さ20mmの同軸ケー
ブルコアの円柱状の試験片を10mm/分の速度で径方
向に圧縮し、圧縮量(歪)と力から算出したヤング率を
もって圧縮強さ測定したところ0.87kg/mm2
あった。この同軸ケーブルの発泡体層は、導体心線に対
して同心円状になっており、インピーダンスが75Ω、
静電容量が50〜51nF/km、減衰率が220MH
zで57dB/km、770MHzで115dB/k
m、1300MHzで150dB/kmで良好であっ
た。
The obtained foam had a foaming degree of 71.0%, a cell diameter of 100 to 150 μm, and a cylindrical test piece of a coaxial cable core having a length of 20 mm was radially compressed at a speed of 10 mm / min. Then, the compressive strength was measured with Young's modulus calculated from the amount of compression (strain) and the force, and it was 0.87 kg / mm 2 . The foam layer of this coaxial cable is concentric with the conductor core wire and has an impedance of 75Ω,
Capacitance is 50-51nF / km, attenuation rate is 220MH
57 dB / km at z and 115 dB / k at 770 MHz
m was good at 150 dB / km at 1300 MHz.

【0019】実施例2 実施例1において使用したジメチルポリシロキサンに代
えて、ジメチルフェニルポリシロキサン(m=490,
n=23,n/m=0.047,Rは全部メチル基,密
度は90℃にて0.965g/cm3 ,80℃にて0.
956g/cm3 ,70℃にて0.96g/cm3 ,6
0℃にて0.968g/cm3 ,50℃にて0.971
g/cm3 ,40℃にて0.987g/cm3 ,30℃
にて0.996g/cm3 ,20℃にて1.02g/c
3 )を使用した以外は、同様な実験を行った。
Example 2 Instead of the dimethylpolysiloxane used in Example 1, dimethylphenylpolysiloxane (m = 490,
n = 23, n / m = 0.047, all R are methyl groups, the density is 0.965 g / cm 3 at 90 ° C., and the density is 0.8 at 80 ° C.
0.96g / cm 3 at 956g / cm 3, 70 ℃, 6
0.968 g / cm 3 at 0 ° C, 0.971 at 50 ° C
g / cm 3, 40 ℃ at 0.987g / cm 3, 30 ℃
0.996 g / cm 3 at 20 ° C. 1.02 g / c
A similar experiment was conducted except that m 3 ) was used.

【0020】実施例1で得られた被覆電線に比べ偏心率
はやや大きかったが、インピーダンスが74Ω、静電容
量が51〜52nF/km、減衰率が220MHzで5
6dB/km、770MHzで113dB/km、13
00MHzで147dB/kmであり、十分実用性があ
るものだった。
The eccentricity was slightly larger than that of the coated electric wire obtained in Example 1, but the impedance was 74 Ω, the electrostatic capacitance was 51 to 52 nF / km, and the attenuation rate was 220 MHz.
6 dB / km, 113 dB / km at 770 MHz, 13
It was 147 dB / km at 00 MHz, which was sufficiently practical.

【0021】比較例 実施例1の冷却媒体であるジメチルポリシロキサンに代
えて、温水を冷却媒体として用いた以外は、同様な実験
を行った。実施例1で得られた被覆電線に比べ偏心率が
非常に大きくなり、インピーダンスが72Ω、静電容量
が53〜54nF/km、減衰率が220MHzで59
dB/km、770MHzで121dB/km、130
0MHzで168dB/kmであり、実施例1より同軸
ケーブルの特性は悪くなった。
Comparative Example A similar experiment was conducted except that warm water was used as the cooling medium instead of dimethylpolysiloxane which was the cooling medium in Example 1. The eccentricity is much larger than that of the coated electric wire obtained in Example 1, the impedance is 72Ω, the capacitance is 53 to 54 nF / km, and the attenuation rate is 59 at 220 MHz.
121 dB / km, 130 at 770 MHz, dB / km
It was 168 dB / km at 0 MHz, and the characteristics of the coaxial cable were worse than in Example 1.

【0022】[0022]

【発明の効果】以上詳細に説明したように、本発明の高
発泡体被覆電線の製造方法は、冷却媒体として従来の水
に代えて、オルガノポリシロキサンオイルを用いたこと
により、導体心線の周囲に高発泡体が偏心を起すことな
く同心円状に被覆されることを可能にし、そしてオルガ
ノポリシロキサンオイルの有する撥水性により、高発泡
体中への水の侵入を阻止するものである。また、100
〜20℃のオルガノポリシロキサンオイル中で冷却を行
うことにより、より高品質の高発泡体被覆電線を得るこ
とができる。従って、本発明は、非常に高品質の高発泡
体被覆電線の製造方法を提供し、従来品より高い性能を
有する高周波信号用の同軸ケーブル等の提供を可能とす
るものである。
As described above in detail, in the method for producing a high-foam covered electric wire of the present invention, the organopolysiloxane oil is used as the cooling medium instead of the conventional water, so that the conductor core wire It enables the high foam to be coated concentrically without causing eccentricity around the periphery, and the water repellency of the organopolysiloxane oil prevents water from penetrating into the high foam. Also, 100
By cooling in an organopolysiloxane oil at -20 ° C, it is possible to obtain a higher quality, higher foam covered electric wire. Therefore, the present invention provides a method for producing a very high quality high-foam covered electric wire, which makes it possible to provide a coaxial cable for high frequency signals and the like having higher performance than conventional products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高発泡体被覆電線を製造するための装
置の一例を示す断面図である。
FIG. 1 is a sectional view showing an example of an apparatus for producing a high-foam covered electric wire of the present invention.

【符号の説明】[Explanation of symbols]

1 導体心線 2 発泡体 3 押出機 4 冷却槽 5 オルガノポリシロキサンオイル 6 仕切り S1 〜S6 冷却帯域DESCRIPTION OF SYMBOLS 1 Conductor core wire 2 Foam 3 Extruder 4 Cooling tank 5 Organopolysiloxane oil 6 Partition S 1 to S 6 Cooling zone

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 11/18 D // B29K 83:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01B 11/18 D // B29K 83:00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発泡可能な熱可塑性樹脂組成物を押出機
から導体心線上に発泡体として被覆させた後、この発泡
体被覆導体心線をオルガノポリシロキサンオイル中に浸
漬して徐冷することを特徴とする高発泡体被覆電線の製
造方法。
1. A foamable thermoplastic resin composition is coated on a conductor core wire as a foam from an extruder, and then the foam-covered conductor core wire is immersed in an organopolysiloxane oil and gradually cooled. A method for producing a high-foam covered electric wire, comprising:
【請求項2】 徐冷が100〜20℃のオルガノポリシ
ロキサンオイル中で発泡体被覆導体心線を移動させるこ
とにより行われる請求項1記載の高発泡体被覆電線の製
造方法。
2. The method for producing a high-foam covered electric wire according to claim 1, wherein the slow cooling is performed by moving the foam-covered conductor core wire in an organopolysiloxane oil at 100 to 20 ° C.
【請求項3】 熱可塑性樹脂が、高圧法低密度ポリエチ
レン、中密度ポリエチレン、高密度ポリエチレン、ポリ
プロピレン、密度0.910g/ml以上の直鎖状エチ
レン−α−オレフィン共重合体、密度0.910g/m
l以下の直鎖状超低密度エチレン−α−オレフィン共重
合体およびフッ素系樹脂からなる群から選択される少な
くとも1種である請求項1または2記載の高発泡体被覆
電線の製造方法。
3. The high-pressure process low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, linear ethylene-α-olefin copolymer having a density of 0.910 g / ml or more, density 0.910 g. / M
The method for producing a high-foam covered electric wire according to claim 1 or 2, which is at least one selected from the group consisting of a linear ultra-low density ethylene-α-olefin copolymer having 1 or less and a fluororesin.
【請求項4】 オルガノポリシロキサンオイルが一般
式: 【化1】 (式中、Rは互いに独立して1価の炭化水素基を表し、
そしてmは2〜500、nは0〜25、かつn/m≦
0.05の範囲の整数を表す)で表される化合物である
請求項1ないし3のいずれか1項に記載の高発泡体被覆
電線の製造方法。
4. The organopolysiloxane oil has the general formula: (In the formula, R's each independently represent a monovalent hydrocarbon group,
And m is 2 to 500, n is 0 to 25, and n / m ≦.
The method for producing a high-foam covered electric wire according to any one of claims 1 to 3, which is a compound represented by (expressing an integer in the range of 0.05).
【請求項5】 請求項1ないし4のいずれか1項に記載
の方法で製造された高発泡体被覆電線。
5. A high-foam covered electric wire produced by the method according to any one of claims 1 to 4.
JP21532694A 1994-08-17 1994-08-17 High foam covered wire and method of manufacturing the same Expired - Fee Related JP3514835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21532694A JP3514835B2 (en) 1994-08-17 1994-08-17 High foam covered wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21532694A JP3514835B2 (en) 1994-08-17 1994-08-17 High foam covered wire and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0864045A true JPH0864045A (en) 1996-03-08
JP3514835B2 JP3514835B2 (en) 2004-03-31

Family

ID=16670451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21532694A Expired - Fee Related JP3514835B2 (en) 1994-08-17 1994-08-17 High foam covered wire and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3514835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251922A (en) * 2001-02-23 2002-09-06 Furukawa Electric Co Ltd:The Coaxial cable
KR20150145264A (en) * 2011-06-23 2015-12-29 다우 글로벌 테크놀로지스 엘엘씨 A polymeric composition, a foam composition, and a coated conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251922A (en) * 2001-02-23 2002-09-06 Furukawa Electric Co Ltd:The Coaxial cable
KR20150145264A (en) * 2011-06-23 2015-12-29 다우 글로벌 테크놀로지스 엘엘씨 A polymeric composition, a foam composition, and a coated conductor

Also Published As

Publication number Publication date
JP3514835B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
US6335490B1 (en) Insulating material for coaxial cable, coaxial cable and method for producing coaxial cable
US6130385A (en) Coaxial high-frequency cable and dielectric material thereof
JP3523943B2 (en) Foamable resin composition for highly foamed insulated polyethylene and high foamed insulated polyethylene coated wire made by coating the same
JP4505087B2 (en) Foamable resin composition for producing highly foamed polyethylene-coated wires by inert gas foaming method and highly foamed insulated polyethylene-coated wires made by coating this
JP3514835B2 (en) High foam covered wire and method of manufacturing the same
JP3860243B2 (en) Foamable resin composition for highly foamed insulated polyethylene and highly foamed insulated polyethylene coated wire made by coating this
JP3532816B2 (en) Foaming composition, method for producing the same, and foamed coaxial insulated cable
JP3227091B2 (en) Insulating material for coaxial cable, coaxial cable, and method of manufacturing coaxial cable
JP3694566B2 (en) Foamable resin composition for production of highly foamed insulated polyethylene-coated wires by inert gas foaming method and highly foamed insulated polyethylene-coated wires made by coating this
JP3241126B2 (en) Small diameter high foam polyethylene insulated cable and method of manufacturing the same
JP4036157B2 (en) Resin composition and high-frequency coaxial cable using the same
JPH03127413A (en) Manufacture and manufacturing device of low density foaming body covered conductor
JP4061112B2 (en) High frequency coaxial cable and manufacturing method thereof
JP2000235814A (en) Foaming resin composition for manufacturing highly foamed polyethylene covered wire with inert gas foaming method, and highly foamed insulating polyethylene covered wire using the same
JP2000204203A (en) Expandable resin composition for production of electric wire covered with polyethylene highly expanded by inert gas blowing and insulated electric wire prepared by covering therewith
JP3092773B2 (en) Expandable organic polymer composition and method for producing foam
JP4123087B2 (en) Resin composition and high-frequency coaxial cable using the same
JP2939565B2 (en) Foamable resin composition for highly foamed insulating polyethylene and method for producing the same
JP2597299B2 (en) Foam and method for producing foam
JPH08203349A (en) Foam-insulated wire
JPH03146532A (en) Polyolefin resin composition for expansion
JPH0836920A (en) Foam insulated electric wire
JPS58174423A (en) Highly expandable polyethylene composition
JPH08185720A (en) Electric wire insulated with foamed plastic and manufacture thereof
JPH04348141A (en) Polymer composition for foam molding

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040114

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees