JPH086357A - Brush charging mechanism - Google Patents

Brush charging mechanism

Info

Publication number
JPH086357A
JPH086357A JP16303594A JP16303594A JPH086357A JP H086357 A JPH086357 A JP H086357A JP 16303594 A JP16303594 A JP 16303594A JP 16303594 A JP16303594 A JP 16303594A JP H086357 A JPH086357 A JP H086357A
Authority
JP
Japan
Prior art keywords
charging
brush
contact
photoconductor
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16303594A
Other languages
Japanese (ja)
Inventor
Yoshi Toshida
嘉 土志田
Hideyuki Yano
秀幸 矢野
Harumi Kugo
晴美 久郷
Tadashi Furuya
正 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16303594A priority Critical patent/JPH086357A/en
Publication of JPH086357A publication Critical patent/JPH086357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Brushes (AREA)

Abstract

PURPOSE:To bring a charging brush into uniform contact with the surface of a photoreceptor for uniform electrification. CONSTITUTION:Many brush fibers 20 are provided on the surface of a l cylindrical core metal to form a charging brush. The tip of each brush fiber 20 is divided into multiple fine-diameter fibers 21. The divided fine-diameter fibers 21 are brought into contact with the surface of a photoreceptor to be charged for electrification. The brush fibers 20 are uniformly brought into contact with the surface of the photoreceptor. A charge injection layer is provided on the surface of the photoreceptor for electrification with low voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複写機、レーザビーム
プリンタ等の画像形成装置に装着された感光体等の被帯
電体を帯電するためのブラシ帯電機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brush charging mechanism for charging a charged body such as a photoconductor mounted on an image forming apparatus such as a copying machine or a laser beam printer.

【0002】[0002]

【従来の技術】従来、電子写真方式の画像形成装置にお
いては、像担持体(被帯電体)としての電子写真感光体
(以下単に「感光体」という。)の帯電装置として、一
般に、非接触のコロナ帯電器が使用されてきた。コロナ
帯電器は、オゾンの発生量が多く、高電圧の印加を必要
とする等の欠点があった。
2. Description of the Related Art Conventionally, in an electrophotographic image forming apparatus, a non-contact type is generally used as a charging device for an electrophotographic photosensitive member (hereinafter simply referred to as "photosensitive member") as an image bearing member (charged member). Corona chargers have been used. The corona charger has drawbacks such that a large amount of ozone is generated and a high voltage needs to be applied.

【0003】近年は、コロナ帯電器の欠点を解消すべ
く、低オゾン化・低電力化を図った帯電装置、すなわち
感光体に接触させた帯電部材に電圧を印加して帯電を行
う接触帯電装置が実用化されている。特に、帯電部材と
して導電性の弾性ローラ(以下「帯電ローラ」とい
う。)を使用したローラ帯電方式の接触帯電装置は、帯
電の安定性が優れているため、好ましく用いられてい
る。
In recent years, in order to eliminate the drawbacks of the corona charger, a charging device designed for low ozone and low power consumption, that is, a contact charging device for charging by applying a voltage to a charging member in contact with a photosensitive member. Has been put to practical use. In particular, a roller charging type contact charging device using a conductive elastic roller (hereinafter referred to as “charging roller”) as a charging member is preferably used because it has excellent charging stability.

【0004】ローラ帯電では、帯電ローラを感光体に加
圧当接させ、これに電圧を印加することによって感光体
を帯電処理している。このときの帯電は、感光体に対す
る帯電ローラからの放電現象を利用するものであり、あ
る閾値電圧(帯電開始電圧)Vthに対し、それ以上の電
圧を印加することによって帯電が開始される。例えば、
被帯電体としての厚さ25μmのOPC感光体に対し
て、帯電ローラを加圧当接させて帯電処理する場合、帯
電ローラに約640V以上の電圧を印加することによ
り、感光体の表面電位が上昇を開始し、上昇開始以降の
表面電位は、印加電圧に対して傾き1で線形に増加す
る。すなわち、所望の感光体表面電位Vd を得るために
は、帯電ローラには、それよりもVthだけ高い(Vd
th)のDC電圧を印加することが必要となる。このよ
うに、DC電圧のみを印加する接触帯電方式を、以下
「DC帯電方式」という。
In roller charging, a charging roller is pressed against a photoconductor and a voltage is applied to the photoconductor to charge the photoconductor. The charging at this time utilizes a discharging phenomenon from the charging roller to the photosensitive member, and the charging is started by applying a voltage higher than a certain threshold voltage (charging start voltage) V th . For example,
When a charging roller is pressed against an OPC photosensitive member having a thickness of 25 μm as a member to be charged to perform a charging process, the surface potential of the photosensitive member is reduced by applying a voltage of about 640 V or more to the charging roller. The rise starts and the surface potential after the rise starts increases linearly with a slope of 1 relative to the applied voltage. That is, in order to obtain a desired photoreceptor surface potential V d , the charging roller is higher than the charging roller by V th (V d +
It is necessary to apply a DC voltage of V th ). The contact charging method in which only the DC voltage is applied as described above is hereinafter referred to as "DC charging method".

【0005】しかし、DC帯電方式においては、環境変
動等によって接触帯電部材の抵抗値が大きく変動するた
め、また感光体表面の削れに基づく膜厚の変化によって
帯電開始電圧Vthが変動するため、感光体表面の電位V
d を所望の値に均一に帯電することが難しかった。
However, in the DC charging method, the resistance value of the contact charging member fluctuates greatly due to environmental changes and the charging start voltage V th fluctuates due to the change in the film thickness due to the abrasion of the surface of the photoconductor. Potential V of photoconductor surface
It was difficult to uniformly charge d to a desired value.

【0006】このため、さらなる帯電の均一化を図るた
めに、特開昭63−149669号公報等に開示される
ように、所望のVd に相当するDC電圧に、帯電開始電
圧Vthの2倍以上のピーク間電圧を持つAC成分を重畳
した振動電圧を接触帯電部材に印加して感光体の帯電を
行う「AC帯電方式」が用いられる。これはACによる
電位のならし効果を利用したものであり、感光体の電位
は、AC電圧のピークの中央であるVd に収束し、環境
等の外乱にはほとんど影響されることはない。
Therefore, in order to further homogenize the charging, as disclosed in Japanese Patent Laid-Open No. 63-149669, a DC voltage corresponding to the desired V d and a charging start voltage V th of 2 are set. An "AC charging method" is used in which an oscillating voltage having an AC component having a peak-to-peak voltage that is more than double is applied to the contact charging member to charge the photoconductor. This utilizes the potential leveling effect of AC, and the potential of the photoconductor converges on V d which is the center of the peak of the AC voltage, and is hardly affected by disturbance such as the environment.

【0007】上述のDC帯電やAC帯電には、接触帯電
部材として、帯電ローラの他に、ブラシ状の帯電ブラシ
を使用したものがある。また帯電ブラシとして、固定式
のブラシを使用すると、機構的に簡便であり、コスト的
にも帯電ローラを使用したものよりも有利なため、実用
化されつつある。
For the above-mentioned DC charging and AC charging, there is a contact charging member using a brush-shaped charging brush in addition to the charging roller. Further, when a fixed brush is used as the charging brush, it is mechanically simple, and it is more advantageous in cost than the one using the charging roller. Therefore, it is being put to practical use.

【0008】ところで、上述の帯電ローラや帯電ブラシ
を使用した接触帯電装置においても、その本質的な帯電
機構がコロナ帯電器等の非接触帯電方式と同様に、感光
体に対する帯電部材からの放電現象を利用しているた
め、帯電時の電圧として感光体表面の帯電開始電圧Vth
以上の値が必要とされ、微量のオゾンが発生する。AC
帯電方式(特に、帯電ローラを使用したもの)では、こ
れに加え、AC電圧による電界方向の変化に基づく帯電
部材と感光体の振動騒音(AC帯電音)の発生、また放
電による被帯電体表面の劣化等が顕著になり新たな問題
点となっていた。
By the way, also in the contact charging device using the charging roller and the charging brush described above, the essential charging mechanism is the same as in the non-contact charging system such as the corona charger, the discharge phenomenon from the charging member to the photosensitive member. Therefore, the charging start voltage V th of the surface of the photoconductor is used as the voltage at the time of charging.
The above values are required, and a small amount of ozone is generated. AC
In addition to this, the charging method (especially, one using a charging roller) generates vibration noise (AC charging sound) between the charging member and the photoconductor due to a change in the direction of the electric field due to the AC voltage, and the surface of the charged object due to discharge Deterioration and the like became remarkable and became a new problem.

【0009】このため、被帯電体への電荷の直接注入に
よる帯電が望まれていた。
For this reason, there has been a demand for charging by directly injecting charges into the body to be charged.

【0010】この、電荷を直接注入する方式としては、
例えば、接触帯電部材としての帯電ブラシに電圧を印加
し、感光体表面にあるトラップ準位等に電荷を注入して
接触注入帯電を行う帯電方法が知られている。
As a method of directly injecting the charges,
For example, a charging method is known in which a voltage is applied to a charging brush as a contact charging member, and charges are injected into a trap level or the like on the surface of a photoconductor to perform contact injection charging.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、帯電ブ
ラシを使用する接触帯電方式において、上述の感光体表
面のトラップ準位等に電荷を注入するものは、注入効率
が悪く、いまだ実用化するに至っていない。
However, in the contact charging method using a charging brush, the method of injecting charges into the trap level or the like on the surface of the photoconductor has a poor injection efficiency and is still in practical use. Not in.

【0012】すなわち、帯電ブラシによる帯電では、感
光体表面にブラシ毛(ブラシ繊維)を均一に接触させる
必要があり、パイルの植込み密度をあげたり、繊維の形
状を工夫したりする手段が提案されている。にもかかわ
らず、植込み密度の増加については、基布の糸径に制限
があり、また繊維形状については、その工夫にも限度が
あり、均一接触の達成は困難であった。
That is, in the charging by the charging brush, it is necessary to bring the brush bristles (brush fibers) into uniform contact with the surface of the photoreceptor, and a means for increasing the pile density of the pile or devising the shape of the fiber has been proposed. ing. Nevertheless, it was difficult to achieve uniform contact because there was a limit to the yarn diameter of the base fabric to increase the planting density, and there was a limit to how to devise the fiber shape.

【0013】この均一接触の達成という点からは、固定
式の帯電ブラシよりもローラ状の帯電ブラシを回転させ
て使用するのが望ましい。ローラ状の帯電ブラシを回転
させて感光体との周速差を大きくすれば実質上、接触点
を増加させることができる。しかし、感光体の損傷防止
や機構上の制約から見ると、周速差の増加にも限度があ
り、実用的な帯電性を得るに至っていない。
From the standpoint of achieving this uniform contact, it is desirable to rotate and use a roller-shaped charging brush rather than a fixed charging brush. By rotating the roller-shaped charging brush to increase the peripheral speed difference with the photoconductor, the number of contact points can be substantially increased. However, from the viewpoint of preventing damage to the photoconductor and mechanical restrictions, there is a limit to the increase in the peripheral speed difference, and a practical charging property has not been obtained.

【0014】そこで、本発明は、被帯電体との周速差を
大きくすることなく、被帯電体(感光体)との接触点を
増加させ、電荷注入効率を向上させるようにしたブラシ
帯電機構を提供することを目的とするものである。
Therefore, according to the present invention, the brush charging mechanism is designed to improve the charge injection efficiency by increasing the contact points with the charged body (photoconductor) without increasing the peripheral speed difference with the charged body. It is intended to provide.

【0015】[0015]

【課題を解決するための手段】本発明は、上述事情に鑑
みてなされたものであって、帯電電圧が印加された帯電
部材を被帯電体に接触させて、該被帯電体を帯電してな
るブラシ帯電機構において、前記帯電部材は、帯電電圧
が印加される基体と、該基体によって基端部を保持され
るとともに、先端部を前記被帯電体表面に接触させた多
数のブラシ繊維とを備え、該ブラシ繊維の先端部が、前
記被帯電体表面に接触する複数の細径繊維に分割されて
いることを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, in which a charging member to which a charging voltage is applied is brought into contact with an object to be charged to charge the object. In the brush charging mechanism, the charging member includes a base to which a charging voltage is applied, and a large number of brush fibers whose base end is held by the base and whose tip is in contact with the surface of the body to be charged. It is characterized in that the tip of the brush fiber is divided into a plurality of small-diameter fibers that come into contact with the surface of the body to be charged.

【0016】また、前記被帯電体を、光導電性を有する
感光層の表面に電荷注入層を備えた感光体とするとよ
い。
Further, it is preferable that the member to be charged is a photoconductor having a photoinjection layer on the surface of a photoconductive layer having photoconductivity.

【0017】さらに、前記帯電部材のブラシ繊維と前記
感光体の帯電注入層との間に相対速度差を設けるように
してもよい。
Further, a relative speed difference may be provided between the brush fibers of the charging member and the charge injection layer of the photoconductor.

【0018】[0018]

【作用】以上構成に基づき、帯電部材のブラシ繊維の先
端部を、複数の細径繊維に分割することにより、被帯電
体表面との接触点を増加させ、均一接触性を高めること
ができる。
By virtue of the above construction, the tip end portion of the brush fiber of the charging member is divided into a plurality of small-diameter fibers, so that the number of contact points with the surface of the member to be charged can be increased and uniform contact can be improved.

【0019】また、光導電性を有する感光層上に電荷注
入層を設けることにより、低電圧での接触注入帯電の電
荷注入効率が向上する。
Further, by providing the charge injection layer on the photosensitive layer having photoconductivity, the charge injection efficiency of contact injection charging at a low voltage is improved.

【0020】さらに、ブラシ繊維と電荷注入層との間に
相対速度差を設けることにより、ブラシ繊維のへたり等
による耐久性の低下を防止することができる。
Further, by providing a relative speed difference between the brush fibers and the charge injection layer, it is possible to prevent the durability from being deteriorated due to the fatigue of the brush fibers.

【0021】[0021]

【実施例】以下、図面に沿って、本発明の実施例につい
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】図1に、本発明に係るブラシ帯電機構が帯
電対象とする感光体(被帯電体)1の縦断面を示す。な
お、同図は、ドラム状に形成した感光体1の表面近傍の
拡大縦断面図を示す。
FIG. 1 shows a vertical cross section of a photosensitive member (object to be charged) 1 to be charged by the brush charging mechanism according to the present invention. The figure shows an enlarged vertical sectional view of the vicinity of the surface of the photosensitive member 1 formed in a drum shape.

【0023】感光体1は、中心側から順に、アルミシリ
ンダ11、導電層12、注入防止層13、電荷発生層1
4、電荷輸送層15、そして電荷注入層16を有する。
The photoreceptor 1 comprises an aluminum cylinder 11, a conductive layer 12, an injection prevention layer 13, and a charge generation layer 1 in this order from the center side.
4, the charge transport layer 15, and the charge injection layer 16.

【0024】アルミシリンダ11は、円筒状に形成され
た基体であり、直径30mmに形成されており、その表
面には、導電層12(以下「UC層」という。)が下引
き層として約20μmの膜厚で形成されている。
The aluminum cylinder 11 is a base body formed in a cylindrical shape and has a diameter of 30 mm. On its surface, a conductive layer 12 (hereinafter referred to as "UC layer") is an undercoat layer of about 20 μm. Is formed with a film thickness of.

【0025】電荷注入防止層(以下「CP層」とい
う。)13は、アルミシリンダ11からの正孔の注入に
よる暗減衰を防止するためのものである。この層には電
気的に中抵抗の材料が用いられ、絶縁性のアミラン樹脂
に、ある程度のイオン導電性を示すメトキシメチル化ナ
イロンを混合して厚さ約1μm程度に塗工される。
The charge injection prevention layer (hereinafter referred to as “CP layer”) 13 is for preventing dark decay due to injection of holes from the aluminum cylinder 11. An electrically medium resistance material is used for this layer, and an insulating amylan resin is mixed with methoxymethylated nylon showing a certain degree of ionic conductivity and coated to a thickness of about 1 μm.

【0026】電荷発生層(以下「CG層」という。)1
4は、バインダーとしてのポリビニルブチラール樹脂
と、電荷発生材料としてのジスアゾ系の顔料とを1:2
の割合で分散させた層を約1μmの層厚で塗工したもの
である。
Charge generation layer (hereinafter referred to as "CG layer") 1
4 is a polyvinyl butyral resin as a binder and a disazo pigment as a charge generating material in a ratio of 1: 2.
Is applied in a layer thickness of about 1 μm.

【0027】電荷輸送層(以下「CT層」という。)1
5は、P型半導体によって構成されており、上述のCG
層14で発生した電荷対のうち、プラス電荷のみを感光
体表面に輸送する役割を果たす。具体的には、ポリカー
ボネート樹脂にヒドラゾンを1:1の重量比で分散した
ものを層厚20μmで塗工したものを用いる。
Charge transport layer (hereinafter referred to as "CT layer") 1
5 is composed of a P-type semiconductor and has the above-mentioned CG.
Of the charge pairs generated in the layer 14, it plays a role of transporting only positive charges to the photoreceptor surface. Specifically, a polycarbonate resin in which hydrazone is dispersed at a weight ratio of 1: 1 is applied with a layer thickness of 20 μm.

【0028】なお、現在は、理想的なN型半導体のOP
C感光体は発見されていないが、原理的には上述の構成
のP型半導体をN型半導体に代えて、プラス帯電を行う
ことも可能である。
At present, the OP of an ideal N-type semiconductor is used.
Although a C photoconductor has not been found, it is possible in principle to replace the P-type semiconductor having the above-described configuration with an N-type semiconductor and perform positive charging.

【0029】本発明においては、上述のCT層15の上
に、電荷注入層16を設けている。この電荷注入層16
により、接触帯電部材(後述)からの直接注入帯電を可
能にしている。電荷注入層16は、例えば、ホスファゼ
ン樹脂に導電フィラー17としてSnO2 を70%wt
((導電フィラー重量/導電フィラーとバインダーを合
計した全体の重量)×100[%]で定義する値)で分
散して、10μmの2膜厚で形成している。
In the present invention, the charge injection layer 16 is provided on the CT layer 15 described above. This charge injection layer 16
This allows direct injection charging from a contact charging member (described later). The charge injection layer 16 is, for example, 70% by weight of SnO 2 as a conductive filler 17 in a phosphazene resin.
((Weight of conductive filler / total weight of conductive filler and binder) × 100 [%]) to form a film having a thickness of 2 μm.

【0030】このときのSnO2 の分散量については、
分散量が多すぎると、電荷注入層16の表面抵抗値が低
くなりすぎて、像露光を行った後の潜像電荷の横流れが
発生する可能性があり、特に、高温高湿環境下において
はこの現象が顕著となる。逆に、分散量が少なすぎる
と、電荷注入層表面にSnO2 が十分に現れず、電荷の
注入が十分になされないため、部分的な帯電不良を起こ
してしまう。具体的には、反転現像系のベタ白画像で砂
地状の黒ポチ、全面カブリが発生し、画像不良となって
しまう。これらの問題を防止するためには、表1に示す
ようにSnO2 の分散量は2〜100wt%の範囲にあ
ることが必要となる。
Regarding the dispersion amount of SnO 2 at this time,
When the amount of dispersion is too large, the surface resistance value of the charge injection layer 16 becomes too low, and there is a possibility that lateral flow of latent image charges may occur after image exposure. Especially, in a high temperature and high humidity environment. This phenomenon becomes remarkable. On the other hand, if the amount of dispersion is too small, SnO 2 does not sufficiently appear on the surface of the charge injection layer and charge is not sufficiently injected, resulting in partial charge failure. Specifically, a solid white image in the reversal development system causes black spots on the sandy surface and fogging on the entire surface, resulting in a defective image. In order to prevent these problems, the amount of SnO 2 dispersed must be in the range of 2 to 100 wt% as shown in Table 1.

【0031】[0031]

【表1】 しかし、単純に感光層表面に抵抗の電荷注入層16を形
成すると、その表面を通じて電荷が横流れを起こして静
電潜像を保持することができない。そこで、表面抵抗は
高く、感光体内部方向には抵抗値が小さいような異方導
電性を持つような構成にする。
[Table 1] However, if the resistance charge injection layer 16 is simply formed on the surface of the photosensitive layer, the charge laterally flows through the surface, and the electrostatic latent image cannot be held. Therefore, the surface resistance is high, and the anisotropic conductivity is set so that the resistance value is small toward the inside of the photoconductor.

【0032】その構成例として、絶縁性のバインダー中
に、光透過性を持つSnO2 等の導電性粒子を適量分散
させたものを用いることで上述の異方導電作用を得るこ
とが可能である。
As an example of its constitution, it is possible to obtain the above-mentioned anisotropic conductive action by using an insulating binder in which an appropriate amount of conductive particles such as SnO 2 having a light transmitting property are dispersed. .

【0033】ここで、導電フィラーとして他の金属酸化
物、導電カーボン等を用いることも可能であるが、像露
光時にCG層14にまで光が到達することが条件になる
ため、光透過率の良いSnO2 粒子が好ましい。SnO
2 を70wt%分散した状態では、電荷注入層16単体
で730nmの光に対して95%の透過率を示したた
め、実用上問題ないレベルで像露光による潜像形成が可
能である。
Although it is possible to use other metal oxides, conductive carbon, etc. as the conductive filler, it is necessary that the light reaches the CG layer 14 at the time of image exposure. Good SnO 2 particles are preferred. SnO
When 70% by weight of 2 was dispersed, the charge injection layer 16 alone showed a transmittance of 95% with respect to light of 730 nm, so that a latent image can be formed by image exposure at a level that poses no practical problem.

【0034】他の導電フィラーとしてTiO2 粒子を分
散しても同様の効果が認められるが、電荷注入層16に
白色粒子であるTiO2 を分散すると光透過率が減少す
る。電荷注入層16の光透過率が50%を下回る場合、
十分な明部電位が得られないため良好な画像を得ること
ができなくなる。これを防止するために露光強度を高く
すると、電荷注入層16の導電粒子による光散乱現象を
顕著にさせ、潜像のみじみ、ボケを生じるため好ましく
ない。
The same effect can be observed when TiO 2 particles are dispersed as another conductive filler, but when TiO 2 which is a white particle is dispersed in the charge injection layer 16, the light transmittance is reduced. When the light transmittance of the charge injection layer 16 is less than 50%,
Since a sufficient bright portion potential cannot be obtained, a good image cannot be obtained. If the exposure intensity is increased in order to prevent this, the light scattering phenomenon by the conductive particles of the charge injection layer 16 becomes remarkable, and the latent image bleeds and blurs, which is not preferable.

【0035】実際に、電荷注入が発生する原理について
は、本出願人による特願平5−66150号公報に詳述
されている。
Actually, the principle of charge injection is described in detail in Japanese Patent Application No. 5-66150 filed by the present applicant.

【0036】この感光体1と、後述する帯電ブラシを用
いた電子写真方式のプリンタで画像出力を行った。
An image was output by an electrophotographic printer using the photoconductor 1 and a charging brush described later.

【0037】図2は、本発明によるプリンタの概略図で
あり、このプリンタは、一次帯電器(帯電ブラシ)2、
現像ユニット4、クリーニングユニット(カウンタブレ
ード)6等を一体化したプロセスカートリッジ8を使用
する構成となっている。
FIG. 2 is a schematic diagram of a printer according to the present invention. This printer includes a primary charger (charging brush) 2,
The process cartridge 8 in which the developing unit 4, the cleaning unit (counter blade) 6 and the like are integrated is used.

【0038】同図において、感光体1は、帯電ブラシ2
によって均一帯電を受けた後、画像信号に応じて強度変
調を受けたレーザ光3によってイメージ露光を受け、そ
の部分が除電される。現像ユニット4では一成分磁性ト
ナーによって反転現像を受け、露光された部分がトナー
可視化される。ここでは、ジャンピング現像方式を用い
た。
In the figure, the photosensitive member 1 is a charging brush 2
After being uniformly charged by, the image is exposed by the laser beam 3 whose intensity is modulated according to the image signal, and that portion is discharged. In the developing unit 4, the one-component magnetic toner undergoes reversal development, and the exposed portion is visualized as a toner. Here, the jumping development method is used.

【0039】トナー像は、次の転写部5において転写材
9に転写される。
The toner image is transferred to the transfer material 9 in the next transfer section 5.

【0040】本例のプリンタでは転写装置として3kV
の電圧を印加した転写ローラを用いた。転写材9上のト
ナー像は、その後、熱定着ローラ7によって定着され機
外へ排出される。
In the printer of this example, the transfer device is 3 kV.
The transfer roller to which the voltage of 1 was applied was used. After that, the toner image on the transfer material 9 is fixed by the heat fixing roller 7 and discharged to the outside of the machine.

【0041】一方、感光体1上に残った転写残トナー
は、ウレタンゴム製のカウンタブレード6によってかき
おとされ、次の画像形成に備える。
On the other hand, the transfer residual toner remaining on the photosensitive member 1 is scraped off by a counter blade 6 made of urethane rubber to prepare for the next image formation.

【0042】本発明で使用する帯電ブラシ2は、円筒形
の基体としての芯金22と、その表面に設けた半導電性
の多数のブラシ繊維20とによって回転可能に構成され
ている。この帯電ブラシ2に電圧を印加し、前述の感光
体1に摺擦して帯電を行う。半導電性のブラシ繊維20
の抵抗値は102 〜107 Ω・cm程度の体積低効率の
ものが使用される。具体的には、SA−7(アルリル
系、東レ製)、ベルトロン(ナイロン系、鐘紡製)、R
EC(レーヨン系、ユニチカ製)、ローバル(ポリプロ
ピレン系、三菱レイヨン製)、クラカーボ(PET系、
クラレ製)等の導電性カーボンブラックを分散した繊維
を挙げることができる。これらのブラシ繊維20は太さ
3〜10デニール程度が導電性やパイル密度の点で使い
易い。
The charging brush 2 used in the present invention is rotatably constituted by a cored bar 22 as a cylindrical substrate and a large number of semiconductive brush fibers 20 provided on the surface thereof. A voltage is applied to the charging brush 2 to rub against the photoconductor 1 to charge it. Semi-conductive brush fiber 20
Has a low volume efficiency of about 10 2 to 10 7 Ω · cm. Specifically, SA-7 (Aryl series, Toray), Bertron (Nylon series, Kanebo), R
EC (Rayon system, Unitika), Robal (Polypropylene system, Mitsubishi Rayon), Cracabo (PET system,
Fibers having conductive carbon black dispersed therein such as Kuraray Co., Ltd. can be mentioned. These brush fibers 20 having a thickness of about 3 to 10 denier are easy to use in terms of conductivity and pile density.

【0043】図7(a)に示すようなブラシ繊維20
は、その先端部を、同図(b)に示すように、複数の細
径繊維21に分割する。
Brush fibers 20 as shown in FIG. 7 (a)
Divides its tip into a plurality of thin fibers 21, as shown in FIG.

【0044】繊維ブラシ20の先端部を分割するには、
例えば、図6(a)、(b)に示すような金属ローラ3
0の表面に薄刃状の切込み溝31を有する治具を数百〜
数千回転で回転させながら、帯電ローラ2表面に押し当
てる。一例として、直径10cmのステンレス製ローラ
30に深さ250μm、10μmピッチの薄刃状の切込
み溝31を設けた。
To divide the tip of the fiber brush 20,
For example, the metal roller 3 as shown in FIGS.
Several hundreds of jigs having thin blade-shaped notch 31 on the surface of
It is pressed against the surface of the charging roller 2 while being rotated by several thousand rotations. As an example, a stainless-steel roller 30 having a diameter of 10 cm was provided with thin blade-shaped cut grooves 31 having a depth of 250 μm and a pitch of 10 μm.

【0045】このローラ30を500rpmで回転さ
せ、それと反対方向に500rpmで太さ6デニール
(繊維径35μm)、パイル密度10万本/inch
2 、繊維:SA−7の帯電ブラシ2を回転させながら押
し当てることで、先端部を複数の細径繊維に分割した。
細径繊維21の長さは約200μm、太さ3〜6μmで
あった。こうして作成した外径14mm、芯金径8m
m、抵抗値1×105 Ω(250V印加時)の帯電ブラ
シ2を図2に示すプロセスカートリッジ8に装着した。
This roller 30 is rotated at 500 rpm, and in the opposite direction at 500 rpm, the thickness is 6 denier (fiber diameter is 35 μm) and the pile density is 100,000 pieces / inch.
2. Fiber: By pressing the charging brush 2 of SA-7 while rotating, the tip portion was divided into a plurality of small diameter fibers.
The length of the thin fiber 21 was about 200 μm and the thickness was 3 to 6 μm. Outer diameter 14 mm, core metal diameter 8 m
The charging brush 2 having m and a resistance value of 1 × 10 5 Ω (at the time of applying 250 V) was mounted on the process cartridge 8 shown in FIG.

【0046】帯電ブラシ2は感光体1にニップ幅約7m
mで当接させ、感光体1と同方向に周速差が3倍になる
ように回転させながらプロセススピード25mm/sec
で帯電を行った。
The charging brush 2 has a nip width of about 7 m on the photoconductor 1.
process speed 25 mm / sec while rotating the same in the same direction as the photoconductor 1 so that the peripheral speed difference becomes 3 times.
It was charged with.

【0047】その結果、感光体1表面電位は、印加電圧
−500Vにほぼ等しい−490Vであった。このとき
の感光体1表面電位を測定した結果を図3に示す。
As a result, the surface potential of the photosensitive member 1 was -490V, which was almost equal to the applied voltage of -500V. The result of measuring the surface potential of the photoreceptor 1 at this time is shown in FIG.

【0048】比較例として示した未処理(未分割)の帯
電ブラシの表面電位に比べ、振れ幅が小さくなっている
ことがわかる。
It can be seen that the fluctuation range is smaller than the surface potential of the untreated (undivided) charging brush shown as a comparative example.

【0049】帯電ブラシ2の回転方向は感光体と逆方向
でも良いが、同方向で回転させた場合に比べ周速差を大
きくする必要がある。逆方向では、同速度で回転させる
と周速差は0となるため、上述と同様の周速差を得るに
は帯電ブラシ2の周速を2倍にして回転させる必要があ
る。
The rotating direction of the charging brush 2 may be opposite to that of the photosensitive member, but it is necessary to make the peripheral speed difference larger than that in the case of rotating in the same direction. In the opposite direction, if the peripheral speed difference is 0 when rotated at the same speed, the peripheral speed of the charging brush 2 must be doubled and rotated in order to obtain the same peripheral speed difference as described above.

【0050】また、以上のプリンタで32.5℃、85
%RHの高温高湿(以下「H/H」という。)、23
℃、65%RHの通常(以下「N/N」という。)、1
5℃、10%RHの低温低湿(以下「L/L」)の各環
境下で画像出力を行ったが、帯電不良、画像ボケ、流れ
等の無い良好な画像を得ることができた。本実施例は、
放電を用いない帯電方式であるため、オゾンの発生、感
光体1表面の放電による荒れが発生しなかった。
Also, with the above printer, 32.5 ° C., 85
% RH high temperature and high humidity (hereinafter referred to as "H / H"), 23
Normal at 65 ° C and 65% RH (hereinafter referred to as "N / N"), 1
Image output was performed under each environment of low temperature and low humidity (hereinafter, “L / L”) of 5 ° C. and 10% RH, and a good image without defective charging, image blur, and flow could be obtained. In this example,
Since the charging method does not use electric discharge, ozone was not generated and the surface of the photoconductor 1 was not roughened due to electric discharge.

【0051】従来の感光体で、同様の画像を得るために
はDC電圧−500VにAC電圧2000V(ピーク間
電圧値)を重畳したものを印加し、AC帯電を行う必要
があり、この条件下ではオゾン量が0.01ppm程度
発生し、放電によって感光体1表面の荒れ、振動電界に
よる帯電音の発生が認められた。
In order to obtain a similar image with a conventional photoconductor, it is necessary to apply a voltage in which an AC voltage of 2000 V (peak-to-peak voltage value) is superposed on a DC voltage of -500 V and to perform AC charging under these conditions. It was confirmed that the amount of ozone was about 0.01 ppm, the surface of the photoconductor 1 was roughened by the discharge, and the charging sound was generated by the oscillating electric field.

【0052】比較例として、本実施例のバイアス条件
で、従来の感光体を用いて画像形成を行ったところ、感
光体表面電位はほとんど0Vで、帯電は行われなかっ
た。
As a comparative example, when an image was formed using a conventional photoconductor under the bias conditions of this example, the photoconductor surface potential was almost 0 V, and charging was not performed.

【0053】以上のように、本実施例の構成を取ること
によって、低DC電圧によって、放電を伴わない帯電を
行うことが可能になり、従来問題になっていたオゾン発
生、AC帯電音をなくすことが可能になった。
As described above, by adopting the configuration of this embodiment, it becomes possible to carry out charging without a discharge by a low DC voltage, and to eliminate ozone generation and AC charging noise, which have been problems in the past. It has become possible.

【0054】さらに、プリント枚数が増加したときの帯
電ブラシ2のブラシ外径や帯電ニップ幅の変化は、図
4、図5に示すようになり、本発明の帯電ブラシ2のへ
たり量が少ないことがわかる。これは、未処理(未分
割)の帯電ブラシでは、接触圧によりへたりが発生しや
すいのに対し、本発明の帯電ブラシ2では、接触圧が先
端の細径繊維部分で適度に吸収され、元の太さの部分は
そのままの状態で保持されるためであると考えられる。
その結果、耐久時の帯電性の低下が少なく、耐久後(5
000枚以降)測定した帯電時の感光体表面電位は−4
70Vであり、画質への影響はほとんどなかった。
Further, changes in the brush outer diameter and the charging nip width of the charging brush 2 when the number of prints increases are as shown in FIGS. 4 and 5, and the charging brush 2 of the present invention has a small settling amount. I understand. This is because the untreated (undivided) charging brush is liable to cause settling due to the contact pressure, whereas the charging brush 2 of the present invention absorbs the contact pressure moderately in the thin fiber portion at the tip, It is considered that this is because the portion with the original thickness is retained as it is.
As a result, there was little decrease in chargeability during durability, and after durability (5
000 sheets or later) The measured photoreceptor surface potential during charging is -4.
It was 70 V and had almost no effect on the image quality.

【0055】未処理(未分割)ブラシ使用時には、耐久
後の感光体表面電位は−390Vであり、帯電不良によ
るカブリが発生した。
When an untreated (undivided) brush was used, the surface potential of the photosensitive member after running was -390 V, and fog occurred due to poor charging.

【0056】[0056]

【発明の効果】以上説明したように、本発明によると、
帯電ブラシのブラシ繊維の先端部を複数の細径繊維に分
割することにより、感光体の表面にブラシ繊維を均一に
接触させることができ、帯電均一性を向させることがで
きるので、地カブリ等による帯電不良を防止することが
できる。また、耐久時にも帯電ブラシの外径変化が小さ
くニップ幅の変化が少ないため、ブラシ繊維のへたりに
起因する帯電能力の低下を有効に防止し、帯電カブリの
ない安定した帯電を行うことができる。
As described above, according to the present invention,
By dividing the tip of the brush fiber of the charging brush into a plurality of small-diameter fibers, the brush fiber can be brought into uniform contact with the surface of the photoconductor, and the charging uniformity can be improved. It is possible to prevent the charging failure due to. In addition, since the change in the outer diameter of the charging brush is small and the change in the nip width is small even during durability, it is possible to effectively prevent the deterioration of the charging ability due to the fatigue of the brush fiber, and to perform stable charging without charging fog. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において帯電対象となる感光体の表面近
傍の構成を示す拡大縦断面図。
FIG. 1 is an enlarged vertical cross-sectional view showing the configuration near the surface of a photosensitive member to be charged in the present invention.

【図2】帯電ブラシを装着した電子写真方式のプリンタ
の概略構成図。
FIG. 2 is a schematic configuration diagram of an electrophotographic printer equipped with a charging brush.

【図3】帯電ブラシによる感光体周方向の表面電位分布
を表す図。
FIG. 3 is a diagram showing the surface potential distribution in the circumferential direction of the photoconductor by a charging brush.

【図4】耐久時のブラシ外径の変化を示す図。FIG. 4 is a view showing a change in brush outer diameter during durability.

【図5】耐久時の帯電ニップ幅の変化を示す図。FIG. 5 is a diagram showing a change in charging nip width during durability.

【図6】(a)は、ブラシ繊維の先端部を分割する治具
の正面図。(b)は、同じく縦断面図。
FIG. 6A is a front view of a jig for dividing the tip end portion of the brush fiber. (B) is a longitudinal sectional view of the same.

【図7】(a)は、分割前のブラシ繊維の先端部の拡大
図。(b)は、分割後のブラシ繊維の先端部の拡大図。
FIG. 7A is an enlarged view of a tip portion of a brush fiber before division. (B) is an enlarged view of the tip portion of the brush fiber after division.

【符号の説明】[Explanation of symbols]

1 被帯電体(感光体)感光ドラム 2 帯電ブラシ 3 レーザ光 4 現像ユニット 5 転写ローラ 6 クリーニングブレード 7 定着ローラ 8 プロセスカートリッジ 9 転写材 11 アルミシリンダ 12 導電層(下引き層、UC層) 13 電荷注入防止層(CP層) 14 電荷発生層(CG層) 15 電荷輸送層(CT層) 16 電荷注入層 17 導電フィラー 20 ブラシ繊維 21 細径繊維 22 基体(芯金) 1 Charged Member (Photosensitive Member) Photosensitive Drum 2 Charging Brush 3 Laser Light 4 Developing Unit 5 Transfer Roller 6 Cleaning Blade 7 Fixing Roller 8 Process Cartridge 9 Transfer Material 11 Aluminum Cylinder 12 Conductive Layer (Undercoat Layer, UC Layer) 13 Charge Injection prevention layer (CP layer) 14 Charge generation layer (CG layer) 15 Charge transport layer (CT layer) 16 Charge injection layer 17 Conductive filler 20 Brush fiber 21 Thin fiber 22 Substrate (core bar)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古屋 正 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Furuya 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 帯電電圧が印加された帯電部材を被帯電
体に接触させて、該被帯電体を帯電してなるブラシ帯電
機構において、 前記帯電部材は、帯電電圧が印加される基体と、 該基体によって基端部を保持されるとともに、先端部を
前記被帯電体表面に接触させた多数のブラシ繊維とを備
え、 該ブラシ繊維の先端部が、前記被帯電体表面に接触する
複数の細径繊維に分割されている、 ことを特徴とするブラシ帯電機構。
1. A brush charging mechanism in which a charging member to which a charging voltage is applied is brought into contact with a member to be charged to charge the member to be charged, wherein the charging member is a substrate to which the charging voltage is applied, A plurality of brush fibers whose base end is held by the base body and whose tip is in contact with the surface of the body to be charged; and a plurality of brush fibers whose tip is in contact with the surface of the body to be charged. The brush charging mechanism is characterized in that it is divided into small diameter fibers.
【請求項2】 前記被帯電体が、光導電性を有する感光
層の表面に電荷注入層を備えた感光体である、 ことを特徴とする請求項1記載のブラシ帯電機構。
2. The brush charging mechanism according to claim 1, wherein the member to be charged is a photoconductor having a charge injection layer on a surface of a photoconductive layer having photoconductivity.
【請求項3】 前記帯電部材のブラシ繊維と前記感光体
の帯電注入層との間に相対速度差を設ける、 ことを特徴とする請求項2記載のブラシ帯電機構。
3. The brush charging mechanism according to claim 2, wherein a relative speed difference is provided between the brush fiber of the charging member and the charge injection layer of the photoconductor.
JP16303594A 1994-06-22 1994-06-22 Brush charging mechanism Pending JPH086357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16303594A JPH086357A (en) 1994-06-22 1994-06-22 Brush charging mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16303594A JPH086357A (en) 1994-06-22 1994-06-22 Brush charging mechanism

Publications (1)

Publication Number Publication Date
JPH086357A true JPH086357A (en) 1996-01-12

Family

ID=15765953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16303594A Pending JPH086357A (en) 1994-06-22 1994-06-22 Brush charging mechanism

Country Status (1)

Country Link
JP (1) JPH086357A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735438A2 (en) * 1995-03-30 1996-10-02 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic apparatus employing the charging member
JP2008076931A (en) * 2006-09-25 2008-04-03 Fuji Xerox Co Ltd Image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735438A2 (en) * 1995-03-30 1996-10-02 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic apparatus employing the charging member
US5805961A (en) * 1995-03-30 1998-09-08 Canon Kabushiki Kaisha Charging member having bristless, process cartridge, and electrophotographic apparatus employing such a charging member
EP0735438A3 (en) * 1995-03-30 1998-11-25 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic apparatus employing the charging member
JP2008076931A (en) * 2006-09-25 2008-04-03 Fuji Xerox Co Ltd Image forming apparatus

Similar Documents

Publication Publication Date Title
JPH063921A (en) Electrophotographic device and process cartridge attachable and datachable to and from the device
JP3402727B2 (en) Charging device, process cartridge, and image forming apparatus
US6134407A (en) Charging apparatus for charging a moving member to be charged including an elastic rotatable member carrying electroconductive particles on the surface thereof
US6081681A (en) Charging device, charging method, process cartridge and image forming apparatus
US20120213551A1 (en) Image forming apparatus
JP3337994B2 (en) Image forming device
JPH10307457A (en) Method and device for electrification and image forming device
JP3919615B2 (en) Image forming apparatus
JP5062984B2 (en) Image forming apparatus and image forming method
JP4314719B2 (en) Image forming apparatus and process cartridge
JPH086357A (en) Brush charging mechanism
JP3352384B2 (en) Charging method, charging device, image forming apparatus, and process cartridge
JPH0844153A (en) Image forming device
US11644788B2 (en) Image forming apparatus capable of suppressing toner fusion on a photosensitive member
US6832062B2 (en) Charging apparatus, process cartridge and image forming apparatus having electroconductive particles charged in a nip between a charging member and a member to be charged
JPH0850398A (en) Contact charging device
JP4366181B2 (en) Image forming apparatus
JPH06167873A (en) Image forming device
JP4261741B2 (en) Image forming apparatus
JPH0850395A (en) Charged member, charging device, image forming device and process cartridge
KR101445640B1 (en) Charging device and image forming apparatus using it
JPH0850394A (en) Charged member, charging device, image forming device and process cartridge
JP2005164951A (en) Electrifying apparatus and image forming apparatus
JPH08123151A (en) Electrifier
JPH06175464A (en) Electrifying device