JPH0862387A - Manufacture of fire resisting x-ray shielding plate without asbestos - Google Patents

Manufacture of fire resisting x-ray shielding plate without asbestos

Info

Publication number
JPH0862387A
JPH0862387A JP20262194A JP20262194A JPH0862387A JP H0862387 A JPH0862387 A JP H0862387A JP 20262194 A JP20262194 A JP 20262194A JP 20262194 A JP20262194 A JP 20262194A JP H0862387 A JPH0862387 A JP H0862387A
Authority
JP
Japan
Prior art keywords
powder
asbestos
shielding plate
raw material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20262194A
Other languages
Japanese (ja)
Inventor
Hitoshi Ota
人司 太田
Sadaji Matsuura
定治 松浦
Norio Serizawa
則夫 芹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI FUNEN KENZAI KOGYO KK
Sumitomo Forestry Co Ltd
Original Assignee
FUJI FUNEN KENZAI KOGYO KK
Sumitomo Forestry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI FUNEN KENZAI KOGYO KK, Sumitomo Forestry Co Ltd filed Critical FUJI FUNEN KENZAI KOGYO KK
Priority to JP20262194A priority Critical patent/JPH0862387A/en
Publication of JPH0862387A publication Critical patent/JPH0862387A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To manufacture a asbestos non-contained fire resisting X-ray shielding plate not containing asbestos by the wet manufacturing method of a mixed material containing barium sulfate by using a water-contained magnesia silicate mineral as component. CONSTITUTION: A water-contained magnesia silicate mineral allows the molding by wet manufacturing method of a mixed starting material containing barium sulfate. For this, sepiolite is particularly preferred among sepiolite, serpentinite and the like, and its content in the mixed starting material is 2-10wt.%. As the barium sulfate powder forming the main starting material, barite powder is used, and its content is 30-60wt.%. A metal carbonate powder is also used as a main starting material, and selected from the powder group consisting of nickel carbonate, strontium carbonate, and barium carbonate. Its content is 3-15wt.%. The content of cement and granulated stag for imparting shape holding property to a shielding plate and holding the strength is 30-50wt.%, and a reinforcing agent for the shielding plate selected from the group consisting of alkali-resistant glass fiber, synthetic organic fiber, and pulp is contained in the mixed starting material in an amount of 4-10wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非含石綿耐火性X線遮
蔽板の製造方法、詳しくは、セピオライト(繊維状ケイ
酸マグネシウム)等の含水マグネシアケイ酸塩鉱物を有
効成分とする混合原料を用いて、湿式抄造法又は押出成
型法により製造することを特徴とする非含石綿耐火性X
線遮蔽板の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing a non-asbestos refractory X-ray shielding plate, more specifically, a mixed raw material containing a hydrous magnesia silicate mineral such as sepiolite (fibrous magnesium silicate) as an active ingredient. Non-asbestos fire resistance X characterized by being manufactured by a wet papermaking method or an extrusion molding method using
The present invention relates to a method for manufacturing a line shield plate.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、X線遮蔽板としては、鉛板や鉛複合板が主力となっ
ているが、鉛は有害で公害行政上好ましくない上、重い
のが欠点である。一方、耐火性ボードとしては、石綿繊
維の物理化学的吸着能及び補強性を利用して、石綿スレ
ート板、珪酸カルシウム板、スラグ石膏板及び特殊セメ
ント板等が、湿式抄造法又は押出成型法で製造され、市
販されている。現今、石綿公害ということで石綿の使用
量は漸次削減されているが、未だ上記耐火性ボード等に
使用されている石綿の量は膨大である。また、上記鉛や
上記石綿を一切使用せずに、これらと同等のX線遮蔽効
果及び耐火性を発現し得る無害な原料としては、硫酸バ
リウム粉末及び金属炭酸塩粉末を用いることが提案され
ている。
2. Description of the Related Art Conventionally, lead plates and lead composite plates have been the main X-ray shielding plates, but lead is harmful and is not preferable in terms of pollution control, and is heavy. Is a drawback. On the other hand, as the refractory board, asbestos slate board, calcium silicate board, slag gypsum board and special cement board, etc. are made by the wet papermaking method or the extrusion molding method by utilizing the physicochemical adsorption ability and reinforcement of asbestos fiber. Manufactured and marketed. At present, the amount of asbestos used is gradually reduced due to asbestos pollution, but the amount of asbestos still used in the above fire resistant boards is enormous. Further, it has been proposed to use barium sulfate powder and metal carbonate powder as harmless raw materials that can exhibit the X-ray shielding effect and fire resistance equivalent to these without using the lead or the asbestos at all. There is.

【0003】しかし、上記硫酸バリウム粉末及び金属炭
酸塩粉末は、非常に微細な粒子である為、特に、湿式抄
造法では、その成型が困難であった。上記粉末(原料)
を用いて、湿式抄造法で積層板を成型する場合では、微
細粒子が多いため繊維質への微細粒子原料の定着が悪
く、積層が困難で単層に「はくり」する現象が起き、板
としての形態をなすものではなかった。また、上記粉末
を用いて、押出成型法で積層板を成型する場合では、高
価な増粘材の使用量の削減と添加水量の削減による乾燥
収縮・ヒビ割れが起こり、生産性が上がらず、大型寸法
のものが得られなかった。
However, since the barium sulfate powder and the metal carbonate powder are extremely fine particles, it is difficult to form them by the wet papermaking method. The above powder (raw material)
When a laminated board is formed by a wet papermaking method using, the fixing of the fine particle raw material to the fibrous material is poor due to the large number of fine particles, and the phenomenon of “peeling” into a single layer due to difficulty in lamination occurs It did not take the form as. Further, using the above powder, when molding a laminated plate by an extrusion molding method, drying shrinkage / cracking occurs due to the reduction of the amount of expensive thickening agent used and the amount of added water, and the productivity does not increase, It was not possible to obtain a large size.

【0004】従って、本発明の目的は、硫酸バリウムを
含む混合原料からの湿式製造法による非含石綿耐火性X
線遮蔽板の製造が可能とし、また、湿式製造法又は押出
成型法により、軽量化され、無害で公害行政上の問題が
ない非含石綿耐火性X線遮蔽板を容易に且つ高生産性を
以て製造する方法を提供することにある。
Therefore, an object of the present invention is to obtain a non-asbestos refractory material X by a wet manufacturing method from a mixed raw material containing barium sulfate.
It is possible to manufacture a X-ray shielding plate that can be manufactured by a wet manufacturing method or an extrusion molding method, is lightweight, is harmless, and has no pollution administrative problems. It is to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明者らは、セピオラ
イト(繊維状ケイ酸マグネシウム)が、吸着性能及び繊
維類への微細粒子原料の定着性を向上させる性能を有す
ることに着目し、鋭意検討した結果、セピオライト等の
含水マグネシアケイ酸塩鉱物を使用した特定の混合原料
から、湿式抄造法によって非含石綿耐火性X線遮蔽板を
製造することにより、上記目的を達成し得ることを知見
した。また、該含水マグネシアケイ酸塩鉱物を使用した
特定の混合原料から、押出成型法によって非含石綿耐火
性X線遮蔽板を製造することにより、上記目的を達成し
得ることを知見した。
Means for Solving the Problems The present inventors have paid attention to the fact that sepiolite (fibrous magnesium silicate) has an adsorbing property and a property of improving the fixing property of a fine particle raw material on fibers, and has earnestly studied. As a result of the study, it was found that the above object can be achieved by producing a non-asbestos-fire-resistant X-ray shielding plate by a wet papermaking method from a specific mixed raw material using a hydrous magnesia silicate mineral such as sepiolite. did. It was also found that the above object can be achieved by producing a non-asbestos-resistant X-ray shielding plate by an extrusion molding method from a specific mixed raw material using the hydrous magnesia silicate mineral.

【0006】本発明は、上記知見に基づいてなされたも
ので、下記原料(a)〜(e)の下記量からなる混合原
料及び水を用いて、湿式抄造法により製造することを特
徴とする非含石綿耐火性X線遮蔽板の製造方法(第一発
明)を提供するものである。 (a)含水マグネシアケイ酸塩鉱物;2〜10重量% (b)硫酸バリウム粉末;30〜60重量% (c)炭酸ニッケル粉末、炭酸ストロンチウム粉末、炭
酸バリウム粉末及び炭酸リチウム粉末からなる群から選
ばれた1種又は2種以上の金属炭酸塩粉末;3〜15重
量% (d)セメント及び水砕スラグ粉末;30〜50重量% (e)耐アルカリ性ガラス繊維、合成有機繊維及びパル
プからなる群から選ばれた1種又は2種以上の補強材;
4〜10重量%
The present invention has been made on the basis of the above findings, and is characterized by being manufactured by a wet papermaking method using a mixed raw material consisting of the following amounts of the following raw materials (a) to (e) and water. The present invention provides a method (first invention) for producing a non-asbestos fire resistant X-ray shielding plate. (A) Hydrous magnesia silicate mineral; 2 to 10% by weight (b) Barium sulfate powder; 30 to 60% by weight (c) Nickel carbonate powder, strontium carbonate powder, barium carbonate powder and lithium carbonate powder 3 to 15% by weight (d) cement and granulated slag powder; 30 to 50% by weight (e) group consisting of alkali resistant glass fiber, synthetic organic fiber and pulp One or more reinforcing materials selected from:
4-10% by weight

【0007】また、本発明は、下記原料(a)〜(f)
の下記量からなる混合原料及び水を用いて、押出成型法
により製造することを特徴とする非含石綿耐火性X線遮
蔽板の製造方法(第二発明)を提供するものである。 (a)含水マグネシアケイ酸塩鉱物;2〜10重量% (b)硫酸バリウム粉末;30〜60重量% (c)炭酸ニッケル粉末、炭酸ストロンチウム粉末、炭
酸バリウム粉末及び炭酸リチウム粉末からなる群から選
ばれた1種又は2種以上の金属炭酸塩粉末;3〜15重
量% (d)セメント及び水砕スラグ粉末;30〜50重量% (e)耐アルカリ性ガラス繊維、合成有機繊維及びパル
プからなる群から選ばれた1種又は2種以上の補強材;
4〜10重量% (f)増粘材;0.5〜1.5重量%
The present invention also provides the following raw materials (a) to (f)
The present invention provides a method for producing a non-asbestos-fireproof X-ray shielding plate (second invention), which is characterized in that it is produced by an extrusion molding method using a mixed raw material and water in the following amounts. (A) Hydrous magnesia silicate mineral; 2 to 10% by weight (b) Barium sulfate powder; 30 to 60% by weight (c) Nickel carbonate powder, strontium carbonate powder, barium carbonate powder and lithium carbonate powder 3 to 15% by weight (d) cement and granulated slag powder; 30 to 50% by weight (e) group consisting of alkali resistant glass fiber, synthetic organic fiber and pulp One or more reinforcing materials selected from:
4-10 wt% (f) Thickener; 0.5-1.5 wt%

【0008】以下、本発明(第一発明及び第二発明)に
ついて、詳細に説明する。
The present invention (first invention and second invention) will be described in detail below.

【0009】上記第一発明の製造方法に用いられる混合
原料は、(a)含水マグネシアケイ酸塩鉱物、(b)硫
酸バリウム粉末、(c)炭酸ニッケル粉末、炭酸ストロ
ンチウム粉末、炭酸バリウム粉末及び炭酸リチウム粉末
からなる群から選ばれた1種又は2種以上の金属炭酸塩
粉末、(d)セメント及び水砕スラグ粉末、並びに
(e)耐アルカリ性ガラス繊維、合成有機繊維及びパル
プからなる群から選ばれた1種又は2種以上の補強材の
各原料からなるものである。
The mixed raw materials used in the production method of the first invention are (a) hydrous magnesia silicate mineral, (b) barium sulfate powder, (c) nickel carbonate powder, strontium carbonate powder, barium carbonate powder and carbonic acid. One or more metal carbonate powders selected from the group consisting of lithium powder, (d) cement and granulated slag powder, and (e) selected from the group consisting of alkali resistant glass fiber, synthetic organic fiber and pulp. It is made of each raw material of one kind or two or more kinds of reinforcing materials.

【0010】上記原料(a)の含水マグネシアケイ酸塩
鉱物は、硫酸バリウムを含む混合原料の湿式抄造法によ
る成型を可能ならしめるものである。上記含水マグネシ
アケイ酸塩鉱物としては、セピオライト(繊維状ケイ酸
マグネシウム)、蛇絞岩、滑石(タルク)、ベントナイ
ト、アタパルジャイト等が挙げられ、これらのうち、セ
ピオライトが特に好ましい。上記含水マグネシアケイ酸
塩鉱物の含有量は、上記混合原料中、2〜10重量%
(以下、単に%という)、好ましくは2〜8%である。
上記含有量が2%未満であると、上記混合原料の抄造成
型ができず、また、10%を超えると、製品の曲げ強度
が低下するとともに、生産効率が低下する。
The water-containing magnesia silicate mineral as the raw material (a) enables molding of a mixed raw material containing barium sulfate by a wet papermaking method. Examples of the hydrous magnesia silicate mineral include sepiolite (fibrous magnesium silicate), serpentine rock, talc, bentonite, attapulgite, and the like. Of these, sepiolite is particularly preferable. The content of the hydrous magnesia silicate mineral is 2 to 10% by weight in the mixed raw material.
(Hereinafter, simply referred to as “%”), preferably 2 to 8%.
If the content is less than 2%, the mixed raw material cannot be formed by papermaking, and if it exceeds 10%, the bending strength of the product is lowered and the production efficiency is lowered.

【0011】また、上記原料(b)の硫酸バリウム粉末
は、X線遮蔽効果を有するもので、上記混合原料のうち
でも主原料となるものである。上記硫酸バリウム粉末と
しては、沈降性硫酸バリウム粉末、バライト粉等が用い
られる。上記硫酸バリウム粉末の含有量は、上記混合原
料中、30〜60%、好ましくは40〜55%である。
上記含有量が30%未満であると、製品のX線遮蔽能力
(鉛当量)の低下を来たし、また、60%を超えると、
製品の強度低下を来たす。
The barium sulfate powder as the raw material (b) has an X-ray shielding effect and is a main raw material among the mixed raw materials. As the barium sulfate powder, precipitated barium sulfate powder, barite powder or the like is used. The content of the barium sulfate powder is 30 to 60%, preferably 40 to 55% in the mixed raw material.
If the content is less than 30%, the X-ray shielding ability (lead equivalent) of the product will decrease, and if it exceeds 60%,
The strength of the product is reduced.

【0012】また、上記原料(c)の炭酸ニッケル粉
末、炭酸ストロンチウム粉末、炭酸バリウム粉末及び炭
酸リチウム粉末からなる群から選ばれた1種又は2種以
上の金属炭酸塩粉末は、上記混合原料のうちでも上記原
料(b)の硫酸バリウム粉末とともに主原料となるもの
である。上記金属炭酸塩粉末の含有量は、上記混合原料
中、3〜15%、好ましくは4〜12%である。上記含
有量が3%未満であると、製品のX線遮蔽能力(鉛当
量)の低下を来たし、また、15%を超えると、作業
性、その他の点で問題を生じ易い。
The raw material (c), which is one or more metal carbonate powders selected from the group consisting of nickel carbonate powder, strontium carbonate powder, barium carbonate powder and lithium carbonate powder, is a mixed raw material. Among them, it is a main raw material together with the barium sulfate powder of the above raw material (b). The content of the metal carbonate powder in the mixed raw material is 3 to 15%, preferably 4 to 12%. If the content is less than 3%, the X-ray shielding ability (lead equivalent) of the product will be reduced, and if it exceeds 15%, problems will occur in workability and other points.

【0013】また、上記原料(d)のセメント及び水砕
スラグ粉末は、保型性を与えると共に遮蔽板としての強
度を保持する機能を有するものである。上記セメント及
び水砕スラグ粉末の含有量(合量)は、上記混合原料
中、30〜50%、好ましくは35〜50%である。上
記含有量が30%未満であると、製品の強度低下を来た
し、また、50%を超えると、製品のX線遮蔽能力(鉛
当量)の低下を来たす。上記セメントと上記水砕スラグ
粉末との含有量の重量比(前者/後者)は、好ましくは
40/60〜70/30、更に好ましくは50/50〜
60/40である。
The cement and the granulated slag powder as the raw material (d) have a function of providing shape retention and strength of the shielding plate. The content (total amount) of the cement and the granulated slag powder is 30 to 50%, preferably 35 to 50% in the mixed raw material. If the content is less than 30%, the strength of the product will decrease, and if it exceeds 50%, the X-ray shielding ability (lead equivalent) of the product will decrease. The weight ratio (former / latter) of the content of the cement and the granulated slag powder is preferably 40/60 to 70/30, more preferably 50/50 to.
It is 60/40.

【0014】また、上記原料(e)の耐アルカリ性ガラ
ス繊維、合成有機繊維及びパルプからなる群から選ばれ
た1種又は2種以上の補強材は、本発明の製造方法によ
り製造される非含石綿耐火性X線遮蔽板を補強するもの
である。上記補強材の含有量は、上記混合原料中、4〜
10%、好ましくは4〜8%である。上記含有量が4%
未満であると、製品の生産性の低下及び強度の低下を来
たし、また、10%を超えると、製品のX線遮蔽能力
(鉛当量)の低下を来たす。
Further, the above-mentioned raw material (e), one or more kinds of reinforcing materials selected from the group consisting of alkali-resistant glass fibers, synthetic organic fibers and pulp, is not contained by the manufacturing method of the present invention. This is to reinforce the asbestos refractory X-ray shielding plate. The content of the reinforcing material is 4 to 4 in the mixed raw material.
It is 10%, preferably 4-8%. The above content is 4%
If it is less than 10%, the productivity and strength of the product will decrease, and if it exceeds 10%, the X-ray shielding ability (lead equivalent) of the product will decrease.

【0015】上記第一発明の製造方法に用いられる水
は、図1に示す如く、上記原料(a)の含水マグネシア
ケイ酸塩鉱物であるセピオライトとともに配合され、次
いでその他の原料を導入して混合層で混合される。上記
水の配合量は、上記混合原料全体に対して、好ましくは
70〜90%、更に好ましくは75〜85%である。
As shown in FIG. 1, the water used in the production method of the first invention is blended with the raw material (a) of the hydrous magnesia silicate mineral sepiolite, and then other raw materials are introduced and mixed. Mixed in layers. The blending amount of water is preferably 70 to 90%, and more preferably 75 to 85% with respect to the entire mixed raw material.

【0016】上記第一発明の製造方法に用いられる湿式
抄造法における好ましい実施条件としては、バット内溶
液濃度を5〜8%、抄造スピードを45〜50m/分と
する条件等が挙げられる(但し、丸網式抄造機の場
合)。尚、上記湿式抄造法の一態様は、図1のフローシ
ートを参照しながら、後述の実施例1において説明す
る。
[0016] Preferable operating conditions in the wet papermaking method used in the production method of the first invention are conditions such that the solution concentration in the vat is 5 to 8% and the papermaking speed is 45 to 50 m / min. , In the case of a cylinder machine. Note that one mode of the wet papermaking method will be described in Example 1 described later with reference to the flow sheet of FIG.

【0017】上記第一発明の製造方法によれば、前述の
「はくり」現象が皆無で、板としての形態を十分になす
非含石綿耐火性X線遮蔽板を製造することができ、ま
た、上記原料(a)の含水マグネシアケイ酸塩鉱物を使
用しない場合に比して、該遮蔽板の生産性が向上する。
According to the manufacturing method of the first invention, it is possible to manufacture a non-asbestos-containing fire-resistant X-ray shielding plate which has a sufficient form as a plate without the above-mentioned "peeling" phenomenon. The productivity of the shielding plate is improved as compared with the case where the hydrous magnesia silicate mineral as the raw material (a) is not used.

【0018】上記第一発明の製造方法によれば、平滑な
る大型寸法(巾2〜4尺、長さ6〜12尺、厚さ4〜1
2m/m)の非含石綿耐火性X線遮蔽板を製造すること
ができる。
According to the manufacturing method of the first aspect of the present invention, the large size (width 2 to 4 scales, length 6 to 12 scales, thickness 4 to 1) is smooth.
2 m / m) non-asbestos refractory X-ray shields can be produced.

【0019】次に、上記第二発明の製造方法に用いられ
る混合原料は、(a)含水マグネシアケイ酸塩鉱物、
(b)硫酸バリウム粉末、(c)炭酸ニッケル粉末、炭
酸ストロンチウム粉末、炭酸バリウム粉末及び炭酸リチ
ウム粉末からなる群から選ばれた1種又は2種以上の金
属炭酸塩粉末、(d)セメント及び水砕スラグ粉末、
(e)耐アルカリ性ガラス繊維、合成有機繊維及びパル
プからなる群から選ばれた1種又は2種以上の補強材、
並びに(f)増粘材の各原料からなるものである。
Next, the mixed raw material used in the production method of the second invention is (a) hydrous magnesia silicate mineral,
(B) one or more metal carbonate powders selected from the group consisting of barium sulfate powder, (c) nickel carbonate powder, strontium carbonate powder, barium carbonate powder and lithium carbonate powder, (d) cement and water Crushed slag powder,
(E) One or more reinforcing materials selected from the group consisting of alkali resistant glass fibers, synthetic organic fibers and pulp,
And (f) each material of the thickener.

【0020】上記原料(a)〜(e)の機能、好ましい
例、上記混合原料における含有量及びその臨界意義は、
上述した第一発明における原料(a)〜(e)と同様で
ある。
The functions of the above-mentioned raw materials (a) to (e), preferred examples, the contents in the above-mentioned mixed raw materials, and their critical significance are as follows.
It is the same as the raw materials (a) to (e) in the first invention described above.

【0021】また、上記成分(f)の増粘材は、上記混
合原料を増粘させることで、本発明の製造方法により製
造される非含石綿耐火性X線遮蔽板の生産性を向上及び
保型性を向上させる機能を有するものである。上記増粘
材としては、メチルセルローズ等が好ましく挙げられ
る。上記増粘材の含有量は、上記混合原料中、0.5〜
1.5%、好ましくは0.7〜1.2%である。上記含
有量が0.5%未満であると、製品の生産性の低下と保
型性の低下を来たし、また、1.5%を超えると、上記
混合原料の粘性が過剰となり製品の生産性に影響する。
Further, the thickening agent of the above component (f) improves the productivity of the non-asbestos fire resistant X-ray shielding plate produced by the production method of the present invention by increasing the viscosity of the above mixed raw material. It has a function of improving shape retention. Preferred examples of the thickener include methyl cellulose and the like. The content of the thickener is 0.5 to 0.5 in the mixed raw material.
It is 1.5%, preferably 0.7 to 1.2%. When the content is less than 0.5%, the productivity of the product and the shape retention are deteriorated, and when it exceeds 1.5%, the viscosity of the mixed raw material becomes excessive and the productivity of the product is increased. Affect.

【0022】上記第二発明の製造方法に用いられる水
は、図2に示す如く、上記原料(a)の含水マグネシア
ケイ酸塩鉱物であるセピオライトとともに配合され、次
いでその他の原料と連続混練機で混練される。上記水の
配合量は、上記混合原料全体に対して、好ましくは15
〜25%、更に好ましくは17〜22%である。
As shown in FIG. 2, the water used in the production method of the second invention is blended with the above-mentioned raw material (a), the hydrous magnesia silicate mineral sepiolite, and then mixed with other raw materials in a continuous kneader. Kneaded. The water content is preferably 15 based on the total amount of the mixed raw materials.
-25%, more preferably 17-22%.

【0023】上記第二発明の製造方法に用いられる押出
成型法における好ましい実施条件としては、セピオライ
ト2〜4%、増粘材1%を配合し、成型スピードを15
〜17m/分とする条件等が挙げられる。尚、上記押出
成型法の一態様は、図2のフローシートを参照しなが
ら、後述の実施例2において説明する。
The preferred conditions for carrying out the extrusion molding method used in the production method of the second invention are as follows: 2 to 4% of sepiolite and 1% of a thickening agent, and a molding speed of 15%.
The conditions such as -17 m / min. Note that one mode of the extrusion molding method will be described in Example 2 described later with reference to the flow sheet of FIG.

【0024】上記第二発明の製造方法によれば、高価な
増粘材の使用量を削減でき、添加水量の削減により乾燥
収縮・ヒビ割れを軽減でき、また、上記原料(a)の含
水マグネシアケイ酸塩鉱物を使用しない場合に比して、
製品の生産性が20〜30%向上する。
According to the manufacturing method of the second invention, the amount of expensive thickening agent used can be reduced, the drying shrinkage and cracking can be reduced by reducing the amount of added water, and the hydrous magnesia of the above-mentioned raw material (a) can be reduced. Compared to the case where no silicate mineral is used,
Productivity is improved by 20-30%.

【0025】上記第二発明の製造方法によれば、平滑な
る大型寸法(巾1.5〜4尺、長さ6〜12尺、厚さ1
0〜50m/m)の非含石綿耐火性X線遮蔽板を製造す
ることができる。
According to the manufacturing method of the above-mentioned second invention, a large size (a width of 1.5 to 4 shaku, a length of 6 to 12 shaku, and a thickness of 1) is smooth.
It is possible to manufacture non-asbestos fire resistant X-ray shielding plates of 0 to 50 m / m).

【0026】本発明の製造方法により製造される非含石
綿耐火性X線遮蔽板は、特に、各医療機関、大学、研究
所等の放射線取扱場所の天井、内壁、ドアの芯材、ま
た、防音性能を有するので防音板等の用途に使用され
る。
The non-asbestos-fireproof X-ray shielding plate produced by the production method of the present invention is particularly applicable to the ceilings, inner walls, door cores of radiation-handling locations such as medical institutions, universities, and laboratories, and Since it has soundproofing properties, it is used for applications such as soundproofing boards.

【0027】[0027]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0028】実施例1〔<A>湿式抄造法の実施例〕 (I)使用原料 (a)セピオライト 50部 (b)硫酸バリウム粉末 400部 (c)炭酸ストロンチウム粉末 60部 (d1)セメント 260部 (d2)水砕スラグ粉末 180部 (e1)耐アルカリ性ガラス繊維 15部 (e2)パルプ(針葉樹未晒クラフトパルプ) 35部 ─────────────────────────────────── 計 1,000部Example 1 [<A> Example of wet papermaking method] (I) Raw materials (a) Sepiolite 50 parts (b) Barium sulfate powder 400 parts (c) Strontium carbonate powder 60 parts (d 1 ) Cement 260 Part (d 2 ) Granulated slag powder 180 parts (e 1 ) Alkali-resistant glass fiber 15 parts (e 2 ) Pulp (softwood unbleached kraft pulp) 35 parts ──────────────── ──────────────────── Total 1,000 copies

【0029】(II)上記各原料を用い、下記(1) 〜(9)
の工程(図1の湿式抄造法フローシート参照)を経て非
含石綿耐火性X線遮蔽板を製造する。 (1) 上記原料(a)のセピオライトをNo.1のセピオライ
ト懸濁槽に導入し、更に水を加えて、回転速度R.P.M.8
00の高速攪拌機を用いて10〜20分間高速攪拌して
高粘性懸濁スラリーとする。 (2) 上記原料(e2)のパルプをNo.2の繊維類解繊槽で、
回転速度R.P.M.600で5〜10分間解繊後、更に、上
記原料(e1)の耐アルカリ性ガラス繊維をNo.2の繊維類
解繊槽へ加えて2〜3分間解繊し、混合解繊スラリーと
する。 (3) No.7の混合槽に前記(1) 及び(2) のスラリーを投入
し、更に、上記原料(d1)のセメント(No.3)、上記原
料(d2)の水砕スラグ粉末(No.4)、上記原料(b)の
硫酸バリウム粉末(No.5)及び上記原料(c)の炭酸ス
トロンチウム粉末〔金属炭酸塩粉末〕(No.6)の各原料
を投入し、2〜3分間混合攪拌し、混合スラリーとす
る。 (4) 上記(3) の混合スラリーをNo.8の湿式抄造機に白水
で希釈しながら(固型分4〜6%)導入し、更に、該湿
式抄造機からの白水をNo.15 の沈殿層で処理水とした
後、該処理水をNo.8の湿式抄造機に導入し、積層して巾
2〜4尺、長さ6〜12尺、厚さ4〜12m/mの生湿
板を成型する。また、No.8の湿式抄造機からの白水は、
No.2の繊維類解繊槽及びNo.7の混合槽に循環白水として
循環させる。 (5) 上記(4) の生湿板をNo.9でパレットに積載する。 (6) 上記(5) のパレット積載生湿式板をNo.10 の養生室
に搬入し、湿度95%以上、温度60〜70℃にて24
時間蒸気養生する。 (7) 上記(6) の湿板をNo.11 の熱風乾燥炉で温度160
〜190℃にて30〜60分間乾燥する。 (8) 上記(7) の乾燥板をNo.12 の裁断機にて定尺に裁断
する。 (9) 上記(8) の裁断した板は、No.13 の品質検査工程を
経て非含石綿耐火性X線遮蔽板として出荷(No.14 )す
る。
(II) Using each of the above raw materials, the following (1) to (9)
The non-asbestos-fireproof X-ray shielding plate is manufactured through the step (see the wet sheet-making method flow sheet in FIG. 1). (1) The above-mentioned raw material (a) sepiolite was introduced into the No. 1 sepiolite suspension tank, water was further added, and the rotation speed was RPM8.
A high-speed stirrer of No. 00 is used for high-speed stirring for 10 to 20 minutes to obtain a highly viscous suspension slurry. (2) The pulp of the above raw material (e 2 ) is placed in the No. 2 fiber disintegration tank,
After defibrating at RPM 600 for 5 to 10 minutes, the alkali-resistant glass fiber of the above raw material (e 1 ) is further added to the No. 2 fiber defibration tank and defibrated for 2 to 3 minutes to obtain a mixed defibration slurry. And (3) Put the slurry of (1) and (2) into the No. 7 mixing tank, and further mix the above raw material (d 1 ) with cement (No. 3) and the above raw material (d 2 ) with granulated slag. Powder (No. 4), raw material (b) barium sulfate powder (No. 5) and raw material (c) strontium carbonate powder [metal carbonate powder] (No. 6) were added respectively, and 2 Mix and stir for ~ 3 minutes to form a mixed slurry. (4) The mixed slurry of (3) above was introduced into the No. 8 wet papermaking machine while diluting with white water (solid content 4 to 6%), and the white water from the wet papermaking machine was further added to No. 15 After treating the treated water in the settling layer, the treated water is introduced into a No. 8 wet papermaking machine, and laminated to form a sheet having a width of 2 to 4, a length of 6 to 12, and a thickness of 4 to 12 m / m. Mold the board. In addition, white water from No. 8 wet papermaking machine,
Circulate as circulating white water in the No. 2 fiber disentanglement tank and No. 7 mixing tank. (5) No.9 is used to load the wet board from (4) above onto a pallet. (6) Bring the pallet-laden fresh wet board in (5) above into the No. 10 curing room and keep it at a humidity of 95% or more and a temperature of 60 to 70 ° C for 24 hours.
Steam cure for hours. (7) The wet plate of (6) above was heated to 160 ° C in No. 11 hot air drying oven.
Dry at ~ 190 ° C for 30-60 minutes. (8) Cut the dry plate in (7) above to a standard size with a No. 12 cutter. (9) The plate cut in (8) above is shipped as a non-asbestos fire resistant X-ray shielding plate (No. 14) through the No. 13 quality inspection process.

【0030】(III) 実施例1の物性 得られた非含石綿耐火性X線遮蔽板について、下記〔表
1〕の項目に示す物性をそれぞれの試験方法により測定
した。それらの結果を下記〔表1〕に示す。
(III) Physical Properties of Example 1 With respect to the obtained non-asbestos fire resistant X-ray shielding plate, the physical properties shown in the following [Table 1] were measured by the respective test methods. The results are shown in [Table 1] below.

【0031】[0031]

【表1】 [Table 1]

【0032】実施例2〔<B>押出成型法の実施例〕 (I)使用原料 (a)セピオライト 30部 (b)硫酸バリウム粉末 400部 (c1)炭酸リチウム粉末 20部 (c2)炭酸バリウム粉末 40部 (d1)セメント 300部 (d2)水砕スラグ粉末 170部 (e1)耐アルカリ性ガラス繊維 10部 (e2)合成有機繊維 10部 (e3)パルプ(未晒クラフトパルプ粉砕品) 25部 (f)メチルセルローズ 10部 ─────────────────────────────────── 計 1,015部Example 2 [Example of <B> extrusion molding method] (I) Raw materials (a) Sepiolite 30 parts (b) Barium sulfate powder 400 parts (c 1 ) Lithium carbonate powder 20 parts (c 2 ) Carbonate Barium powder 40 parts (d 1 ) Cement 300 parts (d 2 ) Granulated slag powder 170 parts (e 1 ) Alkali resistant glass fiber 10 parts (e 2 ) Synthetic organic fiber 10 parts (e 3 ) Pulp (unbleached kraft pulp Pulverized product) 25 parts (f) Methyl cellulose 10 parts ─────────────────────────────────── Total 1, 015 copies

【0033】(II)上記各原料を用い、下記 (1)〜(9)
の工程(図2の押出成型法フローシート参照)を経て非
含石綿耐火性X線遮蔽板を製造する。 (1) 上記原料(a)のセピオライトをNo.1のセピオライ
ト懸濁槽に導入し、更に水を加えて、回転速度R.P.M.8
00の高速攪拌機を用いて10〜20分間高速攪拌して
高粘性懸濁スラリーとする。 (2) 上記原料(f)のメチルセルローズ(No.2)、上記
原料(e3)のパルプ(No.3)、上記原料(e1)の耐アル
カリ性ガラス繊維及び上記原料(e2)の有機合成繊維
〔繊維類〕(No.4)、上記原料(b)の硫酸バリウム粉
末(No.5)、上記原料(c1)の炭酸リチウム粉末及び上
記原料(c2)の炭酸バリウム粉末〔金属炭酸塩粉末〕
(No.6)、上記原料(d1)のセメント(No.7)並びに上
記原料(d2)の水砕スラグ粉末(No.8)をNo.9の乾式混
合機に投入し約10〜15分間攪拌混合する。 (3) 上記(2) の混合物をNo.10 の連続混練機に投入する
と共に、前記(1) のセピオライト高粘性懸濁スラリーを
投入し約5〜10分間混練する。 (4) 上記(3) の混練物をNo.11 の押出成型機に導入し、
連続的に巾1.5〜4尺の生湿板を成型する。成型され
た生湿板を仮寸法の長さに切断する。 (5) 上記(4) で成型された生湿板をNo.12 でパレットに
積載する。 (6) 上記(5) のパレット積載生湿板をNo.13 の一次養生
室に搬入し、湿度95%以上、温度40〜50℃にて4
〜8時間養生し、半硬化湿板とする。 (7) 上記(6) の半硬化湿板をNo.14 でパレットから外
す。 (8) 上記(7) の半硬化湿板をNo.15 の二次養生室に搬入
して湿度95%以上、温度60〜180℃にて8〜24
時間養生し、硬化湿板とする。 (9) 上記(8) の硬化湿板は、No.16 の裁断機で定尺に裁
断し、No.17 の品質検査工程を経て非含石綿耐火性X線
遮蔽板として出荷(No.18 )する。
(II) Using each of the above raw materials, the following (1) to (9)
A non-asbestos-fireproof X-ray shielding plate is manufactured through the process (see the extrusion molding flow sheet in FIG. 2). (1) The above-mentioned raw material (a) sepiolite was introduced into the No. 1 sepiolite suspension tank, water was further added, and the rotation speed was RPM8.
A high-speed stirrer of No. 00 is used for high-speed stirring for 10 to 20 minutes to obtain a highly viscous suspension slurry. (2) Methyl cellulose of the raw material (f) (No.2), pulp of the raw material (e 3) (No.3), the raw material of (e 1) alkali-resistant glass fibers and the raw material of (e 2) Organic synthetic fibers (fibers) (No. 4), raw material (b) barium sulfate powder (No. 5), raw material (c 1 ) lithium carbonate powder, and raw material (c 2 ) barium carbonate powder [ Metal carbonate powder]
(No. 6), the cement (No. 7) of the above raw material (d 1 ) and the granulated slag powder (No. 8) of the above raw material (d 2 ) were put into the No. 9 dry mixer and about 10 to 10 Stir mix for 15 minutes. (3) The mixture of (2) above is charged into the No. 10 continuous kneader, and the sepiolite highly viscous suspension slurry of (1) above is charged and kneaded for about 5 to 10 minutes. (4) Introduce the kneaded product of (3) above into the No. 11 extruder,
Continuously form a fresh wet board having a width of 1.5 to 4 shank. The molded wet board is cut into a temporary length. (5) Load the fresh wet board molded in (4) above on a pallet No. 12. (6) Bring the pallet-laden fresh wet board in (5) above into the No. 13 primary curing chamber, and put it in a humidity of 95% or more at a temperature of 40 to 50 ° C for 4 hours.
Cure for ~ 8 hours to make a semi-cured wet plate. (7) Remove the semi-cured wet plate from (6) above from the pallet with No.14. (8) Bring the semi-cured wet plate of (7) above into the No. 15 secondary curing chamber and keep the humidity of 95% or more at a temperature of 60 to 180 ° C for 8 to 24 hours.
Cure for a period of time and use it as a cured wet board. (9) The cured wet board of (8) above is cut to a standard size with a No. 16 cutting machine, and passed through the No. 17 quality inspection process before being shipped as a non-asbestos-fire-resistant X-ray shield (No. 18). ) Do.

【0034】(III) 実施例の物性 得られた非含石綿耐火性X線遮蔽板について、下記〔表
2〕の項目に示す物性をそれぞれの試験方法により測定
した。それらの結果を下記〔表2〕に示す。
(III) Physical Properties of Examples With respect to the obtained non-asbestos-fireproof X-ray shielding plate, the physical properties shown in the following [Table 2] were measured by respective test methods. The results are shown in [Table 2] below.

【0035】[0035]

【表2】 [Table 2]

【0036】上記第一発明及び上記第二発明に係る混合
原料から成型された非含石綿耐火性X線遮蔽板は、それ
ぞれ、現今、主流となっている鉛板、鉛複合板に比較し
て20〜30%軽量化され、鉛の様な有害性は全く無
く、また、公害行政上の問題も無く、加工性、施工性に
富んでおり、防音性能を有するものであった。
The non-asbestos refractory X-ray shielding plates molded from the mixed raw materials according to the first invention and the second invention are respectively compared with the lead plate and the lead composite plate which are now mainstream. It was 20 to 30% lighter, had no harmful effects such as lead, had no problems in pollution administration, was excellent in workability and workability, and had soundproofing performance.

【0037】[0037]

【発明の効果】本発明の製造方法(請求項1)によれ
ば、硫酸バリウムを含む混合原料からの湿式製造法によ
る非含石綿耐火性X線遮蔽板の製造が可能となる。本発
明の製造方法(請求項1、2)によれば、軽量化され、
無害で公害行政上の問題がない非含石綿耐火性X線遮蔽
板を容易に且つ高生産性を以て製造することができる。
また、本発明の製造方法により製造された非含石綿耐火
性X線遮蔽板は、加工性及び施工性に富み、防音性能を
有するものである。
According to the manufacturing method of the present invention (claim 1), it is possible to manufacture a non-asbestos-fireproof X-ray shielding plate by a wet manufacturing method from a mixed raw material containing barium sulfate. According to the manufacturing method (claims 1 and 2) of the present invention, the weight is reduced,
A non-asbestos fireproof X-ray shielding plate that is harmless and does not cause pollution administration problems can be easily manufactured with high productivity.
Further, the non-asbestos-fireproof X-ray shielding plate manufactured by the manufacturing method of the present invention has excellent workability and workability, and has soundproof performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の製造方法に係る湿式抄造法の
フローシートを示す。
FIG. 1 shows a flow sheet of a wet papermaking method according to a manufacturing method of the present invention.

【図2】図2は、本発明の製造方法に係る押出成型法の
フローシートを示す。
FIG. 2 shows a flow sheet of an extrusion molding method according to the manufacturing method of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年9月27日[Submission date] September 27, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】従って、本発明の目的は、硫酸バリウムを
含む混合原料からの湿式抄造法による非含石綿耐火性X
線遮蔽板の製造が可能とし、また、湿式抄造法又は押出
成型法により、軽量化され、無害で公害行政上の問題が
ない非含石綿耐火性X線遮蔽板を容易に且つ高生産性を
以て製造する方法を提供することにある。
Therefore, an object of the present invention is to obtain a non-asbestos refractory X by a wet papermaking method from a mixed raw material containing barium sulfate.
It is possible to manufacture a X-ray shielding plate that is lightweight, and is non-asbestos fire-resistant X-ray shielding plate that is lightweight, harmless and does not cause pollution administrative problems by a wet papermaking method or an extrusion molding method with high productivity. It is to provide a manufacturing method.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Name of item to be corrected] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0037】[0037]

【発明の効果】本発明の製造方法(請求項1)によれ
ば、硫酸バリウムを含む混合原料からの湿式抄造法によ
る非含石綿耐火性X線遮蔽板の製造が可能となる。本発
明の製造方法(請求項1、2)によれば、軽量化され、
無害で公害行政上の問題がない非含石綿耐火性X線遮蔽
板を容易に且つ高生産性を以て製造することができる。
また、本発明の製造方法により製造された非含石綿耐火
性X線遮蔽板は、加工性及び施工性に富み、防音性能を
有するものである。
According to the manufacturing method of the present invention (Claim 1), it is possible to manufacture a non-asbestos refractory X-ray shielding plate by a wet papermaking method from a mixed raw material containing barium sulfate. Becomes According to the manufacturing method (claims 1 and 2) of the present invention, the weight is reduced,
A non-asbestos fireproof X-ray shielding plate that is harmless and does not cause pollution administration problems can be easily manufactured with high productivity.
Further, the non-asbestos-fireproof X-ray shielding plate manufactured by the manufacturing method of the present invention has excellent workability and workability, and has soundproof performance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芹沢 則夫 静岡県富士市久沢145番地の1 富士不燃 建材工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Serizawa 1 at 145 Hisawazawa, Fuji City, Shizuoka Prefecture Fuji Incombustible Building Materials Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記原料(a)〜(e)の下記量からな
る混合原料及び水を用いて、湿式抄造法により製造する
ことを特徴とする非含石綿耐火性X線遮蔽板の製造方
法。 (a)含水マグネシアケイ酸塩鉱物;2〜10重量% (b)硫酸バリウム粉末;30〜60重量% (c)炭酸ニッケル粉末、炭酸ストロンチウム粉末、炭
酸バリウム粉末及び炭酸リチウム粉末からなる群から選
ばれた1種又は2種以上の金属炭酸塩粉末;3〜15重
量% (d)セメント及び水砕スラグ粉末;30〜50重量% (e)耐アルカリ性ガラス繊維、合成有機繊維及びパル
プからなる群から選ばれた1種又は2種以上の補強材;
4〜10重量%
1. A method for producing a non-asbestos-containing refractory X-ray shielding plate, which is produced by a wet papermaking method using a mixed raw material consisting of the following raw materials (a) to (e) and water. . (A) Hydrous magnesia silicate mineral; 2 to 10% by weight (b) Barium sulfate powder; 30 to 60% by weight (c) Nickel carbonate powder, strontium carbonate powder, barium carbonate powder and lithium carbonate powder 3 to 15% by weight (d) cement and granulated slag powder; 30 to 50% by weight (e) group consisting of alkali resistant glass fiber, synthetic organic fiber and pulp One or more reinforcing materials selected from:
4-10% by weight
【請求項2】 下記原料(a)〜(f)の下記量からな
る混合原料及び水を用いて、押出成型法により製造する
ことを特徴とする非含石綿耐火性X線遮蔽板の製造方
法。 (a)含水マグネシアケイ酸塩鉱物;2〜10重量% (b)硫酸バリウム粉末;30〜60重量% (c)炭酸ニッケル粉末、炭酸ストロンチウム粉末、炭
酸バリウム粉末及び炭酸リチウム粉末からなる群から選
ばれた1種又は2種以上の金属炭酸塩粉末;3〜15重
量% (d)セメント及び水砕スラグ粉末;30〜50重量% (e)耐アルカリ性ガラス繊維、合成有機繊維及びパル
プからなる群から選ばれた1種又は2種以上の補強材;
4〜10重量% (f)増粘材;0.5〜1.5重量%
2. A method for producing a non-asbestos fire-resistant X-ray shielding plate, which is produced by an extrusion molding method using a mixed raw material consisting of the following amounts of the following raw materials (a) to (f) and water. . (A) Hydrous magnesia silicate mineral; 2 to 10% by weight (b) Barium sulfate powder; 30 to 60% by weight (c) Nickel carbonate powder, strontium carbonate powder, barium carbonate powder and lithium carbonate powder 3 to 15% by weight (d) cement and granulated slag powder; 30 to 50% by weight (e) group consisting of alkali resistant glass fiber, synthetic organic fiber and pulp One or more reinforcing materials selected from:
4-10 wt% (f) Thickener; 0.5-1.5 wt%
JP20262194A 1994-08-26 1994-08-26 Manufacture of fire resisting x-ray shielding plate without asbestos Pending JPH0862387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20262194A JPH0862387A (en) 1994-08-26 1994-08-26 Manufacture of fire resisting x-ray shielding plate without asbestos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20262194A JPH0862387A (en) 1994-08-26 1994-08-26 Manufacture of fire resisting x-ray shielding plate without asbestos

Publications (1)

Publication Number Publication Date
JPH0862387A true JPH0862387A (en) 1996-03-08

Family

ID=16460407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20262194A Pending JPH0862387A (en) 1994-08-26 1994-08-26 Manufacture of fire resisting x-ray shielding plate without asbestos

Country Status (1)

Country Link
JP (1) JPH0862387A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910260B1 (en) * 2004-10-30 2009-08-04 박영웅 A Method of Reinforce of Radiation Shilding Ability by the way of Shilding the Low Energy Photons
JP2009531651A (en) * 2005-12-06 2009-09-03 コー−オペレーションズ, インコーポレイテッド Chemically bondable ceramic radiation shielding material and manufacturing method
JP2011247856A (en) * 2010-05-31 2011-12-08 S Medical Shield Co Ltd X-ray shielding panel, x-ray shielding wall, and method for constructing the same
JP2015129745A (en) * 2013-12-06 2015-07-16 株式会社テルナイト Radiation shield material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910260B1 (en) * 2004-10-30 2009-08-04 박영웅 A Method of Reinforce of Radiation Shilding Ability by the way of Shilding the Low Energy Photons
JP2009531651A (en) * 2005-12-06 2009-09-03 コー−オペレーションズ, インコーポレイテッド Chemically bondable ceramic radiation shielding material and manufacturing method
US8440108B2 (en) 2005-12-06 2013-05-14 Co-Operations, Inc. Chemically bonded ceramic radiation shielding material and method of preparation
USRE46797E1 (en) 2005-12-06 2018-04-17 Co-Operations, Inc. Chemically bonded ceramic radiation shielding material and method of preparation
USRE48014E1 (en) 2005-12-06 2020-05-26 Co-Operations, Inc. Chemically bonded ceramic radiation shielding material and method of preparation
JP2011247856A (en) * 2010-05-31 2011-12-08 S Medical Shield Co Ltd X-ray shielding panel, x-ray shielding wall, and method for constructing the same
JP2015129745A (en) * 2013-12-06 2015-07-16 株式会社テルナイト Radiation shield material

Similar Documents

Publication Publication Date Title
TW553915B (en) Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility
JP2006518323A (en) Fiber cement composites using bleached cellulose fibers
JPS599300A (en) Paper cover sheet for gypsum board, production thereof and produced gypsum board
JPH0862387A (en) Manufacture of fire resisting x-ray shielding plate without asbestos
EP0047158B1 (en) A process for the manufacture of fibre reinforced shaped articles
DE2461781A1 (en) Fibre reinforced fire-resistant building board - contg. organic fibres and free of asbestos
US6488761B1 (en) Hydraulic hardened foamed product and a method of producing the same
JPH0748162A (en) Production of asbestos-free refractory electrical radiation shielding plate
JPH0829969B2 (en) Method for manufacturing fireproof building materials
JPS59156956A (en) Manufacture of inorganic construction material from incineration ash
JPH0513098B2 (en)
KR100263949B1 (en) A gypsum cement plate without asbestos
JP2002362962A (en) Production process of ceramic exterior wall material
JPH01108141A (en) Production of asbestos-free slag gypsum board
JP2601781B2 (en) Cement fiberboard
EP0033796A2 (en) Building boards and sheets, process and composition for producing them
JPS58140367A (en) Manufacture of refractory construction material
JPH0555460B2 (en)
JPS5833082B2 (en) Method for manufacturing a molded article containing fibers and binder
JPH07101767A (en) Lightweight inorganic building material
JPH0215501B2 (en)
GB2045306A (en) Boards and Sheets
JPH02259191A (en) Production of rock wool sheet
JPH07186122A (en) Production of asbestos free extrusion molded cement building material
JPH0215500B2 (en)