JPH0862099A - Air/fuel ratio measuring instrument - Google Patents

Air/fuel ratio measuring instrument

Info

Publication number
JPH0862099A
JPH0862099A JP6201152A JP20115294A JPH0862099A JP H0862099 A JPH0862099 A JP H0862099A JP 6201152 A JP6201152 A JP 6201152A JP 20115294 A JP20115294 A JP 20115294A JP H0862099 A JPH0862099 A JP H0862099A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
analyzer
exhaust gas
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6201152A
Other languages
Japanese (ja)
Inventor
Akinobu Moriyama
明信 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6201152A priority Critical patent/JPH0862099A/en
Publication of JPH0862099A publication Critical patent/JPH0862099A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an air/fuel ratio measuring instrument which can accurately measure the air/fuel ratio (A/F) from the measurement value of an exhaust constituent concentration and can eliminate such error factors as the change in dehumidification capacity of an analyzer also for a fuel whose property greatly differs. CONSTITUTION: The title item is provided with an exhaust analyzer 100 for detecting each content (PCO', PCO2 ', and PHC) of carbon monoxide, carbon dioxide, and hydrocarbon contained in an unloaded gas, a carbon/water ratio setting equipment 140 for setting the carbon/water ratio (Z) of a used fuel, an equipment 150 for setting the amount of remaining water for setting the amount of remaining water content (Hx) when detecting each content of the carbon monoxide and carbon dioxide of the exhaust analyzer 100, and a means 160 for calculating the air/fuel ratio (A/F) and/or oxygen concentration (PO2 ) based on the measurement values (PCO', PCO2 ', and PHC) of the exhaust analyzer 100 and the setting value (Z', Hx) of the equipment 150 for setting the amount of remaining water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は内燃機関における空燃
比測定装置に係り,ガソリンから天然ガス(CNG)と
性状が大きく異なる燃料についても,排気成分濃度の測
定値から高精度に空燃比(A/F)を算出でき,また,
分析計の除湿能力の変化等の誤差要因を解消し得る空燃
比測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio measuring apparatus for an internal combustion engine, and it is possible to accurately measure the air-fuel ratio (A / F) can be calculated, and
The present invention relates to an air-fuel ratio measuring device capable of eliminating an error factor such as a change in dehumidifying ability of an analyzer.

【0002】[0002]

【従来の技術】従来の内燃機関における空燃比測定装置
としては,特開昭55−128135号公報で提案され
たものがある。この従来例は,排気ガス中に含まれる一
酸化炭素(CO),二酸化炭素(CO2 )および炭化水
素(HC)の各含有量(濃度)をセンサで検出し,アナ
ログ式演算器を用いて検出された各含有量(アナログ
値)に基づいて空燃比(A/F)を演算するものであ
る。すなわち,特定の燃料(炭水比1.85;レギュラ
ーガソリン相当)での近似式を導き,前記アナログ式演
算器を構成して空燃比(A/F)を算出する。
2. Description of the Related Art As a conventional air-fuel ratio measuring device for an internal combustion engine, there is one proposed in JP-A-55-128135. In this conventional example, each content (concentration) of carbon monoxide (CO), carbon dioxide (CO 2 ) and hydrocarbon (HC) contained in the exhaust gas is detected by a sensor, and an analog type calculator is used. The air-fuel ratio (A / F) is calculated based on each detected content (analog value). That is, an approximate expression for a specific fuel (coal water ratio 1.85; equivalent to regular gasoline) is derived, and the analog type arithmetic unit is configured to calculate the air-fuel ratio (A / F).

【0003】[0003]

【発明が解決しようとする課題】しかしながら,このよ
うな従来の空燃比測定装置にあっては,一酸化炭素(C
O),二酸化炭素(CO2 )および炭化水素(HC)の
濃度情報だけで空燃比(A/F)を算出する構成となっ
ていたため,特定の燃料以外では測定精度が悪化し,例
えば,同じガソリン燃料でも,レギュラーとハイオクで
は0.3A/F程度の誤差を生じ,該誤差を解消するに
は燃料の種別毎に近似式を備えなければならないという
問題点があった。
However, in such a conventional air-fuel ratio measuring device, carbon monoxide (C
O), carbon dioxide (CO 2 ) and hydrocarbon (HC) concentration information only, the air-fuel ratio (A / F) is calculated, so the measurement accuracy deteriorates except for specific fuels. Even with gasoline fuel, an error of about 0.3 A / F occurs between regular and high octave, and there is a problem that an approximate expression must be provided for each fuel type in order to eliminate the error.

【0004】また,その近似式もリツチにおける空燃比
(A/F)からリーンにおける空燃比(A/F)に至る
まで精度良く算出することは困難であり,更には,一酸
化炭素(CO)および二酸化炭素(CO2 )の濃度を測
定するセンサにおいて残存水分量の影響が考慮されてい
ないため,より精度が悪化するという問題点があった。
Also, it is difficult to accurately calculate the approximate expression from the air-fuel ratio (A / F) in the latch to the air-fuel ratio (A / F) in the lean, and further, carbon monoxide (CO). Moreover, since the influence of the residual water content is not taken into consideration in the sensor for measuring the concentration of carbon dioxide (CO 2 ), there is a problem that the accuracy deteriorates.

【0005】この発明は,このような従来の問題点に着
眼してなされたもので,ガソリンから天然ガス(CN
G)と性状が大きく異なる燃料についても,排気成分濃
度の測定値から高精度に空燃比(A/F)を測定でき,
また,分析計の除湿能力の変化等の誤差要因を解消し得
る空燃比測定装置を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, that is, from gasoline to natural gas (CN).
Even for fuels whose properties are significantly different from G), the air-fuel ratio (A / F) can be measured with high accuracy from the measured values of exhaust gas component concentrations.
Another object of the present invention is to provide an air-fuel ratio measuring device capable of eliminating error factors such as changes in the dehumidifying ability of the analyzer.

【課題を解決するための手段】上記課題を解決するため
に,この発明の請求項1に係る空燃比測定装置は,図1
に示す如く,排出ガス中に含まれる一酸化炭素,二酸化
炭素および炭化水素の各含有量(PCO’,PC
2 ’,PHC)を検出する排気分析計100と,使用
燃料の炭水比(Z)を設定する炭水比設定器140と,
前記排気分析計100の一酸化炭素および二酸化炭素の
各含有量検出における残存水分量(Hx)を設定する残
存水分量設定器150と,前記排気分析計100の測定
値(PCO’,PCO2 ’,PHC)と前記炭水比設定
器140および残存水分量設定器150の設定値(Z,
Hx)に基づき,空燃比(A/F)および/または酸素
濃度(PO2 )を算出する算出手段160とを備えたも
のである。
In order to solve the above-mentioned problems, the air-fuel ratio measuring apparatus according to claim 1 of the present invention is shown in FIG.
As shown in Fig. 5, the carbon monoxide, carbon dioxide and hydrocarbon contents (PCO ', PC
An exhaust gas analyzer 100 for detecting O 2 ', PHC), a coal water ratio setter 140 for setting the coal water ratio (Z) of the fuel used,
The residual water content setting device 150 for setting the residual water content (Hx) in the detection of each content of carbon monoxide and carbon dioxide of the exhaust gas analyzer 100, and the measured values (PCO ′, PCO 2 ′) of the exhaust gas analyzer 100. , PHC) and the set values (Z,
Hx) and an air-fuel ratio (A / F) and / or an oxygen concentration (PO 2 ) are calculated.

【0006】また,請求項2に係る空燃比測定装置は,
請求項1記載の空燃比測定装置において,前記算出手段
160は,前記排気分析計100における一酸化炭素お
よび二酸化炭素の含有量測定値(PCO’,PC
2 ’)と,前記炭水比設定器140および残存水分量
設定器150の設定値(Z,Hx)に基づき,酸素濃度
(PO2 )を算出するものである。
Further, the air-fuel ratio measuring device according to claim 2 is
The air-fuel ratio measuring apparatus according to claim 1, wherein the calculating means 160 measures the carbon monoxide and carbon dioxide content values (PCO ', PC) in the exhaust gas analyzer 100.
O 2 '), and the oxygen concentration (PO 2 ) is calculated based on the set values (Z, Hx) of the coal water ratio setting device 140 and the residual water content setting device 150.

【0007】また,請求項3に係る空燃比測定装置は,
請求項1または2記載の空燃比測定装置において,図5
に示す如く,前記排気分析計500は,窒素酸化物の含
有量(PNO)を検出するものである。
The air-fuel ratio measuring device according to claim 3 is
The air-fuel ratio measuring device according to claim 1 or 2,
As shown in, the exhaust gas analyzer 500 detects the content of nitrogen oxides (PNO).

【0008】また,請求項4に係る空燃比測定装置は,
請求項3記載の空燃比測定装置において,前記算出手段
560は,前記排気分析計500における一酸化炭素,
二酸化炭素および窒素酸化物の含有量測定値(PC
O’,PCO2 ’,PNO)と,前記炭水比設定器14
0および残存水分量設定器150の設定値(Z,Hx)
に基づき,酸素濃度(PO2 )を算出するものである。
The air-fuel ratio measuring apparatus according to claim 4 is
The air-fuel ratio measuring device according to claim 3, wherein the calculating means 560 is configured to measure carbon monoxide in the exhaust gas analyzer 500,
Measured content of carbon dioxide and nitrogen oxides (PC
O ′, PCO 2 ′, PNO) and the coal water ratio setter 14
0 and the set value of the residual water content setter 150 (Z, Hx)
Based on the above, the oxygen concentration (PO 2 ) is calculated.

【0009】[0009]

【作用】この発明に係る空燃比測定装置(請求項1)
は,排気分析計100により排出ガス中に含まれる一酸
化炭素,二酸化炭素および炭化水素の各含有量(PC
O’,PCO2 ’,PHC)を検出し,炭水比設定器1
40で使用燃料の炭水比(Z)を設定し,残存水分量設
定器150で排気分析計100の一酸化炭素および二酸
化炭素の各含有量検出における残存水分量(Hx)を設
定し,算出手段160では,排気分析計100の測定値
(PCO’,PCO2 ’,PHC)と炭水比設定器14
0および残存水分量設定器150の設定値(Z,Hx)
に基づき,空燃比(A/F)および/または酸素濃度
(PO2 )を算出するようにしている。換言すれば,燃
料性状を表す炭水比(Z)と酸素濃度情報等を入れた理
論式を用い,該酸素濃度については新たに酸素分析計を
必要とせず,一酸化炭素および二酸化炭素の含有量測定
値(PCO’,PCO2 ’)に基づいて算出し,かつ,
一酸化炭素および二酸化炭素の各含有量検出における残
存水分量の情報(Hx)をも考慮にいれることにより,
ガソリンから天然ガス(CNG)と性状が大きく異なる
燃料についても,高精度に空燃比(A/F)を測定す
る。また,分析計の除湿能力の変化などの誤差要因が解
消できる。
The air-fuel ratio measuring device according to the present invention (claim 1)
Is the content of carbon monoxide, carbon dioxide and hydrocarbon contained in the exhaust gas measured by the exhaust gas analyzer 100 (PC
O ', PCO 2 ', PHC) are detected, and the coal water ratio setter 1
40, the coal water ratio (Z) of the fuel used is set, and the residual water content setter 150 sets and calculates the residual water content (Hx) in the detection of each content of carbon monoxide and carbon dioxide in the exhaust gas analyzer 100. In the means 160, the measured values (PCO ′, PCO 2 ′, PHC) of the exhaust gas analyzer 100 and the coal water ratio setter 14
0 and the set value of the residual water content setter 150 (Z, Hx)
Based on the above, the air-fuel ratio (A / F) and / or the oxygen concentration (PO 2 ) are calculated. In other words, a theoretical formula containing the coal-water ratio (Z) representing the fuel property and the oxygen concentration information is used, and the oxygen concentration does not require a new oxygen analyzer, and the content of carbon monoxide and carbon dioxide is included. the amount measured value (PCO ', PCO 2') is calculated based on, and,
By taking into consideration the information (Hx) of the residual water content in the detection of each content of carbon monoxide and carbon dioxide,
The air-fuel ratio (A / F) is also measured with high accuracy for gasoline and fuel with properties greatly different from natural gas (CNG). In addition, error factors such as changes in the dehumidification capacity of the analyzer can be eliminated.

【0010】また,この発明に係る空燃比測定装置(請
求項2)は 算出手段160の酸素濃度(PO2 )の算
出が,排気分析計100における一酸化炭素および二酸
化炭素の含有量測定値(PCO’,PCO2 ’)と,炭
水比設定器140および残存水分量設定器150の設定
値(Z,Hx)に基づいて行われる。
Further, in the air-fuel ratio measuring apparatus according to the present invention (claim 2), the oxygen concentration (PO 2 ) of the calculating means 160 is calculated by the measured values of the carbon monoxide and carbon dioxide contents in the exhaust gas analyzer 100 ( PCO ′, PCO 2 ′) and the set values (Z, Hx) of the coal-water ratio setter 140 and the residual water content setter 150.

【0011】また,この発明に係る空燃比測定装置(請
求項3)は,図5に示す如く,排気分析計500で窒素
酸化物の含有量(PNO)も検出し,排出ガスの中に含
まれる窒素酸化物の情報を酸素濃度(PO2 )および空
燃比(A/F)の算出に組み入れることにより,算出精
度が向上する。
Further, in the air-fuel ratio measuring apparatus according to the present invention (claim 3), as shown in FIG. 5, the exhaust analyzer 500 also detects the content of nitrogen oxides (PNO), and it is included in the exhaust gas. The calculation accuracy is improved by incorporating the information of the nitrogen oxides to be included in the calculation of the oxygen concentration (PO 2 ) and the air-fuel ratio (A / F).

【0012】また,この発明に係る空燃比測定装置(請
求項3)は,図5に示す如く,算出手段560で,排気
分析計500の測定値(PCO’,PCO2 ’,PH
C,PNO)と炭水比設定器140および残存水分量設
定器150の設定値(Z,Hx)に基づき,酸素濃度
(PO2 )を算出するようにしている。このように,排
出ガスの中に含まれる窒素酸化物の情報を算出に組み入
れることにより,酸素濃度(PO2 )および空燃比(A
/F)の算出精度が更に向上する。
Further, air-fuel ratio measuring apparatus according to the present invention (Claim 3), as shown in FIG. 5, in calculating means 560, the measurement value of the exhaust analyzer 500 (PCO ', PCO 2' , PH
C, PNO) and the set values (Z, Hx) of the charcoal-water ratio setting device 140 and the residual water content setting device 150, the oxygen concentration (PO 2 ) is calculated. Thus, by incorporating the information of nitrogen oxides contained in the exhaust gas into the calculation, the oxygen concentration (PO 2 ) and the air-fuel ratio (A
The calculation accuracy of / F) is further improved.

【0013】[0013]

【実施例】以下,この発明の空燃比測定装置について,
〔実施例1〕,〔実施例2〕の順で図面を参照して詳細
に説明する。
Embodiments of the air-fuel ratio measuring device of the present invention will be described below.
[Embodiment 1] and [Embodiment 2] will be described in detail with reference to the drawings.

【0014】〔実施例1〕図1はこの発明の実施例1に
係る空燃比測定装置の構成図である。同図において,実
施例1の空燃比測定装置は,排出ガス中に含まれる一酸
化炭素,二酸化炭素および炭化水素の各含有量(PC
O’,PCO2 ’,PHC)を検出する排気分析計10
0と,使用燃料の炭水比(Z)を設定する炭水比設定器
140と,前記排気分析計100の一酸化炭素および二
酸化炭素の各含有量検出における残存水分量(Hx)を
設定する残存水分量設定器150と,排気分析計100
の測定値(PCO’,PCO2 ’,PHC)と炭水比設
定器140および残存水分量設定器150の設定値
(Z,Hx)に基づき,空燃比(A/F)および酸素濃
度(PO2 )を算出する算出手段としての演算器160
と,結果を表示する表示器170とを具備している。
[Embodiment 1] FIG. 1 is a configuration diagram of an air-fuel ratio measuring apparatus according to Embodiment 1 of the present invention. In the figure, the air-fuel ratio measuring apparatus according to the first embodiment shows that each content of carbon monoxide, carbon dioxide and hydrocarbon (PC
Exhaust gas analyzer 10 for detecting O ', PCO 2 ', PHC)
0, a charcoal-water ratio setter 140 for setting the charcoal-water ratio (Z) of the fuel used, and a residual water content (Hx) in the detection of each content of carbon monoxide and carbon dioxide of the exhaust gas analyzer 100. Residual water content setting device 150 and exhaust gas analyzer 100
Measurements (PCO ', PCO 2', PHC) and Sumisui ratio setter 140 and the set value of the residual water amount setting unit 150 (Z, Hx) based on the air-fuel ratio (A / F) and oxygen concentration (PO 2 ) A computing unit 160 as a computing means for computing
And a display 170 for displaying the result.

【0015】なお,排気分析計100は,排出ガス中に
含まれる一酸化炭素,二酸化炭素および炭化水素の各含
有量(PCO’,PCO2 ’,PHC)をそれぞれ検出
する一酸化炭素(CO)分析計110,二酸化炭素(C
2 )分析計120および炭化水素(HC)分析計13
0を備えている。
[0015] The exhaust analyzer 100, the content of carbon monoxide, carbon dioxide and hydrocarbons contained in the exhaust gas (PCO ', PCO 2', PHC) to respectively detect carbon monoxide (CO) Analyzer 110, carbon dioxide (C
O 2 ) analyzer 120 and hydrocarbon (HC) analyzer 13
It has 0.

【0016】また,演算器160は,インターフェイス
161,CPU(中央処理装置)162およびメモリ1
63を備えている。
The arithmetic unit 160 includes an interface 161, a CPU (central processing unit) 162, and a memory 1.
It is equipped with 63.

【0017】以上の構成において,その概略動作を説明
する。先ず,エンジンの排気管(図示せず)からサンプ
リングしたガスを分析した一酸化炭素分析計110,二
酸化炭素分析計120および炭化水素分析計130の信
号が,演算器160のインターフェイス161に入力さ
れる。また,使用燃料の炭水比を入力するための炭水比
設定器140では,通常1.00〜9.99までの範囲
の炭水比を設定可能なディジタルスイッチが用いられ
る。また,残存水分量設定器150では,一酸化炭素分
析計110および二酸化炭素分析計120内の残存水分
量を入力設定される。それぞれの設定器の信号はインタ
ーフェイス161に入力される。演算器160では,イ
ンターフェイス161に入力される各入力信号に基づ
き,メモリ163に格納された算出プログラムによりC
PU162が動作し,空燃比が算出される。その算出結
果は,表示器170によりディジタル信号或いはアナロ
グ信号で出力される。
An outline of the operation of the above configuration will be described. First, the signals of the carbon monoxide analyzer 110, the carbon dioxide analyzer 120, and the hydrocarbon analyzer 130 which analyze the gas sampled from the exhaust pipe (not shown) of the engine are input to the interface 161 of the calculator 160. . Further, in the coal water ratio setting device 140 for inputting the coal water ratio of the fuel used, a digital switch capable of setting a coal water ratio in the range of 1.00 to 9.99 is usually used. In the residual water content setting device 150, the residual water content in the carbon monoxide analyzer 110 and the carbon dioxide analyzer 120 is input and set. The signal of each setter is input to the interface 161. The computing unit 160 uses the calculation program stored in the memory 163 to calculate C based on each input signal input to the interface 161.
The PU 162 operates and the air-fuel ratio is calculated. The calculation result is output by the display 170 as a digital signal or an analog signal.

【0018】次に,本実施例の空燃比測定装置の原理お
よび作用について説明する。空燃比(A/F)は,エン
ジンに吸入された空気重量(Ga )と燃料重量(Gf )
との比で表され,それぞれ排気成分濃度から求められる
ことは一般によく知られている。その式を数1に示す。
Next, the principle and operation of the air-fuel ratio measuring apparatus of this embodiment will be described. The air-fuel ratio (A / F) is the weight of air drawn into the engine (Ga) and the weight of fuel (Gf)
It is generally well known that it is represented by the ratio of the exhaust gas concentration and the exhaust gas component concentration. The equation is shown in Equation 1.

【0019】[0019]

【数1】 [Equation 1]

【0020】この式を用いる場合には2つの課題があ
る。1つは酸素(O2 )濃度の情報が必要となること。
もう1つは,一酸化炭素(CO)濃度および二酸化炭素
(CO 2 )濃度は排気中の水分も含めた濃度が必要であ
ることである。
There are two problems when using this formula.
It One is oxygen (O2) Information on concentration is required.
The other is carbon monoxide (CO) concentration and carbon dioxide.
(CO 2) Concentration needs to include the water content in the exhaust.
Is Rukoto.

【0021】先ず,酸素(O2 )濃度については,一酸
化炭素(CO)濃度および二酸化炭素(CO2 )濃度か
ら求めることができる。図2は,一酸化炭素(CO)濃
度,二酸化炭素(CO2 )濃度および酸素(O2 )濃度
と空気過剰率(λ)との関係説明図である。同図を用い
て説明すると,酸素(O2 )濃度は,空気過剰率λ=1
(理論空燃比)の時に“0”で,リーン側にいくほど高
濃度となる。また,二酸化炭素(CO2 )濃度は,空気
過剰率λ=1の時に最大値をもつ山型で,リーン側にい
くほど低濃度となる。よって,酸素(O2 )濃度PO2
は数2の関係で表せる。
First, the oxygen (O 2 ) concentration can be obtained from the carbon monoxide (CO) concentration and the carbon dioxide (CO 2 ) concentration. FIG. 2 is an explanatory diagram of the relationship between the carbon monoxide (CO) concentration, the carbon dioxide (CO 2 ) concentration, the oxygen (O 2 ) concentration, and the excess air ratio (λ). Explaining with reference to this figure, the oxygen (O 2 ) concentration is the excess air ratio λ = 1.
When it is (theoretical air-fuel ratio), it is “0”, and the concentration becomes higher toward the lean side. Further, the carbon dioxide (CO 2 ) concentration is a mountain shape having the maximum value when the excess air ratio λ = 1, and becomes lower toward the lean side. Therefore, the oxygen (O 2 ) concentration PO 2
Can be expressed by the relationship of Equation 2.

【0022】[0022]

【数2】 [Equation 2]

【0023】なお,(3)式のKO2 は変換係数であ
り,これによって(4)式よりBCO 2 が求められる。
また,(4)式において,xは炭化水素(HC)の平均
炭素数であり,KHCは炭化水素(HC)の排出係数で
HC排出濃度に依存する。また,λSもHC排出濃度に
依存する実質の理論空気過剰率であり,もともと特定で
きない炭化水素(HC)濃度の影響は小さい方がよい。
KO of equation (3)2Is the conversion factor
As a result, the BCO 2Is required.
In the equation (4), x is the average of hydrocarbons (HC)
It is the carbon number, and KHC is the emission factor of hydrocarbons (HC).
Depends on HC emission concentration. Also, λS is the HC emission concentration
Is the theoretical excess air ratio that depends on the
The influence of the hydrocarbon (HC) concentration that cannot be reached is preferably small.

【0024】図3に,計算によって得られた一酸化炭素
(CO)濃度,二酸化炭素(CO2)濃度および酸素
(O2 )濃度と空気過剰率(λ)との関係説明図を示
す。同図を用いて,炭化水素(HC)濃度の影響度を検
討すると,0[ppm ]と通常の排出レベル4000[pp
m ]でのBCO2 の差は0.01[%]程度であり,無
視できる範囲である。よって,(4)式において,排出
係数KHC=0,理論空気過剰率λS=1(即ち,HC
=0の時の理論空気過剰率)として扱ってよい。
FIG. 3 is an explanatory diagram showing the relationship between the carbon monoxide (CO) concentration, the carbon dioxide (CO 2 ) concentration, the oxygen (O 2 ) concentration and the excess air ratio (λ) obtained by the calculation. Examining the influence degree of hydrocarbon (HC) concentration using the same figure, 0 [ppm] and normal emission level 4000 [pp
The difference in BCO 2 in m] is about 0.01 [%], which is a negligible range. Therefore, in the equation (4), the emission coefficient KHC = 0, the theoretical excess air ratio λS = 1 (that is, HC
May be treated as the theoretical excess air ratio when = 0).

【0025】また,(3)式において,変換係数KO2
は燃料の炭水比に依存し,図4の酸素(O2 )変換係数
KO2 と炭水比との関係説明図に示すように,良好な直
線関係にある。よって次式で求めることができる。 KO2 =1+0.3Z …(5)
In the equation (3), the conversion coefficient KO 2
Depends on the coal-water ratio of the fuel, and has a good linear relationship as shown in the explanatory diagram of the relationship between the oxygen (O 2 ) conversion coefficient KO 2 and the coal-water ratio in FIG. Therefore, it can be calculated by the following equation. KO 2 = 1 + 0.3Z (5)

【0026】ここでも若干の炭化水素(HC)濃度の影
響を受けるが,その影響度は,0[ppm ]と4000
[ppm ]で酸素(O2 )0.02[%]程度であり,無
視できる範囲である。
Here again, although it is slightly affected by the hydrocarbon (HC) concentration, the degree of influence is 0 [ppm] and 4000.
Oxygen (O 2 ) is about 0.02 [%] in [ppm], which is a negligible range.

【0027】次に,一酸化炭素分析計110および二酸
化炭素分析計120内の残存水分量について説明する。
一酸化炭素分析計110および二酸化炭素分析計120
は,測定原理上,水分を除去(除湿)してその容積割合
を測定するが,完全除湿されず,少量ではあるが残存水
分量Hxが存在し,空燃比(A/F)の算出に影響を及
ぼす。そこで,分析計測定値(PCO’,PCO2 ’)
をHxで補正する。 PCO”=PCO’/(1−Hx) …(6) PCO2 ”=PCO2 ’/(1−Hx) …(7)
Next, the residual water content in the carbon monoxide analyzer 110 and the carbon dioxide analyzer 120 will be described.
Carbon monoxide analyzer 110 and carbon dioxide analyzer 120
In the measurement principle, water is removed (dehumidified) and its volume ratio is measured, but it is not completely dehumidified and there is a small amount of residual water Hx, which affects the calculation of the air-fuel ratio (A / F). Exert. Therefore, analyzer measurement values (PCO ', PCO 2 ')
Is corrected with Hx. PCO "= PCO '/ (1 -Hx) ... (6) PCO 2" = PCO 2' / (1-Hx) ... (7)

【0028】この補正により,完全除湿された一酸化炭
素(CO)濃度および二酸化炭素(CO2 )濃度が求め
られ,この時の除湿された水分量PH2 Oが数3で求め
られる。
By this correction, the completely dehumidified carbon monoxide (CO) concentration and the carbon dioxide (CO 2 ) concentration are obtained, and the dehumidified water amount PH 2 O at this time is obtained by the equation 3.

【0029】[0029]

【数3】 (Equation 3)

【0030】よって,除湿前の濃度(水分も含めた一酸
化炭素(CO)濃度および二酸化炭素(CO2 )濃度)
は,それぞれ次式で求められる。 PCO=(1−PH2 O)・ PCO” …(9) PCO2 =(1−PH2 O)・ PCO2 ” …(10)
Therefore, the concentration before dehumidification (concentration of carbon monoxide (CO) and carbon dioxide (CO 2 ) including moisture)
Are calculated by the following equations. PCO = (1-PH 2 O) · PCO ″ (9) PCO 2 = (1-PH 2 O) · PCO 2 ″ (10)

【0031】以上により,一酸化炭素分析計110の測
定値PCO’および二酸化炭素分析計120の測定値P
CO2 ’に基づいて,残存水分量Hx分を補正した実排
出濃度PCO,PCO2 が算出される。また,該実排出
濃度PCO,PCO2 の値を用いて,(3)式より酸素
(O2 )濃度が求められる。したがって,(1)および
(2)式に各定数を代入して,空燃比A/Fは数4で求
めることができる。
From the above, the measured value PCO 'of the carbon monoxide analyzer 110 and the measured value P of the carbon dioxide analyzer 120 are obtained.
Based on the CO 2 ′, the actual discharge concentrations PCO and PCO 2 are calculated by correcting the residual water content Hx. Further, the oxygen (O 2 ) concentration is obtained from the equation (3) using the values of the actual emission concentrations PCO and PCO 2 . Therefore, the air-fuel ratio A / F can be obtained by Equation 4 by substituting each constant into the equations (1) and (2).

【0032】[0032]

【数4】 [Equation 4]

【0033】以上のように実施例1の空燃比測定装置で
は,理論式に基づく空燃比A/Fの算出式を用いること
により,各種燃料への対応を容易にし,燃料毎での空燃
比(A/F)の測定精度を高精度化することが可能とな
った。
As described above, in the air-fuel ratio measuring apparatus of the first embodiment, by using the formula for calculating the air-fuel ratio A / F based on the theoretical formula, it is possible to easily deal with various fuels, and the air-fuel ratio for each fuel ( It has become possible to improve the measurement accuracy of A / F).

【0034】また,実施例1の空燃比測定装置では,酸
素(O2 )濃度を新たな分析機器を加えることなく算出
することができ,燃焼状態の変化(未燃HCレベル)の
影響も殆ど受けずに正確に求められる。これは,一般的
な自動車用排気分析計では,一酸化炭素分析計110お
よび二酸化炭素分析計120が一体的に構成されるた
め,酸素(O2 )濃度演算表示装置としても有用であ
る。
Further, in the air-fuel ratio measuring apparatus of the first embodiment, the oxygen (O 2 ) concentration can be calculated without adding a new analytical instrument, and the influence of the change in the combustion state (unburned HC level) is almost eliminated. Accurately requested without receiving. In a general automobile exhaust gas analyzer, this is useful as an oxygen (O 2 ) concentration calculation display device because the carbon monoxide analyzer 110 and the carbon dioxide analyzer 120 are integrally configured.

【0035】〔実施例2〕次に,図5は,この発明の実
施例2に係る空燃比測定装置の構成図である。同図にお
いて,本実施例の空燃比測定装置は,実施例1の空燃比
測定装置において,排気分析計500に窒素酸化物の含
有量(PNO)を検出する手段を付加したものである。
[Embodiment 2] Next, FIG. 5 is a configuration diagram of an air-fuel ratio measuring apparatus according to Embodiment 2 of the present invention. In the figure, the air-fuel ratio measuring apparatus according to the present embodiment is the same as the air-fuel ratio measuring apparatus according to the first embodiment except that a means for detecting the nitrogen oxide content (PNO) is added to the exhaust gas analyzer 500.

【0036】つまり排気分析計500は,排出ガス中に
含まれる一酸化炭素,二酸化炭素,炭化水素および一酸
化窒素の各含有量(PCO’,PCO2 ’,PHC,P
NO)をそれぞれ検出する一酸化炭素(CO)分析計1
10,二酸化炭素(CO2 )分析計120,炭化水素
(HC)分析計130および一酸化窒素(NO)分析計
580を備えている。したがって,演算器560のイン
ターフェイス561にも,酸化窒素分析計580からの
信号を取り込む端子が付加される。
[0036] That exhaust analyzer 500, carbon monoxide contained in the exhaust gas, carbon dioxide, each amount of hydrocarbons and nitrogen monoxide (PCO ', PCO 2', PHC, P
Carbon monoxide (CO) analyzer 1 for detecting NO) respectively
10, a carbon dioxide (CO 2 ) analyzer 120, a hydrocarbon (HC) analyzer 130 and a nitric oxide (NO) analyzer 580. Therefore, a terminal for taking in a signal from the nitric oxide analyzer 580 is also added to the interface 561 of the calculator 560.

【0037】次に,実施例2の空燃比測定装置の原理お
よび作用について説明する。実際の排出ガスでは,未燃
炭化水素(HC)の他に窒素酸化物(NOx )が微量で
はあるが含まれる。この窒素酸化物(NOx )は通常エ
ンジンから排出されるときは90[%]以上が一酸化窒
素(NO)の状態にあり,この一酸化窒素(NO)の濃
度PNOの影響を考慮すると,酸素(O2 )PO2 は,
(3)式において, PO2 =KO2 ・ {BCO2 −(PCO2 +PCO)}−PNO …(12) となる。この(12)式により,酸素(O2 )濃度がさ
らに高精度に計測(算出)される。
Next, the principle and operation of the air-fuel ratio measuring apparatus of the second embodiment will be described. Actual exhaust gas contains a small amount of nitrogen oxides (NOx) in addition to unburned hydrocarbons (HC). 90% or more of this nitrogen oxide (NOx) is usually in the state of nitric oxide (NO) when it is discharged from the engine. Considering the influence of the concentration PNO of this nitric oxide (NO), oxygen is (O 2 ) PO 2 is
In the formula (3), PO 2 = KO 2 · {BCO 2 − (PCO 2 + PCO)} − PNO (12). Oxygen (O 2 ) concentration is measured (calculated) with higher accuracy by this equation (12).

【0038】この一酸化窒素(NO)の排出による空燃
比(A/F)算出への影響分は酸素(O2 )濃度変化分
のみである。その理由は,NOの生成が,N2 +O2
2NOであるから,2つの分子が異なる2分子となるだ
けであり,排気成分の全生成数に変化はなく,一酸化炭
素(CO)濃度,二酸化炭素(CO2 )濃度および炭化
水素(HC)濃度へのはねかえりはない。よって(1
1)式に一酸化窒素(NO)濃度PNOを加えた数5を
用いればよい。
The influence of the discharge of nitric oxide (NO) on the calculation of the air-fuel ratio (A / F) is only the change in oxygen (O 2 ) concentration. The reason is that NO generation is N 2 + O 2 =
Since it is 2NO, the two molecules are only two different molecules, and there is no change in the total number of exhaust components produced. Carbon monoxide (CO) concentration, carbon dioxide (CO 2 ) concentration, and hydrocarbon (HC) There is no bounce back to concentration. Therefore (1
Equation 5 obtained by adding the nitric oxide (NO) concentration PNO to the equation (1) may be used.

【0039】[0039]

【数5】 (Equation 5)

【0040】換言すると,一酸化窒素(NO)の測定値
の情報がなくても空燃比(A/F)の算出には影響しな
いということである。ただし,酸素(O2 )濃度の算出
精度の向上には一酸化窒素(NO)濃度の測定値が有効
である。
In other words, there is no influence on the calculation of the air-fuel ratio (A / F) even if there is no information on the measured value of nitric oxide (NO). However, the measured value of the nitric oxide (NO) concentration is effective for improving the calculation accuracy of the oxygen (O 2 ) concentration.

【0041】以上のように実施例2の空燃比測定装置で
は,排出ガスの中で一酸化窒素(NO)の情報を組み入
れることにより,酸素(O2 )濃度の算出精度を向上さ
せることができる。
As described above, in the air-fuel ratio measuring apparatus according to the second embodiment, the accuracy of calculating the oxygen (O 2 ) concentration can be improved by incorporating the information of nitric oxide (NO) in the exhaust gas. .

【0042】[0042]

【発明の効果】以上説明したように,この発明の空燃比
測定装置(請求項1)は,排気分析計により排出ガス中
に含まれる一酸化炭素,二酸化炭素および炭化水素の各
含有量を検出し,炭水比設定器で使用燃料の炭水比を設
定し,残存水分量設定器で排気分析計の一酸化炭素およ
び二酸化炭素の各含有量検出における残存水分量を設定
し,算出手段では,排気分析計の測定値と炭水比設定器
および残存水分量設定器の設定値に基づき,空燃比およ
び/または酸素濃度を算出するようにしたため,性状が
大きく異なる燃料についてもそれぞれ高精度に空燃比
(A/F)を測定でき,また,分析計の除湿能力の変化
等の誤差要因を解消し得る空燃比測定装置を提供するこ
とができる。
As described above, the air-fuel ratio measuring apparatus (Claim 1) of the present invention detects the contents of carbon monoxide, carbon dioxide and hydrocarbons contained in the exhaust gas by the exhaust gas analyzer. Then, set the charcoal-water ratio of the fuel to be used with the charcoal-water ratio setter, set the residual water content in detecting the carbon monoxide and carbon dioxide contents of the exhaust gas analyzer with the residual water content setter, and use the calculation method. Since the air-fuel ratio and / or the oxygen concentration are calculated based on the measured values of the exhaust gas analyzer and the set values of the charcoal-water ratio setter and the residual water content setter, highly precise fuels with greatly different properties can be obtained. It is possible to provide an air-fuel ratio measuring device capable of measuring the air-fuel ratio (A / F) and eliminating error factors such as changes in the dehumidifying ability of the analyzer.

【0043】また,この発明の空燃比測定装置(請求項
2)は,酸素濃度の算出を,排気分析計における一酸化
炭素および二酸化炭素の含有量測定値と,炭水比設定器
および残存水分量設定器の設定値に基づいて行なうた
め,さらに性状が大きく異なる燃料についてもそれぞれ
高精度に空燃比(A/F)を測定でき,また,分析計の
除湿能力の変化等の誤差要因を解消し得る空燃比測定装
置を提供することができる。
In the air-fuel ratio measuring apparatus (claim 2) of the present invention, the oxygen concentration is calculated by measuring the carbon monoxide and carbon dioxide contents measured by the exhaust gas analyzer, the charcoal-water ratio setter and the residual water content. Since it is performed based on the set value of the quantity setter, the air-fuel ratio (A / F) can be measured with high accuracy even for fuels with greatly different properties, and error factors such as changes in the dehumidification capacity of the analyzer can be eliminated. It is possible to provide a possible air-fuel ratio measuring device.

【0044】また,この発明の空燃比測定装置(請求項
3)は,排気分析計により窒素酸化物の含有量をも検出
するため,算出精度が向上する。
Further, the air-fuel ratio measuring apparatus of the present invention (claim 3) also detects the nitrogen oxide content by the exhaust gas analyzer, so that the calculation accuracy is improved.

【0045】また,この発明の空燃比測定装置(請求項
4)は,算出手段では,排気分析計の測定値と炭水比設
定器および残存水分量設定器の設定値に基づき,空燃比
および/または酸素濃度を算出し,特に酸素濃度の算出
は,排気分析計における一酸化炭素,二酸化炭素および
窒素酸化物の含有量測定値と,炭水比設定器および残存
水分量設定器の設定値に基づいて行ない,排出ガスの中
に含まれる窒素酸化物の情報を算出に組み入れることと
したため,酸素濃度および空燃比の算出精度を更に向上
させることができる。
Further, in the air-fuel ratio measuring device of the present invention (claim 4), the calculating means calculates the air-fuel ratio based on the measured value of the exhaust gas analyzer and the set values of the coal water ratio setting device and the residual water content setting device. / Or oxygen concentration is calculated, especially the oxygen concentration is calculated by measuring the content of carbon monoxide, carbon dioxide and nitrogen oxides in the exhaust gas analyzer and the set values of the coal water ratio setting device and the residual water content setting device. Since the information on the nitrogen oxides contained in the exhaust gas is incorporated into the calculation, the calculation accuracy of the oxygen concentration and the air-fuel ratio can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る空燃比測定装置の構成
図である。
FIG. 1 is a configuration diagram of an air-fuel ratio measuring device according to a first embodiment of the present invention.

【図2】一酸化炭素(CO)濃度,二酸化炭素(C
2 )濃度および酸素(O2 )濃度と空気過剰率(λ)
との関係説明図である。
FIG. 2 Carbon monoxide (CO) concentration, carbon dioxide (C
O 2 ) concentration, oxygen (O 2 ) concentration and excess air ratio (λ)
FIG.

【図3】計算によって得られた一酸化炭素(CO)濃
度,二酸化炭素(CO2 )濃度および酸素(O2 )濃度
と空気過剰率(λ)との関係説明図である。
FIG. 3 is an explanatory diagram of a relationship between a carbon monoxide (CO) concentration, a carbon dioxide (CO 2 ) concentration, an oxygen (O 2 ) concentration, and an excess air ratio (λ) obtained by calculation.

【図4】酸素(O2 )変換係数KO2 と炭水比との関係
説明図である。
FIG. 4 is an explanatory diagram of a relationship between an oxygen (O 2 ) conversion coefficient KO 2 and a coal water ratio.

【図5】発明の実施例2に係る空燃比測定装置の構成図
である。
FIG. 5 is a configuration diagram of an air-fuel ratio measuring device according to a second embodiment of the invention.

【符号の説明】[Explanation of symbols]

100,500 排気分析計 110 CO分析計 120 CO2 分析計 130 HC分析計 140 炭水比設定器 150 残存水分量設定器 160,560 演算器(算出手段) 161,561 インターフェイス 162 CPU 163 メモリ 170 表示器 580 NO分析計100,500 exhaust analyzer 110 CO analyzer 120 CO 2 analyzer 130 HC analyzer 140 coal water ratio setter 150 residual water content setter 160,560 calculator (calculation means) 161,561 interface 162 CPU 163 memory 170 display Instrument 580 NO analyzer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排出ガス中に含まれる一酸化炭素,二酸
化炭素および炭化水素の各含有量を検出する排気分析計
と,使用燃料の炭水比を設定する炭水比設定器と,前記
排気分析計の一酸化炭素および二酸化炭素の各含有量検
出における残存水分量を設定する残存水分量設定器と,
前記排気分析計の測定値と前記炭水比設定器および残存
水分量設定器の設定値に基づき,空燃比および/または
酸素濃度を算出する算出手段とを有することを特徴とす
る空燃比測定装置。
1. An exhaust gas analyzer for detecting respective contents of carbon monoxide, carbon dioxide and hydrocarbons contained in exhaust gas, a coal water ratio setter for setting a coal water ratio of fuel used, and the exhaust gas. A residual water content setting device for setting the residual water content in detecting each content of carbon monoxide and carbon dioxide of the analyzer;
An air-fuel ratio measuring device having a calculating means for calculating an air-fuel ratio and / or an oxygen concentration based on the measured values of the exhaust gas analyzer and the set values of the coal-water ratio setting device and the residual water content setting device. .
【請求項2】 前記算出手段は,前記排気分析計におけ
る一酸化炭素および二酸化炭素の含有量測定値と,前記
炭水比設定器および残存水分量設定器の設定値に基づ
き,酸素濃度を算出することを特徴とする請求項1記載
の空燃比測定装置。
2. The calculating means calculates the oxygen concentration based on the measured values of the carbon monoxide and carbon dioxide contents in the exhaust gas analyzer and the set values of the coal-water ratio setting device and the residual water content setting device. The air-fuel ratio measuring device according to claim 1.
【請求項3】 前記排気分析計は,窒素酸化物の含有量
を検出することを特徴とする請求項1または2記載の空
燃比測定装置。
3. The air-fuel ratio measuring device according to claim 1, wherein the exhaust gas analyzer detects the content of nitrogen oxides.
【請求項4】 前記算出手段は,前記排気分析計におけ
る一酸化炭素,二酸化炭素および窒素酸化物の含有量測
定値と,前記炭水比設定器および残存水分量設定器の設
定値に基づき,酸素濃度を算出することを特徴とする請
求項3記載の空燃比測定装置。
4. The calculation means is based on the measured values of carbon monoxide, carbon dioxide and nitrogen oxide contents in the exhaust gas analyzer, and the set values of the coal water ratio setter and the residual water content setter. The air-fuel ratio measuring device according to claim 3, wherein the oxygen concentration is calculated.
JP6201152A 1994-08-25 1994-08-25 Air/fuel ratio measuring instrument Pending JPH0862099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6201152A JPH0862099A (en) 1994-08-25 1994-08-25 Air/fuel ratio measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6201152A JPH0862099A (en) 1994-08-25 1994-08-25 Air/fuel ratio measuring instrument

Publications (1)

Publication Number Publication Date
JPH0862099A true JPH0862099A (en) 1996-03-08

Family

ID=16436254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6201152A Pending JPH0862099A (en) 1994-08-25 1994-08-25 Air/fuel ratio measuring instrument

Country Status (1)

Country Link
JP (1) JPH0862099A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444448B1 (en) * 2001-10-16 2004-08-16 현대자동차주식회사 Producting method for HC concentration of purge gas
JP2009250935A (en) * 2008-04-10 2009-10-29 Toyota Motor Corp Fuel consumption measuring technique and fuel consumption measuring system
JP2020201097A (en) * 2019-06-07 2020-12-17 株式会社堀場製作所 Exhaust gas analysis device, exhaust gas analysis method, program for exhaust gas analysis, and machine learning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444448B1 (en) * 2001-10-16 2004-08-16 현대자동차주식회사 Producting method for HC concentration of purge gas
JP2009250935A (en) * 2008-04-10 2009-10-29 Toyota Motor Corp Fuel consumption measuring technique and fuel consumption measuring system
JP2020201097A (en) * 2019-06-07 2020-12-17 株式会社堀場製作所 Exhaust gas analysis device, exhaust gas analysis method, program for exhaust gas analysis, and machine learning device
US11698338B2 (en) 2019-06-07 2023-07-11 Horiba, Ltd. Exhaust gas analyzer, and exhaust gas analysis method

Similar Documents

Publication Publication Date Title
JP3325919B2 (en) Method and apparatus for determining a value indicating the oxygen storage capacity of a catalyst
JP4746239B2 (en) Method for obtaining NOx concentration
US9470654B2 (en) System and method for updating a baseline output of a gas sensor
US4121455A (en) Measuring a flow of gas through a combustion engine
EP0071474B1 (en) Method of measuring an air to fuel ratio
CN109425489B (en) Exhaust gas analyzing apparatus, exhaust gas analyzing method, and storage medium
JPH0862099A (en) Air/fuel ratio measuring instrument
JP2001021530A (en) Simplified test method of nitrogen oxide concentration in engine exhaust gas
US3606790A (en) Method for measuring air-fuel ratio
JP2832905B2 (en) City gas combustion rate measurement device
Ingram et al. On-line oxygen storage capacity estimation of a catalyst
JPS5928855B2 (en) How to measure exhaust gas from internal combustion engines
US4095462A (en) Device for detecting the air-fuel ratio of an internal combustion engine
Chan et al. Exhaust emission based air-fuel ratio model (I): literature reviews and modelling
JPS6333100B2 (en)
JP3617261B2 (en) Continuous particulate measuring device
JPH09264861A (en) Method and device for measuring gas concentration
CN116165350B (en) Method, system and equipment for detecting pollutants of diesel vehicle based on remote sensing technology
Benvenuti et al. Spindt-Based AFR Sensitivities to Exhaust Emissions Measurement Accuracy for GDI Internal Combustion Engines
Weller Acoustic apparatus for determination of mixture ratio by analysis of engine exhaust gas
Soltis Zirconia-Based Electrochemical Oxygen Sensor for Accurately Determining Water Vapor Concentration
WO2003038393A1 (en) Obtaining exhaust emisissions data
Berg et al. Influence of Exhaust Gas Composition on Measured Total and Exhaust Flow Using a CVS with Critical Flow Venturi and Smooth Approach Orifice
Prucka et al. Cycle-by-cycle air-to-fuel ratio calculation during transient engine operation using fast response CO and CO2 sensors
Butler et al. Fast-response zirconia sensor-based instrument for measurement of the air/fuel ratio of combustion exhaust