JPH0861647A - Method for burning organic chloride - Google Patents

Method for burning organic chloride

Info

Publication number
JPH0861647A
JPH0861647A JP22575494A JP22575494A JPH0861647A JP H0861647 A JPH0861647 A JP H0861647A JP 22575494 A JP22575494 A JP 22575494A JP 22575494 A JP22575494 A JP 22575494A JP H0861647 A JPH0861647 A JP H0861647A
Authority
JP
Japan
Prior art keywords
air
incinerator
amount
organic chlorine
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22575494A
Other languages
Japanese (ja)
Inventor
Atsushi Eguchi
篤 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMA ENBIMONOMAA KK
Shin Etsu Chemical Co Ltd
Original Assignee
KASHIMA ENBIMONOMAA KK
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMA ENBIMONOMAA KK, Shin Etsu Chemical Co Ltd filed Critical KASHIMA ENBIMONOMAA KK
Priority to JP22575494A priority Critical patent/JPH0861647A/en
Publication of JPH0861647A publication Critical patent/JPH0861647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

PURPOSE: To reduce the amount of chlorine gas generated by combustion by a method wherein the amount of air used for burning organic chloride is set to be lower than that of the prior art and its mol ratio is of a specified time with respect to a theoretical amount of air. CONSTITUTION: Organic chloride A is supplied into an incinerator 1 together with air B as required under its atmoized state and at the same time the air B is supplied through an air flow rate adjusting valve 2 and then ignition is carried out. In the case that a combustion temperature is adjusted, water, water vapor or hydrochloric acid C are supplied into the incinerator 1 together with the air B as required Combustion discharged gas D discharged from the incinerator 1 upon completion of combustion is fed into a cooling tower 3 and cooled with a heat exchanger 4. Then, the gas is fed into an absorbing tower 5, contacted with water E there and hydrogen chloride is absorbed and removed. In this case, an air supplying amount is set to have a range of about 0.8 to 1.15 times in a mole ratio in respect the to a theoretical amount of air, thereby it is possible to reduce m amount of generated cholrine gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有害な塩素ガスの生成
を可及的に低減させ得る有機塩素化合物の焼却方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for incinerating organic chlorine compounds which can reduce the generation of harmful chlorine gas as much as possible.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】塩素誘
導体工業などでは、望まれない副生成物として有機塩素
化合物が生成し、この副生有機塩素化合物は、多くの場
合焼却処理される。この焼却処理は、有機塩素化合物中
に含まれる炭素原子が完全に二酸化炭素に転化するよう
に大過剰の空気の存在下で燃焼が行われている。かかる
燃焼反応において、有機塩素化合物中に含まれる炭素原
子は二酸化炭素に完全に転化され、塩素原子は水素原子
と結合して塩化水素に転化され、また水素原子と結合し
なかった少量の塩素原子は分子状塩素ガスに転化し、塩
素ガスと結合しなかった水素原子は水に転化される。従
って、燃焼排ガス中には、二酸化炭素のほか、窒素、酸
素、水蒸気、塩化水素、更に少量の塩素ガスが含まれる
のが普通である。このような燃焼排ガスは、冷却後、吸
収塔に導かれ、塩化水素が水で吸収除去された後、更に
除害塔へ導かれて亜硫酸ソーダ、カセイソーダ等のアル
カリによって塩素ガスが吸収除去され、完全に無害化さ
れて大気へ放出される。
2. Description of the Related Art In the chlorine derivative industry and the like, an organic chlorine compound is produced as an undesired by-product, and this by-product organic chlorine compound is often incinerated. In this incineration process, combustion is performed in the presence of a large excess of air so that the carbon atoms contained in the organic chlorine compound are completely converted to carbon dioxide. In such a combustion reaction, the carbon atoms contained in the organic chlorine compound are completely converted to carbon dioxide, the chlorine atoms are combined with hydrogen atoms to be converted into hydrogen chloride, and a small amount of chlorine atoms which are not combined with hydrogen atoms. Is converted into molecular chlorine gas, and hydrogen atoms that have not been combined with chlorine gas are converted into water. Therefore, the flue gas usually contains nitrogen, oxygen, water vapor, hydrogen chloride, and a small amount of chlorine gas in addition to carbon dioxide. Such combustion exhaust gas, after cooling, is guided to the absorption tower, after hydrogen chloride is absorbed and removed with water, is further guided to the detoxification tower sodium chloride is absorbed and removed by alkali such as sodium sulfite, caustic soda, It is completely detoxified and released into the atmosphere.

【0003】ところで、燃焼排ガス中の塩素は、有害な
物質として排出が規制されているばかりでなく、塩化水
素による設備の浸食を防止するために吸収塔や除害塔の
内壁に用いられているエポキシ樹脂やビニルエステル系
樹脂などの強化プラスチック(FRP)を劣化させる性
質があるため、焼却炉での塩素ガスの生成を低減させる
ことが要望されている。
By the way, chlorine in combustion exhaust gas is not only regulated as a harmful substance but its emission is also used in the inner walls of absorption towers and detoxification towers to prevent erosion of equipment by hydrogen chloride. Since it has a property of deteriorating reinforced plastics (FRP) such as epoxy resin and vinyl ester resin, it is desired to reduce the generation of chlorine gas in an incinerator.

【0004】このような塩素ガスの生成を抑制する方法
としては、燃焼温度を高温にすることが知られており、
このため有機塩素化合物に大過剰の空気を供給し、燃焼
温度を高温として焼却すること、具体的には、焼却すべ
き有機塩素化合物の全ての炭素原子を二酸化炭素に転化
し、全ての塩素原子を塩化水素に転化し、塩化水素生成
後に残留する全ての水素原子を水に転化するのに必要な
理論空気量に対してモル比で1.3〜1.6倍程度の大
過剰の空気の存在下、温度1300〜1600℃の範囲
で有機塩素化合物を焼却処理する方法が採用されてい
る。
As a method of suppressing the generation of such chlorine gas, it is known to increase the combustion temperature,
For this reason, a large excess of air is supplied to the organic chlorine compound to incinerate it at a high combustion temperature. Specifically, all the carbon atoms of the organic chlorine compound to be incinerated are converted into carbon dioxide, and all the chlorine atoms are burned. Is converted into hydrogen chloride, and a large excess of air of about 1.3 to 1.6 times in molar ratio with respect to the theoretical air amount necessary for converting all the hydrogen atoms remaining after hydrogen chloride generation into water. The method of incinerating an organic chlorine compound in the temperature range of 1300 to 1600 ° C. in the presence is adopted.

【0005】しかしながら、この方法を用いた場合で
も、燃焼排ガス中に含まれる塩素ガス量は50〜200
volppmであり、十分満足し得るレベルではない。
However, even when this method is used, the amount of chlorine gas contained in the combustion exhaust gas is 50 to 200.
It is volppm, which is not a sufficiently satisfactory level.

【0006】この場合、大過剰の空気の存在下で更に高
温領域において燃焼反応を行うことも考えられるが、燃
焼炉に用いられる耐火煉瓦が損傷を受けない最高の温度
は約1600〜1700℃(壁面の温度として)である
ため、燃焼反応温度を高めるには限度がある。
In this case, it is possible to carry out the combustion reaction in a higher temperature region in the presence of a large excess of air, but the maximum temperature at which the refractory brick used in the combustion furnace is not damaged is about 1600 to 1700 ° C ( Therefore, there is a limit to increase the combustion reaction temperature.

【0007】本発明は、上記事情に鑑みなされたもの
で、塩素の発生量を可及的に抑制できると共に、経済的
にも有利な有機塩素化合物の焼却方法を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for incinerating an organic chlorine compound which can suppress the amount of chlorine generated as much as possible and is economically advantageous.

【0008】[0008]

【課題を解決するための手段及び作用】本発明者は、上
記目的を達成するため鋭意検討を重ねた結果、有機塩素
化合物を燃焼させる空気量を従来よりはるかに低く、理
論空気量とほぼ程度とすることにより、燃焼により生成
する塩素ガス量が劇的に減少するという新たな知見を得
た。
As a result of earnest studies to achieve the above object, the present inventor has found that the amount of air for burning the organic chlorine compound is much lower than the conventional amount, and is almost the same as the theoretical amount of air. Therefore, we obtained new knowledge that the amount of chlorine gas generated by combustion is dramatically reduced.

【0009】即ち、従来の焼却技術では、有機物の完全
燃焼と炉内温度の調節のために空気大過剰(酸素大過
剰)で行われており、上述したように、通常理論空気量
の1.3〜1.6倍程度の空気が有機塩素化合物と共に
焼却炉に供給されているが、本発明者は、空気供給量を
理論空気量に対しモル比で0.8〜1.15倍の範囲と
することにより、生成塩素ガス量を少なく、通常10v
olppm以下として有機塩素化合物の焼却を行うこと
ができることを見い出したものである。
[0009] That is, in the conventional incineration technique, a large amount of excess air (excess of oxygen) is used for complete combustion of organic substances and adjustment of the temperature in the furnace. About 3 to 1.6 times as much air is supplied to the incinerator together with the organic chlorine compound, but the present inventor has found that the air supply amount is in the range of 0.8 to 1.15 times the theoretical air amount in a molar ratio. As a result, the amount of chlorine gas produced is small, usually 10v
It has been found that it is possible to incinerate an organic chlorine compound at an olppm or less.

【0010】また、上記空気比が低い範囲での燃焼は、
有機塩素化合物の供給量や組成が変化するような場合は
燃焼が不安定になるため、安定に燃焼を維持する方法を
検討した結果、上記空気比の低い範囲では、燃焼排ガス
中に一酸化炭素が発生し、この一酸化炭素の量と生成す
る塩素ガス量には相関関係があり、燃焼排ガス中に含有
される一酸化炭素量を測定し、その測定結果に基づき生
成される塩素ガス量を推定することができ、従って、一
酸化炭素の測定結果から供給する空気量を調節すること
により、生成される塩素ガス量を極めて低量に調節する
ことができることを見い出し、本発明をなすに至ったも
のである。
Combustion in the low air ratio range is
Combustion becomes unstable when the supply amount and composition of the organochlorine compound change, and as a result of studying a method for maintaining stable combustion, carbon monoxide was contained in the combustion exhaust gas in the low air ratio range. Is generated, and there is a correlation between the amount of carbon monoxide and the amount of chlorine gas produced, the amount of carbon monoxide contained in the combustion exhaust gas is measured, and the amount of chlorine gas produced based on the measurement result is calculated. Therefore, it was found that the amount of chlorine gas produced can be adjusted to an extremely low amount by adjusting the amount of air supplied from the measurement result of carbon monoxide, and the present invention has been completed. It is a thing.

【0011】従って、本発明は、(1)有機塩素化合物
と空気とを焼却炉に供給して有機塩素化合物を焼却する
方法において、焼却炉に供給される空気量が、焼却炉に
供給される有機塩素化合物及び炭化水素の全ての炭素原
子を二酸化炭素に転化し、かつ全ての塩素原子を塩化水
素に転化し、更に塩化水素の生成後に残留する全ての水
素原子を水に転化するのに必要な理論空気量に対し、モ
ル比で0.8〜1.15倍であることを特徴とする有機
塩素化合物の焼却方法、(2)有機塩素化合物と空気と
を焼却炉に供給して有機塩素化合物を焼却する方法にお
いて、有機塩素化合物の焼却後の燃焼排ガス中に含まれ
る一酸化炭素濃度を測定し、その測定結果に基づいて焼
却炉に供給する空気量を調節することを特徴とする有機
塩素化合物の焼却方法、及び、(3)有機塩素化合物と
空気とを焼却炉に供給して有機塩素化合物を焼却する方
法において、有機塩素化合物の焼却後の燃焼排ガス中に
含まれる塩化水素ガスを除去した後、この塩化水素ガス
を除去した燃焼排ガス中の一酸化炭素の濃度を連続的に
測定し、その測定結果に基づいて焼却炉内へ供給する空
気量を自動的に制御することを特徴とする有機塩素化合
物の焼却方法を提供する。
Therefore, according to the present invention, (1) in a method of incinerating an organic chlorine compound by supplying the organic chlorine compound and air to the incinerator, the amount of air supplied to the incinerator is supplied to the incinerator. Required to convert all carbon atoms of organochlorine compounds and hydrocarbons to carbon dioxide, and all chlorine atoms to hydrogen chloride, and all hydrogen atoms remaining after hydrogen chloride formation to water A method for incinerating an organic chlorine compound, characterized in that the molar ratio is 0.8 to 1.15 times the theoretical air amount, and (2) supplying an organic chlorine compound and air to an incinerator to produce an organic chlorine. In the method for incinerating a compound, the concentration of carbon monoxide contained in the combustion exhaust gas after incineration of the organic chlorine compound is measured, and the amount of air supplied to the incinerator is adjusted based on the measurement result. Incineration of chlorine compounds Method and (3) a method of incinerating an organic chlorine compound by supplying an organic chlorine compound and air to an incinerator, after removing hydrogen chloride gas contained in the combustion exhaust gas after incineration of the organic chlorine compound, Organic chlorine characterized by continuously measuring the concentration of carbon monoxide in the flue gas from which this hydrogen chloride gas has been removed and automatically controlling the amount of air supplied to the incinerator based on the measurement results A method of incinerating a compound is provided.

【0012】以下、本発明について更に詳しく説明する
と、本発明の有機塩素化合物の焼却方法は、上述したよ
うに、有機塩素化合物の焼却に際し、空気供給量を従来
よりはるかに少なくしたものである。
The present invention will be described in more detail below. In the method for incinerating an organic chlorine compound of the present invention, as described above, the amount of air supplied is much smaller than that in the conventional case when incinerating an organic chlorine compound.

【0013】本発明において、焼却の対象となる有機塩
素化合物としては、例えば塩化メチル、塩化メチレン、
クロロホルム、四塩化炭素、塩化エチル、二塩化エタ
ン、トリクロロエタン、テトラクロロエタン、ペンタク
ロロエタン、パークロロエタン、塩化プロピル、二塩化
プロパン、三塩化プロパン、塩化ブチル、二塩化ブタン
などの脂肪族飽和炭化水素の塩素化物、塩化ビニル、塩
化ビニリデン、トリクロロエチレン、パークロロエチレ
ン、塩化プロピレン、クロロプレンなどの脂肪族不飽和
炭化水素の塩素化物、あるいはクロラール、2―クロロ
エタノールなどの含酸素有機化合物、更に、ポリ塩化ビ
ニル、ポリ塩化ビニリデン、クロロプレンゴムなどの有
機高分子化合物などを挙げることができ、これらを単独
又は混合して焼却炉に供給することができる。この場
合、有機塩素化合物に含まれる塩素量は10〜95重量
%の範囲とすることができる。また、有機塩素化合物の
供給形態は、固体、液体、気体いずれでも良く、液体で
供給される場合には、空気又は蒸気により噴霧するのが
普通である。なお、有機塩素化合物が燃焼し難い場合に
は、メタン、エタン、プロパンなどの炭素数1〜4の炭
化水素を補助燃料として焼却炉に供給しても良い。メタ
ン、エタン、プロパンなどの炭素数1〜4の炭化水素を
補助燃料として焼却炉に供給させる場合においても、焼
却炉に供給される有機塩素化合物及び炭化水素の全ての
炭素原子を二酸化炭素に転化して、かつ全ての塩素原子
を塩化水素に転化し、更に塩化水素の生成後に残留する
全ての水素原子を水に転化するのに必要な理論空気量に
対しモル比で0.8〜1.15倍である空気量が焼却炉
に供給される。
In the present invention, examples of the organic chlorine compound to be incinerated include methyl chloride, methylene chloride,
Chlorine of aliphatic saturated hydrocarbons such as chloroform, carbon tetrachloride, ethyl chloride, ethane dichloride, trichloroethane, tetrachloroethane, pentachloroethane, perchloroethane, propyl chloride, propane dichloride, propane trichloride, butyl chloride, butane dichloride. Chlorides, chlorinated products of aliphatic unsaturated hydrocarbons such as vinyl chloride, vinylidene chloride, trichloroethylene, perchloroethylene, propylene chloride and chloroprene, or oxygen-containing organic compounds such as chloral and 2-chloroethanol, and polyvinyl chloride, Examples thereof include organic polymer compounds such as polyvinylidene chloride and chloroprene rubber, and these can be supplied to an incinerator alone or in combination. In this case, the amount of chlorine contained in the organic chlorine compound can be in the range of 10 to 95% by weight. The organochlorine compound may be supplied in any form of solid, liquid and gas, and when supplied in liquid form, it is usually sprayed with air or steam. When the organic chlorine compound is difficult to burn, hydrocarbons having 1 to 4 carbon atoms such as methane, ethane and propane may be supplied to the incinerator as auxiliary fuel. Even when supplying hydrocarbons having 1 to 4 carbon atoms such as methane, ethane and propane as auxiliary fuels to the incinerator, all carbon atoms of the organic chlorine compounds and hydrocarbons supplied to the incinerator are converted to carbon dioxide. Then, all the chlorine atoms are converted to hydrogen chloride, and further, all the hydrogen atoms remaining after the generation of hydrogen chloride are converted to water in a molar ratio of 0.8 to 1. A 15-fold amount of air is supplied to the incinerator.

【0014】本発明においては、有機塩素化合物を燃焼
させる空気量を、従来よりはるかに低い空気比とするも
ので、具体的には理論空気量に対しモル比で0.8〜
1.15倍、好ましくは0.9〜1.1、更に好ましく
は0.98〜1.05の範囲とするものである。空気比
が高すぎると、塩素生成を十分抑止することができず、
本発明の目的を達成することができない。一方低すぎる
と、燃焼そのものが不安定となったり、未分解の有機塩
素化合物が残留して下流を汚染する可能性がある。この
場合、理論空気量とは、焼却炉に供給される全ての炭素
原子を二酸化炭素に転化し、かつ全ての塩素原子を塩化
水素に転化し、更に塩化水素の生成後に残留する全ての
水素原子を水に転化するのに必要な空気量である。
In the present invention, the amount of air for burning the organochlorine compound is set to a much lower air ratio than in the past, and specifically, the molar ratio to the theoretical air amount is 0.8 to 0.8.
The range is 1.15 times, preferably 0.9 to 1.1, and more preferably 0.98 to 1.05. If the air ratio is too high, chlorine generation cannot be sufficiently suppressed,
The object of the present invention cannot be achieved. On the other hand, if it is too low, combustion itself may become unstable, or undecomposed organic chlorine compounds may remain and pollute the downstream. In this case, the theoretical amount of air means that all the carbon atoms supplied to the incinerator are converted to carbon dioxide, all the chlorine atoms are converted to hydrogen chloride, and all the hydrogen atoms remaining after the generation of hydrogen chloride. Is the amount of air required to convert water to water.

【0015】焼却炉内の燃焼温度は、通常通りとするこ
とができ、具体的には700〜1600℃の範囲とする
ことができる。700℃より燃焼温度が低いと、火炎の
保持が困難で有機塩素化合物が完全に分解しない場合が
あり、一方1600℃を超えると焼却炉内壁を構成する
耐火煉瓦が損傷を受けやすくなる。好ましい燃焼温度
は、1000〜1600℃、更に好ましくは1200〜
1600℃の範囲である。なお、本発明の特徴である空
気比の低い範囲での燃焼においては、生成する塩素濃度
と温度との関係は、ディーコン反応の平衡常数から計算
される従来の知見とは逆の関係を示し、温度が低いほど
塩素濃度が低下する傾向を示す。
The combustion temperature in the incinerator can be set as usual, specifically in the range of 700 to 1600 ° C. If the combustion temperature is lower than 700 ° C, it may be difficult to maintain the flame and the organic chlorine compound may not be completely decomposed. On the other hand, if it exceeds 1600 ° C, the refractory bricks forming the inner wall of the incinerator may be easily damaged. The preferred combustion temperature is 1000 to 1600 ° C, more preferably 1200 to
It is in the range of 1600 ° C. Incidentally, in the combustion in the low range of the air ratio, which is a feature of the present invention, the relationship between the chlorine concentration to be generated and the temperature shows an inverse relationship to the conventional knowledge calculated from the equilibrium constant of the Deacon reaction, The chlorine concentration tends to decrease as the temperature decreases.

【0016】また、従来の空気大過剰の焼却方法では、
炉内温度の調節は、供給する空気量を増減することによ
って行われているが、本発明における焼却方法では、焼
却炉への空気供給量が塩素発生の抑制を目的として制御
されるため、炉内温度が1600℃を超えるおそれがあ
る。そのため炉内温度の制御を行うことが望ましい。こ
の炉内温度の制御方法としては、焼却炉内に水、水蒸気
又は塩酸(例えば焼却炉からの塩化水素を吸収させた
水)を供給して炉内温度を維持する方法が好適である。
この場合、炉壁の急激な熱冷却から生ずる熱衝撃による
損傷を防ぐため、水や塩酸は空気か蒸気で噴霧して焼却
炉内に導入することが好ましい。
Further, in the conventional method of incineration with excessive air,
Adjustment of the temperature in the furnace is performed by increasing or decreasing the amount of air supplied, but in the incinerator method of the present invention, the amount of air supplied to the incinerator is controlled for the purpose of suppressing chlorine generation. The internal temperature may exceed 1600 ° C. Therefore, it is desirable to control the furnace temperature. As a method for controlling the furnace temperature, a method of supplying water, steam or hydrochloric acid (for example, water obtained by absorbing hydrogen chloride from the incinerator) into the incinerator and maintaining the furnace temperature is suitable.
In this case, in order to prevent damage due to thermal shock resulting from rapid thermal cooling of the furnace wall, it is preferable to spray water or hydrochloric acid with air or steam and introduce it into the incinerator.

【0017】このように有機塩素化合物を所定の空気比
で燃焼した燃焼排ガスは、有機塩素化合物の性質と供給
される空気量によるが、一般に塩素ガスの含有量が10
容量ppm以下、普通0.01〜2容量ppm、更に好
ましくは0.01〜0.3容量ppm程度まで抑制さ
れ、従来50〜200容量ppm程度であったのに比較
して非常に塩素ガス発生量が少ない。
The flue gas produced by burning the organic chlorine compound at a predetermined air ratio as described above generally has a chlorine gas content of 10 depending on the nature of the organic chlorine compound and the amount of air supplied.
The amount of chlorine gas is suppressed to less than the capacity ppm, usually 0.01 to 2 volume ppm, and more preferably 0.01 to 0.3 volume ppm, and compared to the conventional amount of 50 to 200 volume ppm, chlorine gas is generated significantly. Small quantity.

【0018】また、このような条件で燃焼した燃焼排ガ
スには、若干の一酸化炭素を含むのが特徴である。上述
したように、この一酸化炭素は、本発明における燃焼条
件の目安になるもので、0.01〜5容量%、好ましく
は0.02〜2容量%、最も好ましくは0.1〜1容量
%の範囲の一酸化炭素濃度となるように空気量を制御す
ることが望ましい。即ち、一酸化炭素濃度が0.01容
量%より少ないと、燃焼排ガス中の塩素の生成が多くな
るので、供給空気量を減らし、5容量%を超えると、燃
焼を維持することが困難であるので、供給空気量を増加
させるようにすることが望ましい。
Further, the combustion exhaust gas burned under such conditions is characterized in that it contains some carbon monoxide. As described above, this carbon monoxide serves as a guide for the combustion conditions in the present invention, and is 0.01 to 5% by volume, preferably 0.02 to 2% by volume, and most preferably 0.1 to 1% by volume. It is desirable to control the amount of air so that the carbon monoxide concentration is in the range of%. That is, when the concentration of carbon monoxide is less than 0.01% by volume, the amount of chlorine produced in the combustion exhaust gas increases, and when the amount of supplied air is reduced and exceeds 5% by volume, it is difficult to maintain combustion. Therefore, it is desirable to increase the supply air amount.

【0019】以上のように有機塩素化合物を焼却した後
の焼却炉から排出される燃焼排ガスは、通常と同様に冷
却塔に導いて冷却した後、吸収塔で塩化水素を水で吸収
し、次いで必要により除害塔でなお残留する塩素ガスを
除去することができる。なお、上述したように、若干の
一酸化炭素が含まれるため、大気へ放出する前に、フレ
アスタックか接触燃焼反応器などを用いて、700〜1
100℃程度の燃焼温度で大過剰の空気を用いて焼却す
ることが有効である。この方法は、すでに塩素原子の大
部分は塩化水素として吸収されているので、空気大過剰
としても塩素ガスが生成することはなく、かつ大気に放
出される燃焼生成物としては、二酸化炭素と水だけであ
り、完全に無害化された燃焼排ガスを排出することがで
きる。
The combustion exhaust gas discharged from the incinerator after the organic chlorine compound is incinerated as described above is introduced into a cooling tower and cooled in the same manner as usual, and then hydrogen chloride is absorbed by water in the absorption tower, and then, If necessary, residual chlorine gas can be removed in the abatement tower. As described above, since a small amount of carbon monoxide is contained, before being released into the atmosphere, a flare stack, a catalytic combustion reactor, or the like is used to measure 700 to 1
It is effective to incinerate with a large excess of air at a combustion temperature of about 100 ° C. With this method, most of the chlorine atoms have already been absorbed as hydrogen chloride, so chlorine gas will not be generated even if there is a large excess of air, and the combustion products released to the atmosphere are carbon dioxide and water. Only, it is possible to emit completely detoxified combustion exhaust gas.

【0020】次に、本発明の有機塩素化合物の焼却方法
を具体的に図1を参照しながら説明する。
Next, the incineration method of the organic chlorine compound of the present invention will be specifically described with reference to FIG.

【0021】図1は本発明の焼却方法の一例を示す行程
図で、焼却炉1内には、有機塩素化合物Aが必要により
空気Bと共に噴霧状態で供給されると共に、空気Bが空
気流量調節弁2を介して焼却炉1に供給され、焼却炉1
で上述した燃焼が行われる。燃焼温度の調節を行う場合
には、水、水蒸気又は塩酸Cを必要により空気Bと共に
焼却炉1に供給する。燃焼が終了し焼却炉1から排出さ
れた燃焼排ガスDは、冷却塔3に導入され、ここで熱交
換器4を循環する水で50〜120℃程度まで冷却され
る。冷却塔3を出た燃焼排ガスDは、次に吸収塔5に導
入され、ここで水Eと接触して塩化水素が吸収、除去さ
れる。吸収塔5で塩化水素が除去された燃焼排ガスD1
は、更に除害塔6に導入され、ここでアルカリ水Fと接
触して塩素が吸収される。除害塔6で塩素が除去された
燃焼排ガスD2は、最後に接触燃焼反応器7で再燃焼さ
れ、一酸化炭素が除去された無害な燃焼排ガスD3とし
て大気に放出される。
FIG. 1 is a flow chart showing an example of the incineration method of the present invention. In the incinerator 1, an organochlorine compound A is supplied in a spray state together with air B as necessary, and the air B is adjusted in air flow rate. It is supplied to the incinerator 1 via the valve 2 and the incinerator 1
The above-mentioned combustion is performed. When adjusting the combustion temperature, water, steam or hydrochloric acid C is supplied to the incinerator 1 together with air B as necessary. The combustion exhaust gas D which has been burned and discharged from the incinerator 1 is introduced into the cooling tower 3, where it is cooled to about 50 to 120 ° C. with water circulating in the heat exchanger 4. The combustion exhaust gas D that has left the cooling tower 3 is then introduced into the absorption tower 5, where it contacts the water E and hydrogen chloride is absorbed and removed. Flue gas D 1 from which hydrogen chloride has been removed in the absorption tower 5
Is further introduced into the detoxification tower 6, where chlorine is absorbed by contacting with the alkaline water F. The combustion exhaust gas D 2 from which chlorine has been removed in the detoxification tower 6 is finally re-combusted in the catalytic combustion reactor 7 and released into the atmosphere as harmless combustion exhaust gas D 3 from which carbon monoxide has been removed.

【0022】この焼却装置の除害塔6と接触燃焼反応器
7との間の燃焼排ガスD2が通る配管には、燃焼排ガス
2中の一酸化炭素の濃度を連続的に測定できる一酸化
炭素検出器(赤外線分光分析計)8が設置されている。
また、この検出器8で検出した一酸化炭素濃度を上述し
た一定値に保つように空気流量調節弁2を制御する信号
を送る制御装置9が設けられ、一酸化炭素の量が少なく
なれば空気流量を少なくし、一酸化炭素濃度が高くなれ
ば空気流量を多くするように空気流量調節弁2を制御す
るようになっており、これにより有機塩素化合物Aの量
や組成に変動があっても、安定に燃焼を維持でき、連続
的な自動焼却操作を行うことができる。また、焼却炉1
と冷却塔3との間の燃焼排ガスDが通る配管には排ガス
を抜き出すための取り出し口10が設けられている。な
お、空気流量の制御は、必要により、有機塩素化合物B
や水、水蒸気又は塩酸Cを空気と共に送入する場合、そ
の空気流量調節弁11,12に対しても行うことができ
る。
In the pipe through which the combustion exhaust gas D 2 between the abatement tower 6 and the catalytic combustion reactor 7 of this incinerator passes, the concentration of carbon monoxide in the combustion exhaust gas D 2 can be continuously measured. A carbon detector (infrared spectrophotometer) 8 is installed.
Further, a control device 9 for sending a signal for controlling the air flow rate control valve 2 so as to keep the carbon monoxide concentration detected by the detector 8 at the above-mentioned constant value is provided, and if the amount of carbon monoxide decreases, the air The air flow rate control valve 2 is controlled so that the flow rate is decreased and the air flow rate is increased when the carbon monoxide concentration is increased, so that even if the amount or composition of the organochlorine compound A varies. The combustion can be stably maintained, and continuous automatic incineration operation can be performed. In addition, incinerator 1
A pipe 10 through which the combustion exhaust gas D passes between the cooling tower 3 and the cooling tower 3 is provided with an outlet 10 for extracting the exhaust gas. The air flow rate can be controlled as necessary by using the organochlorine compound B.
When water, water vapor, or hydrochloric acid C is sent together with air, it can also be performed for the air flow rate control valves 11 and 12.

【0023】なお、上記焼却装置では、一酸化炭素検出
装置で除害塔から出た燃焼排ガス中の一酸化炭素濃度を
測定するようにしたが、一酸化炭素検出装置を焼却炉か
ら出た燃焼排ガス中の一酸化炭素をその取り出し口10
から取り出して測定し、制御するようにしてもよいが、
この排ガス中には塩化水素ガスや塩素ガスが含まれるた
め、一酸化炭素測定装置を傷めるおそれがあり、この点
から図示したように除害塔6から流出した排ガス中の一
酸化炭素濃度を測定し、制御することが推奨される。
In the incinerator, the carbon monoxide detector was used to measure the concentration of carbon monoxide in the combustion exhaust gas discharged from the detoxification tower, but the carbon monoxide detector was used to measure the concentration of carbon monoxide emitted from the incinerator. Extraction port 10 for carbon monoxide in exhaust gas
It may be taken out from the device, measured and controlled.
Since this exhaust gas contains hydrogen chloride gas and chlorine gas, it may damage the carbon monoxide measuring device. From this point, measure the carbon monoxide concentration in the exhaust gas flowing out from the abatement tower 6 as shown in the figure. However, it is recommended to control.

【0024】また、上記空気量の調節、制御は直接排ガ
ス中の塩素ガス濃度を測定することによっても可能であ
る。この場合塩素ガスの連続分析計には隔膜電解電極法
やO−トリジン連続吸光光度分析法などがあるが、いず
れも高濃度の塩素ガスを検出するとその後の分析値が正
の誤差を生じ易いという性質があり、連続制御を目的と
した分析装置としては好適ではない。
The adjustment and control of the air amount can also be performed by directly measuring the chlorine gas concentration in the exhaust gas. In this case, continuous chlorine gas analyzers include the diaphragm electrolytic electrode method and the O-tolidine continuous absorption spectrophotometric method. However, in both cases, when a high concentration of chlorine gas is detected, the subsequent analysis value is likely to cause a positive error. It has characteristics and is not suitable as an analyzer for the purpose of continuous control.

【0025】[0025]

【発明の効果】本発明の有機塩素化合物の焼却方法によ
れば、空気量を特定の低い量とすることにより、塩素の
発生を可及的に少なくして有機塩素化合物の焼却を行う
ことができる。
According to the incineration method of an organic chlorine compound of the present invention, the generation of chlorine is reduced as much as possible by incinerating the organic chlorine compound by setting the air amount to a specified low amount. it can.

【0026】また、本発明の有機塩素化合物の焼却方法
によれば、燃焼排ガス中の一酸化炭素濃度を一定範囲に
することにより、塩素の発生を可及的に少なくしつつ燃
焼を安定に保持できる。
Further, according to the method for incinerating an organic chlorine compound of the present invention, by keeping the concentration of carbon monoxide in the combustion exhaust gas within a certain range, the generation of chlorine is reduced as much as possible, and the combustion is stably maintained. it can.

【0027】[0027]

【実施例】以下、実施例を示して本発明を具体的に説明
するが、本発明は下記実施例に制限されるものではな
い。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited to the following examples.

【0028】[実施例1]主として炭素数1〜4の塩素
化炭化水素混合物(重量比で塩素63%、炭素33%、
水素4%を含有)を1時間当たり88kgで連続的に焼
却した。
Example 1 A mixture of chlorinated hydrocarbons mainly having 1 to 4 carbon atoms (63% chlorine by weight, 33% carbon by weight,
(Containing 4% hydrogen) was continuously incinerated at 88 kg per hour.

【0029】焼却炉内にこの塩素化炭化水素混合物を空
気(15M3 /hr,0℃1気圧)により噴霧して供給
すると共に、表1に示す空気比となるように空気を供給
し、更に炉内の温度を約1500℃に保持するため20
%塩酸を1時間当り66kgの割合で空気(15M3
hr,0℃,1気圧)と共に噴霧して供給した。焼却炉
での燃焼排ガスの滞留時間は1.1〜1.3秒である。
Empty the chlorinated hydrocarbon mixture in an incinerator.
Qi (15M3 / Hr, 0 ° C 1 atm)
And supply air to achieve the air ratio shown in Table 1.
In order to maintain the temperature inside the furnace at about 1500 ° C, 20
% Hydrochloric acid at a rate of 66 kg per hour in air (15 M3 /
It was supplied by spraying together with (hr, 0 ° C., 1 atm). Incinerator
The residence time of the combustion exhaust gas is 1.1 to 1.3 seconds.

【0030】焼却炉を出た燃焼排ガスは、次いで冷却塔
で冷却した後、吸収塔で塩化水素を吸収除去し、更に除
害塔で残留する塩素を除去し、最後に接触燃焼反応器で
大過剰の空気下で残留する一酸化炭素を焼却して大気へ
放出した。
The flue gas discharged from the incinerator is then cooled in a cooling tower, hydrogen chloride is absorbed and removed in an absorption tower, chlorine remaining in the detoxification tower is removed, and finally, a large amount is removed in a catalytic combustion reactor. The carbon monoxide remaining under excess air was incinerated and released to the atmosphere.

【0031】焼却炉からの燃焼排ガス中の一酸化炭素濃
度(表中Aと表示)を下記方法により測定した。また、
除害塔から出た燃焼排ガス中の一酸化炭素濃度(表中B
と表示)を、赤外線分光分析計で測定した。従って、一
酸化炭素濃度(B)は塩化水素ガス吸収後の燃焼排ガス
中の濃度を示す。 <塩素濃度>図中、取り出し口10より燃焼排ガスを取
り出し、取り出した燃焼排ガス中に含まれる塩素の濃度
をO−トリジン吸光光度分析法で測定した。 <一酸化炭素濃度A>図中、取り出し口10より燃焼排
ガスを取り出し、取り出した燃焼排ガス中に含まれる一
酸化炭素の濃度をガスクロマトグラフィー法により測定
した。 <一酸化炭素濃度B>除害塔から出た燃焼排ガスを取り
出し、図中8の一酸化炭素検出装置(赤外線分光分析
計)にて除害塔から出た燃焼排ガス中に含まれる一酸化
炭素の濃度を測定した。
The carbon monoxide concentration (denoted by A in the table) in the combustion exhaust gas from the incinerator was measured by the following method. Also,
Carbon monoxide concentration in the combustion exhaust gas from the abatement tower (B in the table)
Was displayed with an infrared spectrophotometer. Therefore, the carbon monoxide concentration (B) indicates the concentration in the combustion exhaust gas after absorbing the hydrogen chloride gas. <Chlorine concentration> In the figure, the combustion exhaust gas was taken out through the take-out port 10, and the concentration of chlorine contained in the taken-out combustion exhaust gas was measured by O-tolidine absorption spectrophotometry. <Carbon monoxide concentration A> In the figure, the combustion exhaust gas was taken out through the outlet 10, and the concentration of carbon monoxide contained in the taken out combustion exhaust gas was measured by a gas chromatography method. <Carbon monoxide concentration B> Carbon monoxide contained in the combustion exhaust gas discharged from the abatement tower by the carbon monoxide detection device (infrared spectrophotometer) 8 taken out from the combustion exhaust gas discharged from the abatement tower Was measured.

【0032】各空気比に対して、焼却により生成した塩
素ガス濃度とそれぞれの一酸化炭素濃度の測定結果を表
1に併記した。なお、空気比は、空気中の酸素濃度を2
0.6容量%として噴霧空気を含めた焼却炉内への全供
給空気量を測定して算出した。
Table 1 shows the measurement results of the concentration of chlorine gas produced by incineration and the concentration of carbon monoxide for each air ratio. The air ratio is the oxygen concentration in the air, which is 2
It was calculated by measuring the total amount of air supplied to the incinerator including atomized air as 0.6% by volume.

【0033】[0033]

【表1】 [Table 1]

【0034】[実施例2]空気比を1.03とし、焼却
炉内壁の温度が表2に示す温度となるように供給する2
0%塩酸の供給量を変化させた以外は、実施例1と同一
条件で同じ塩素化炭化水素混合物の焼却を行った。結果
を表2に併記する。
[Example 2] The air ratio was set to 1.03, and the temperature of the inner wall of the incinerator was adjusted to the temperature shown in Table 2.
The same chlorinated hydrocarbon mixture was incinerated under the same conditions as in Example 1 except that the supply amount of 0% hydrochloric acid was changed. The results are also shown in Table 2.

【0035】[0035]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の有機塩素化合物の焼却方法を示す行程
図である。
FIG. 1 is a process diagram showing an incineration method for an organic chlorine compound of the present invention.

【符号の説明】[Explanation of symbols]

A 有機塩素化合物 B 空気 C 水、蒸気、又は塩酸 D,D1,D2,D3 燃焼排ガス E 水 F アルカリ水 1 焼却炉 2 空気量調節弁 3 冷却塔 5 吸収塔 6 除害塔 7 接触燃焼反応器 8 一酸化炭素検出装置 9 制御装置A Organochlorine compound B Air C Water, steam or hydrochloric acid D, D 1 , D 2 , D 3 Combustion exhaust gas E Water F Alkaline water 1 Incinerator 2 Air quantity control valve 3 Cooling tower 5 Absorption tower 6 Exclusion tower 7 Contact Combustion reactor 8 Carbon monoxide detector 9 Controller

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機塩素化合物と空気とを焼却炉に供給
して有機塩素化合物を焼却する方法において、焼却炉に
供給される空気量が、焼却炉に供給される有機塩素化合
物及び炭化水素の全ての炭素原子を二酸化炭素に転化
し、かつ全ての塩素原子を塩化水素に転化し、更に塩化
水素の生成後に残留する全ての水素原子を水に転化する
のに必要な理論空気量に対し、モル比で0.8〜1.1
5倍であることを特徴とする有機塩素化合物の焼却方
法。
1. In a method for incinerating an organic chlorine compound by supplying the organic chlorine compound and air to an incinerator, the amount of air supplied to the incinerator is the amount of the organic chlorine compound and hydrocarbons supplied to the incinerator. To the theoretical amount of air required to convert all carbon atoms to carbon dioxide, and all chlorine atoms to hydrogen chloride, and further to convert all hydrogen atoms remaining after the production of hydrogen chloride to water, 0.8-1.1 in molar ratio
A method for incinerating an organic chlorine compound, which is characterized by being 5 times.
【請求項2】 焼却炉内に水、水蒸気又は塩酸を供給す
ることを特徴とする請求項1記載の有機塩素化合物の焼
却方法。
2. The method for incinerating an organic chlorine compound according to claim 1, wherein water, steam or hydrochloric acid is supplied into the incinerator.
【請求項3】 有機塩素化合物を焼却した後の燃焼排ガ
ス中に含まれる塩化水素ガスを除去したのち、この燃焼
排ガスを空気により再焼却することを特徴とする請求項
1又は2記載の有機塩素化合物の焼却方法。
3. The organic chlorine according to claim 1 or 2, wherein after removing the hydrogen chloride gas contained in the combustion exhaust gas after incinerating the organic chlorine compound, the combustion exhaust gas is re-incinerated with air. How to incinerate compounds.
【請求項4】 有機塩素化合物と空気とを焼却炉に供給
して有機塩素化合物を焼却する方法において、有機塩素
化合物の焼却後の燃焼排ガス中に含まれる一酸化炭素濃
度を測定し、その測定結果に基づいて焼却炉に供給する
空気量を調節することを特徴とする有機塩素化合物の焼
却方法。
4. A method of incinerating an organochlorine compound by supplying the organochlorine compound and air to an incinerator, wherein the concentration of carbon monoxide contained in the combustion exhaust gas after the incineration of the organochlorine compound is measured and measured. A method for incinerating an organic chlorine compound, which comprises adjusting the amount of air supplied to an incinerator based on the result.
【請求項5】 有機塩素化合物と空気とを焼却炉に供給
して有機塩素化合物を焼却する方法において、有機塩素
化合物の焼却後の燃焼排ガス中に含まれる塩化水素ガス
を除去した後、この塩化水素ガスを除去した燃焼排ガス
中の一酸化炭素の濃度を連続的に測定し、その測定結果
に基づいて焼却炉内へ供給する空気量を自動的に制御す
ることを特徴とする有機塩素化合物の焼却方法。
5. A method for incinerating an organic chlorine compound by supplying an organic chlorine compound and air to an incinerator, wherein hydrogen chloride gas contained in combustion exhaust gas after incineration of the organic chlorine compound is removed, and then this chlorine is removed. The concentration of carbon monoxide in the combustion exhaust gas from which hydrogen gas has been removed is continuously measured, and the amount of air supplied to the incinerator is automatically controlled based on the measurement results. Incineration method.
JP22575494A 1994-08-26 1994-08-26 Method for burning organic chloride Pending JPH0861647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22575494A JPH0861647A (en) 1994-08-26 1994-08-26 Method for burning organic chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22575494A JPH0861647A (en) 1994-08-26 1994-08-26 Method for burning organic chloride

Publications (1)

Publication Number Publication Date
JPH0861647A true JPH0861647A (en) 1996-03-08

Family

ID=16834307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22575494A Pending JPH0861647A (en) 1994-08-26 1994-08-26 Method for burning organic chloride

Country Status (1)

Country Link
JP (1) JPH0861647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340069A (en) * 2022-07-06 2022-11-15 宜宾海丰和锐有限公司 Method for recycling byproduct hydrogen chloride containing organic matters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340069A (en) * 2022-07-06 2022-11-15 宜宾海丰和锐有限公司 Method for recycling byproduct hydrogen chloride containing organic matters

Similar Documents

Publication Publication Date Title
US4101632A (en) Waste gas incineration control
US4038032A (en) Method and means for controlling the incineration of waste
CN102537972B (en) Destructive gasifying incinerating and treating device
CA1109232A (en) Process for the incineration of chlorinated organic materials
JP2012523948A (en) Method and apparatus for gasifying organic waste
JP2014500942A (en) Method and apparatus for reducing NOx emissions in exhaust gas incineration
KR100789158B1 (en) A Method of Firebox Temperature Control for Achieving Carbon Monoxide Emission Compliance in Industrial Furnances with Minimal Energy Consumption
US5269235A (en) Three stage combustion apparatus
JPWO2008096466A1 (en) Gas processing apparatus, gas processing system and gas processing method using the apparatus
JPH0861647A (en) Method for burning organic chloride
JP3033015B2 (en) Semi-dry distillation gasification incineration method and apparatus
JP2834489B2 (en) Method for producing chlorine-free hydrochloric acid with low content of organic halogen compounds
CA1105237A (en) Process for the incineration of chlorinated organic materials
SU1123404A1 (en) Method of monitoring process of fire decontamination of liquid waste
JPH09273727A (en) Method for decomposing organic halogen compound
JP2948345B2 (en) Thermal decomposition method of organic matter
GB2040897A (en) Process for the incineration of chlorinated organic materials
KR20010103226A (en) The system of the complete combustion of the waste gas as the fuel
CN217928774U (en) Control system for organic solid waste treatment apparatus
JP5890050B2 (en) Dry distillation gasification incineration processing equipment
JP5762714B2 (en) Dry distillation gasification incineration processing equipment
JPH10185137A (en) Semi-dry distillation gasification incineration method and device thereof
JPH1182958A (en) Incinerator and method for controlling operation of incinerator
JPH0515930B2 (en)
KR20220164335A (en) SF6 gas decomposition device control method